
Predictive Object Points (POP) Sizing Metric: A Good 
Predictor of Quality of OO Software

Shubha Jain1*, Shantanu Pant1 and Raghuraj Singh2

1Department of Computer Science and Engineering, Kanpur Institute of Technology,  
Kanpur – 208001, Uttar Pradesh, India;  

shubhj@rediffmail.com, shantanupant03@gmail.com 
2Computer Science and Engineering Department, Harcourt Butler Technological Institute,  

Kanpur – 208002, Uttar Pradesh, India; 
raghurajsingh@rediffmail.com

Abstract
Measuring the quality of software is an essential task as it leads to the minimization of cost in allocation of resources 
for testing or maintenance effort. With the emergence of Object Oriented (OO) technologies as a dominant software  
engineering practice today, it is required to investigate object-oriented metrics with respect to the software quality. This  
paper is an attempt for measuring the quality attributes of an OO system during the design phase using Predictive Object Point  
software sizing metrics set in. This paper relates high-level quality attributes such as reusability, flexibility, understandability, 
functionality, extendibility and effectiveness to Predictive Object Point Count and hence shows that Predictive Object Point 
Metrics set can be used to make quality decisions. The proposed model of assessment of quality through POP Count at the 
design phase has been studied on the several separate versions of three object oriented software which are developed for 
the same types of requirements and objectives. A quality metric tool has been developed to measure the various design 
metrics and hence the quality attributes of the projects under study. The trend observed through these quality attributes is 
compared with the corresponding POP Count values. The results have been analyzed and presented to show that the POP 
Count can be used to assess the quality of an object oriented system.

Indian Journal of Science and Technology, Vol 11(20), DOI: 10.17485/ijst/2018/v11i20/48215, May 2018

Keywords: Automation, Object Orientation, Predictive Object Point, Quality Attributes, Quality Measurement, Quality 
Model, Software Metrics, 

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

1. Introduction
Object Oriented (OO) technologies have become a domi-
nant software engineering practice today. The demand 
for quality software grows day by day in today’s software 
development environment. With object-oriented analysis 
and design methodologies gaining popularity, the software 
developers and managers had to rethink about the param-
eters or elements used to estimate the size as well as to 
assess the software quality. However, the results vary from 
metric to metric due to the different parameters they mea-
sure, the way they measure and when they are applicable. 

Software quality is especially a favored area when it 
comes to prediction based on metrics. The introduction 
and subsequent use of metrics as a means to evaluate the 

software quality has had deep and useful impact on the 
overall system2.

Most of the metrics have not been validated or validated 
with small data sets therefore their practical applicabil-
ity and effectiveness in an industrial environment is not 
known. There should be a way to map the external qual-
ity attributes of the software developed with the measured 
metrics values. Most of the quality models for analyses of 
OO software are applicable during their implementation 
and hence does not help in improving the software char-
acteristics before the completion of the project. Thus there 
is a need to assess the quality of software in early stages of 
development to ensure quality end products. 

Traditional software product metrics that evaluate 
product characteristics such as size, complexity, per-

*Author for correspondence

mailto:shubhj@rediffmail.com
mailto:shantanupant03@gmail.com
mailto:raghurajsingh@rediffmail.com


Predictive Object Points (POP) Sizing Metric: A Good Predictor of Quality of OO Software

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org2

formance, and quality must be changed to rely on some 
fundamentally different notions such as encapsulation, 
inheritance, and polymorphism which are inherent in 
object-orientation1. The object oriented approach natu-
rally lends itself to an early assessment and evaluation1. 
Many metrics relating to product quality have been 
developed and used by various scientists in order to 
meet the requirement5–8. However, the results may vary 
from metric to metric due to the different parameters 
they measure, the way they measure and when they are 
applicable. 

Most of the metrics have not been validated or 
validated with small data sets therefore their practical 
applicability and effectiveness in an industrial environment 
is not known. Most of the quality models for analyses of 
OO software are applicable during their implementation 
and hence does not help in improving the software char-
acteristics before the completion of the project. There are 
various models suggested by various researchers to mea-

sure software quality. One such model is QMOOD1 which 
is a hierarchical model for object oriented design assess-
ment. It Implements a way to map source code metrics 
to higher abstract quality attributes like reusability, func-
tionality, effectiveness, understandability, extendibility 
and flexibility. However, this set of quality attributes is not 
exclusive, and it can be easily changed to represent different 
objectives and goals. These quality attributes are abstract 
concepts and are therefore not directly observable1.

QMOOD quality model describes the way to compute 
the quality attributes in terms of design properties through 
computational formulas mentioned in Table 1. 

The metrics used for the measurement of the above 
design properties such as messaging, coupling, cohesion, 
encapsulation, complexity, polymorphism, hierarchies, 
abstraction and design size are not fixed and hence may be 
replaced with their corresponding replacement metrics1. 

Table 2 shows QMOOD design metrics and corre-
sponding replacement metrics.

Table 1. Computation formulas for quality attributes1

Quality Attribute Index Computation Equation
Reusability - 0.25 * coupling + 0.25 * cohesion + 0.5 * messaging + 0.5 * design size 
Flexibility  0.25 * encapsulation - 0.25 * coupling + 0.5 * composition + 0.5 * polymorphism 
Understandability - 0.33 * abstraction + 0.33 * encapsulation - 0.33 * coupling + 0.33 * cohesion - 0.33 * polymorphism - 

0.33 * complexity - 0.33 * design size 
Functionality  0.12 * cohesion + 0.22 * polymorphism + 0.22 * messaging + 0.22 * design size + 0.22 * hierarchies
Extendibility  0.5 * abstraction - 0.5 * coupling + 0.5 * inheritance + 0.5 * polymorphism
Effectiveness  0.2 * abstraction + 0.2 * encapsulation + 0.2 * composition + 0.2 * inheritance + 0.2 * polymorphism 

Table 2. QMOOD design metrics and some substitute metrics

Design Properties Metrics in QMOOD1 Equivalent Metric Computed

Coupling Direct class coupling (DCC) Efferent Coupling (Ce)13

Cohesion Cohesion Among Method In Class (CAM) -
Encapsulation Data Access Metrics (DAM) -

Abstraction Average Number Of Ancestors (ANA) Top Level Class (TLC)2

Hierarchies Number Of Hierarchies (NOH) Depth Of Inheritance (DIT)4

Polymorphism Number Of Polymorphic Methods (NOP) Number Of Method Overridden (NMO)14

Complexity Number Of Methods (NOM) Weighted Method per Class (WMC)4 

Messaging Class Size Interface (CIS) Number Of Public Methods (NPM)16 
Design Size Design Size In Class (DSC) Number Of Class15

Composition Measure of Aggregation (MOA) -

Inheritance Measure Of Functional Abstraction (MFA) -

www.indjst.org


Shubha Jain, Shantanu Pant and Raghuraj Singh

Indian Journal of Science and Technology 3Vol 11 (20) | May 2018 | www.indjst.org

2.  Quality Assessment through 
Predictive Object Point (POP) 
Metrics

Predictive Object Points (POPs) was proposed by 
Minkiewicz in 19983 for predicting effort required for 
developing an object oriented software system. POPs are 
intended as an improvement over FPs, and are based on 
counts of metrics: number of Top Level Classes (TLC) 
and weighted methods per class (WMC), with adjust-
ments for the average Depth of the Inheritance Tree 
(DIT) and the average Number Of Children per class 
(NOC).

WMC, DIT, and NOC are taken from the MOOSE met-
rics suite of Chidamber and Kemerer6. POPs3 incorporate 
three dimensions of OO systems: the amount of function-
ality the software delivers communication between objects 
and reuse through inheritance. These aspects used to give 
rise to a single metric in order to indicate the amount of 
effort involved in the production of a software system. 

POPs are based on objects and their characteristics. It ful-
filled almost all the criteria of OO concepts.

Measurement process: The following formula was pro-
posed to calculate the size of the overall system2. 
f TLC NOC DIT TLC NOC DIT NOC DIT

f

1 1 1 011
01

2

( , , ) * ( .(( ) * )
.(| |) )= + + + −

(( , ) .

( , , , )
* ( , , )

.

NOC DIT

POPs WMC NOC DIT TLC
WMC f TLC NOC DIT

=

=

1 0

1

7 8
** ( , )f NOC DIT2

 (1)
where, f1 attempts to size the overall system, and f2 

applies the effects of reuse through inheritance.
Typically, estimation begins by projecting the amount 

of software to be produced. Getting a good size estimate is 
essential to getting good estimates of effort, schedule, and 
quality. The POP metric is a good indicator of software size 
validated through APA tool4.

The metrics used in POP Count for the measurement of 
software incorporate almost all the design metrics required 

for the assessment of high-level quality attributes suggested 
by QMOOD1. WMC used in POP count formula encom-
pass both functionality and inter-object communication 
in POPs count3. WMC analyzes the class structure and the 
result has a bearing on the understandability, maintainabil-
ity, and reusability of the system as a whole12. The average 
DIT, TLC and Average NOC establishes reuse through 
inheritance and overall system size3. It also evaluates 
efficiency, reusability, and testability. DIT also evaluates 
efficiency and reuse and also relates to understandability 
and testability12. 

For Quality assessment through POP count, data set 
may be taken as projects with identical requirements and 
objectives. This would help to ascertain that the POP met-
rics are capable of predicting the quality of software across 
the object oriented language.

3. Empirical Study Description
The validation of the proposed model for quality measure-
ment through POP Count was carried out. Designs chosen 
for validation are developed for similar requirements and 
objectives.

3.1 Project Set Taken
Several versions of three projects, JaimBot9, JCommon10 
and proguard11 are chosen for this study. JaimBot9 is a 
modular architecture for providing services through an 
AIM client. It contains a generic AIM library and a Bot 
which uses this library to provide such services as Offline 
Messaging, Lists, Weather, Headlines, Stock Quotes, AI 
chatterbot. JCommon10 is a Java class library contains 
packages such as date, io, layout, resources, ui etc. that is 
used by JFreeChart, Pentaho Reporting and a few other 
projects. ProGuard11 is a command-line tool with an 
optional graphical user interface. It is a free Java class file 
shrinker, optimizer, obfuscator, and pre-verifier. It detects 
and removes unused classes, fields, methods, attributes and 
instructions. It also pre-verifies the processed code for Java 
6 or higher, or for Java Micro Edition. All are commercial 
successful object- oriented designs that are extensively used 
in real-world software development and several versions of 
designs exist for comparison.

Four versions of JaimBot9, three versions of JCommon10 
and three versions of proguard11 were evaluated using the 
suite of design metrics in Table 2 and the quality attributes 
in Table 1.

Figure 1. Aspects of an object-oriented system3.

www.indjst.org
http://www.jfree.org/jfreechart/
http://www.pentaho.com/


Predictive Object Points (POP) Sizing Metric: A Good Predictor of Quality of OO Software

Indian Journal of Science and Technology4 Vol 11 (16) | April 2018 | www.indjst.org

3.2  Procedure for Normalizing Measured 
Metric Values 

For computation of the QMOOD quality attribute val-
ues, actual metric values of different ranges are combined, 
hence normalization is done with respect to the metrics’ 
values in the first version. This is obtained by dividing the 
metric values with the metric value in the first version. 
This is acceptable as the comparison is made between the 
different versions of the same project. If a metric value is 
zero prior to normalization, then that metric values are not 
normalized as per consideration the normalized value fall 
between [min, max] where min value considered is zero, 
thus avoiding 0/0 form. The above normalization tech-
nique cannot be implemented if the projects considered 
are of different types. 

3.3 Automated Tool
An automation tool has been built to analyze the above 
designs. The metric values are collected for eleven metrics 
of Table 2 for the four versions of JaimBot9, 3 versions of 
JCommon10 and 3 versions of Proguard11 and then are nor-
malized.

Figure 2 shows the snapshot of the quality tool which 
assesses the quality of the software by evaluating the quality 
attributes and POP Count.

4. Analysis Results 
Generally new versions of an existing software product 
add new features or eliminate errors discovered in previous 
version. In early versions generally software is modified to 
enhance capabilities and to add new features or incorporate 
additional requirements. Thus early releases may improve 
the usability and user friendliness of the software product. 
Their quality has generally been observed to be significantly 
better than their predecessors. After that the improvements 
are small for higher versions.

The quality attributes proposed in QMOOD are com-
puted for several designs through an automation tool and 
compared with the trend observed through POP Count 
computed through APA Tool4.

For the validation of the proposed model, it was expected 
that the evaluated quality characteristics for each version of 
the three projects through POP Count should match with 
the generally expected trends obtained of the six high-level 
quality attributes in the QMOOD model.

The Expected trend is that the quality attributes reusabil-
ity, flexibility, functionality, extendibility, and effectiveness 
should increase from one release to the next and under-
standability should decrease with increase in complexity in 
higher versions.

4.1  Evaluation Results for Jaimbot Project 
Versions

The metric values are collected for eleven metrics of Table 
2 for the four versions of JaimBot9 through the automated 
tool. The values measured are normalized and presented 
in Table 3. Figure 2. Sample quality attributes values.

Table 3. Actual and normalized metric values for JaimBot projects versions

Project Actual Metric Values Normalized Metric Values
Versions

 Metric
1.2 1.2.1 1.3 1.4 1.2 1.2.1 1.3 1.4

Design Size 162 173 182 249 1 1.07 1.12 1.54
Hierarchies 10 10 10 0 1 1 1 1
Coupling 84 88 94 120 1 1.05 1.12 1.43
Cohesion 10.28 10.71 10.88 12.39 1 1.04 1.06 1.21
Abstraction 20 21 23 33 1 1.05 1.15 1.65
Encapsulation 13.17 13.61 14.46 18.17 1 1.03 1.09 1.37
Messaging 153 164 178 251 1 1.03 1.12 1.58

www.indjst.org


Shubha Jain, Shantanu Pant and Raghuraj Singh

Indian Journal of Science and Technology 5Vol 11 (20) | May 2018 | www.indjst.org

Table 4 shows the computed values of the six quality attri-
butes for the different versions of the project JaimBot along 
with POP Count based on the normalization.

Table 4. QMOOD Quality attribute values with POP 
count for JaimBot project versions

Version Quality 
Attribute

1.2 1.2.1 1.3 1.4

Reusability 1 1.05 1.10 1.50
Flexibility 1 1.03 1.07 1.31
Understandability -0.99 -1.05 -1.16 -1.75
Functionality 0.99 1.04 1.09 1.41
Extendibility 1 1.07 1.19 1.93
Effectiveness 1 1.04 1.12 1.53
POP COUNT 1 1.07 1.20 1.99

The values listed above for all four versions of Jaimbot 
indicate that the quality attributes reusability, flexibility, 
functionality, extendibility, and effectiveness increase from 
one release to the next and understandability decrease due 
to increase in complexity in higher versions. The graph 
below indicates that for higher versions, the reusability, 
flexibility, functionality, extendibility and effectiveness fac-
tors increases and the understandability factors decreases. 

The POP count of all four versions of JaimBot also found 
to be increases. 

4.1.1  Evaluation Results for Jcommon Project 
Versions

The metric values are collected for eleven metrics of Table 
2 for the three versions of Jcommon10 through the auto-
mated tool. The values measured are normalized and 
presented in Table 5.

Table 5. Actual and normalized metric values for 
Jcommon projects versions
Project Actual Metric Values Normalized 

Metric Values 
Versions

 Metric
0.8.0 0.9.0 1.0.0 0.8.0 0.9.0 1.0.0

Design Size 357 419 483 1 1.17 1.35
Hierarchies 184 201 214 1 1.09 1.16
Coupling 74 81 93 1 1.09 1.26
Cohesion 41.09 45.85 51.22 1 1.12 1.25
Abstraction 75 84 99 1 1.12 1.32
Encapsulation 42.33 48.23 59.66 1 1.14 1.41
Messaging 378 428 525 1 1.13 1.39
Polymorphism 5 7 7 1 1.4 1.4
Complexity 457 531 647 1 1.16 1.42
Composition 7 43 55 1 6.14 7.86
Inheritance 35.53 36.89 37.75 1 1.04 1.06
POP COUNT 1792.79 2082.55 2560.36 1 1.16 1.43

Table 6 shows the computed values of the six quality 
attributes for the different versions of the project Jcommon 
along with POP Count based on the normalization.

Table 6. QMOOD quality attribute values with pop 
count for Jcommon project versions

Version
 Quality Attribute

0.8.0 0.9.0 1.0.0

 Reusability 1 1.16 1.36
Flexibility 1 3.78 4.67
Understandability -0.99 -1.21 -1.34
Functionality 1 1.18 1.32

Project Actual Metric Values Normalized Metric Values
Versions

 Metric
1.2 1.2.1 1.3 1.4 1.2 1.2.1 1.3 1.4

Polymorphism 51 55 59 84 1 1.07 1.16 1.64
Complexity 210 219 239 345 1 1.04 1.14 1.64
Composition 2 2 2 2 1 1 1 1
Inheritance 0 0 0 0 0 0 0 0
POP COUNT 458.60 522.50 584.58 968.71 1 1.07 1.20 1.99

Figure 3. Plot of computed quality attributes and POP 
Count for JaimBot project versions

www.indjst.org


Predictive Object Points (POP) Sizing Metric: A Good Predictor of Quality of OO Software

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org6

Version
 Quality Attribute

0.8.0 0.9.0 1.0.0

Extendibility 1 1.24 1.26
Effectiveness 1 2.17 2.61
POP COUNT 1 1.16 1.43

The values listed above for all three versions of Jcommon 
indicate that the quality attributes reusability, flexibility, func-
tionality, extendibility, and effectiveness increase for higher 
versions and understandability decrease. The graph below 
also indicates that with higher versions, the reusability, flex-
ibility, functionality, extendibility and effectiveness factors 
increases however the understandability factors decreases. 

The POP count of all three versions of Jcommon also 
found to be increases. 

4.2  Evaluation Results for Proguard Project 
Versions

The metric values are collected for eleven metrics of Table 
2 for the three versions of Proguard11 through the auto-
mated tool. The values measured are normalized and 
presented in Table 6.

Table 7. Actual and normalized metric values for 
Proguard projects versions

Project Actual Metric Values
Normalized 
Metric Values

Version
 Metrics

1.7.2 4.0 4.9 1.7.2 4.0 4.9

Design Size 257 497 556 1 1.93 2.16
Hierarchies 23 45 44 1 1.96 1.91
Coupling 284 594 690 1 2.09 2.43

Project Actual Metric Values
Normalized 
Metric Values

Version
 Metrics

1.7.2 4.0 4.9 1.7.2 4.0 4.9

Cohesion 8.06 26.03 29.26 1 3.23 3.63
Abstraction 33 89 107 1 2.69 3.24
Encapsulation 16.8 46.75 50.75 1 2.78 3.02
Messaging 167 299 331 1 1.79 1.98
Polymorphism 4 8 8 1 2 2
Complexity 253 405 482 1 1.60 1.91
Composition 4 5 8 1 1.25 2
Inheritance 1 1 1 1 1 1
POP COUNT 1142.71 2102.89 2531.81 1 1.84 2.22

Table 8 shows the computed values of the six qual-
ity attributes for the different versions of the project 
Proguard along with POP Count based on the normal-
ization.

Table 8. QMOOD Quality attribute values with POP 
count for Proguard project versions

Version
 Quality Attribute

1.7.2 4.0 4.9

Reusability 1 2.14 2.37
Flexibility 1 1.79 2.15
Understandability -0.99 -1.42 -1.68
Functionality 1 2.07 2.21
Extendibility 1 1.8 1.9
Effectiveness 1 1.94 2.25
POP COUNT 1 1.84 2.22

The values listed above for all three versions of Proguard 
indicate that the quality attributes reusability, flexibility, 
functionality, extendibility, and effectiveness increase 
from one release to the next and understandability 
decrease. 

The graph also indicates that with higher versions, 
the reusability, flexibility, functionality, extendibility and 
effectiveness factors increases and the understandability 
factors decreases. 

From the results it is clear that as the different ver-
sions roll out, the reusability, flexibility, functionality, 
extendibility and effectiveness factors increases and the 
understandability factor decreases. 

The POP count of the different versions of all three 
projects also found to be increases. 

Figure 4. Plot of computed quality attributes and POP 
Count for Jcommon project versions.

www.indjst.org


Shubha Jain, Shantanu Pant and Raghuraj Singh

Indian Journal of Science and Technology 7Vol 11 (20) | May 2018 | www.indjst.org

5. Conclusion and Future Work
Here an Automatic Software Quality Measurement Tool 
has been made to access the quality of OO software by 
measuring its Predictive Object Point Metrics. QMOOD 
quality attributes have been measured for several versions 
of three java projects through this tool and trend is com-
pared with the trend shown by POP count values for all 
same versions of these Projects. The results were analyzed 
in terms of quality. 

The conclusion that could be drawn from this study 
is that the POP metric is a good predictor of software 
Quality which can be easily seen through the compari-
sons of results obtained. After seeing the trend observed 
during study we can ascertain that Reusability, Flexibility, 
functionality, Extendibility and Effectiveness quality 
attributes can be estimated directly with the value of POP 
count. However, Understandability goes indirect in pro-
portionality with the POP count. Hence by comparing the 
POP count values of projects, comparison in their quality 
can be estimated. An increase in POP count value reflect 
corresponding increase in Reusability, Flexibility, func-
tionality, Extendibility and Effectiveness quality attributes 
and decrease in Understandability. 

Research till date for the data studied shows relation 
between Predictive Object Point Metrics and Quality. 
But the data studied has been, by no means, exhaustive 
in coving various software projects. We need to collect 
additional projects developed for similar requirements 
and objectives and continue to check this relation. Always 
there is a need for constant validation to ensure the accu-
racy of such predictions for the success of software quality 
assessment through metrics. 

Lastly, since this has already been proven that POP 
metrics set is a also a good predictor of size hence study 
can be followed up with another through which POP 
metrics can be mapped to measure software cost and 
schedule also. 

6. References
1. Bansiya J, Davis CG. A hierarchical model for valida-

tion of object oriented design quality assessment. IEEE 
Transactions on Software Engineering. 2002 Jan; 28(1);4–7.  
Crossref. 

2. Kayarvizhy N, Kanmani S. Analysis of quality of object ori-
ented systems using object oriented metrics. Proceedings 
of 3rd International Conference on Electronics Computer 
Technology; 2011 Apr. p. 203–6. Crossref. 

3. Minkiewicz AF. Measuring object oriented software with 
predictive object points. PRICE Systems, L.L.C.

4. Shubha J, Vijay Y, Raghuraj S. OO estimation through 
automation of the predictive object points sizing met-
ric. International Journal Of Computer Engineering and 
Technology. 2013 May–Jun; 4(3):410–18.

5. Bansiya J. A hierarchical model for quality assessment of 
object oriented designs. PhD Dissertation, University of 
Alabama in Huntsville; 1997.

6. Chidamber SR, Kemerer CF. A metrics suite for object-ori-
ented design. IEEE Transactions on Software Engineering. 
1994 Jun; 20(6):476–93. Crossref. 

7. Hintz M, Montazeri B. Chidamber and Kemerer’s met-
rics suite: A measurement theory perspective. IEEE 
Transactions on Software Engineering. 1996 Apr; 22(4): 
67–271.

8. Li W, Henry S. Object oriented metrics that predict main-
tainability. Journal of Systems and Software. 1995 Dec; 
23(21):929–94.

9. JaimBot [Internet]. Available from: http://sourceforge.net/
projects/jaimbot/

10. Jcommon [Internet]. Available from: http://www.jfree.org/
jcommon/download

11. Proguard [Internet]. Available from: http://proguard.
sourceforge.net

12. Software quality metrics for object oriented system envi-
ronments, national aeronautics and space administration 
Goddard space flight center, Greenbelt Maryland 20771; 
1995 Jun.

13. Chawla MK, Chhabra I. Capturing OO software metrics 
to attain quality attributes – A case study. International 
Journal of Scientific and Engineering Research. 2013 Jun; 
4(6):2229–5518.

Figure 5. Plot of computed quality attributes and POP 
Count for Proguard Project Versions.

www.indjst.org
https://doi.org/10.1109/32.979986
https://doi.org/10.1109/ICECTECH.2011.5941986
https://doi.org/10.1109/32.295895
http://sourceforge.net/projects/jaimbot/
http://sourceforge.net/projects/jaimbot/
http://www.jfree.org/jcommon/download
http://www.jfree.org/jcommon/download
http://proguard.sourceforge.net
http://proguard.sourceforge.net


Predictive Object Points (POP) Sizing Metric: A Good Predictor of Quality of OO Software

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org8

14. Objecteering Metrics User Guide [Internet]. [cited 2013 
Jun 25]. Available from: http://support.objecteering.com/
objecteering6.1/help/us/metrics/toc.htm.

15. User Guide for CCCC.

16. CKJM extended manual. An extended version of Tool for 
Calculating Chidamber and Kemerer Java Metrics (and 
many other metrics) [Internet]. [cited 2013 May 3]. Available 
from: http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/intro.html.

www.indjst.org
http://support.objecteering.com/objecteering6.1/help/us/metrics/toc.htm
http://support.objecteering.com/objecteering6.1/help/us/metrics/toc.htm
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/intro.html

