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Abstract
Objective: To direct channel selection in WSNs. The tests indicate execution enhancements on the conveyance rate and 
conveyance defer when the proposed cognitive arrangements are utilized. Methods/Statistical Analysis: The utilization 
of administered Machine Learning (ML) for direct determination in WSNs. The proposed models were broke down 
utilizing ML apparatuses and strategies, and the best calculations were assessed on genuine sensor hubs. Findings: 
Wireless Sensor Networks (WSNs) utilize Industrial, Logical and Medical (ISM) range groups for correspondence, which 
are over-burden because of different innovations for example, WLANs and different WSNs. In this way, such systems must 
utilize astute strategies, for example, Cognitive Radio (CR) to exist together with different systems. The tests indicate 
execution enhancements on the delivery rate and delivery delay when the proposed psychological arrangements are 
utilized. Application/Improvements: Intelligent spectrum decision machine learning idea we can utilize all sort of use, 
for example, restorative field, Miltary applications, and so forth.
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1.  Introduction
An imperative issue in existing arrangements of wireless 
networks is the crowded nature of the electromagnetic 
medium1. Crowded range prompts a degraded network 
experience, requiring more retransmissions and in that 
capacity expanding the battery deplete of cell phones. 
Cognitive Radio (CR) is an innovation that handles this 
issue2. In the case of Wireless Sensor Networks (WSN), 
which operate on the ISM (Industrial, Scientific and 
Medical) band, CR functions improve the coexistence of 
multiple networks by ensuring a more efficient and reli-
able communication3. While the “Traditional” CRs select 
frequency bands or time intervals that are free of licensed 
users (the Primary Users), in WSN the CRs select chan-
nels with better conditions for communication, avoiding 
interference from WSN and other networks in the sur-
roundings.

CR procedures for ISM endeavor to moderate the 
impedance among systems of various innovations. For 
instance, they can be utilized to designate a 802.15.4 sys-

tem to a channel having less cover with the encompassing 
802.11 systems. Existing executions of ISM organizes 
as of now utilize intellectual radio systems: 802.11 APs 
working in the 5.2-5.7 GHz band utilize dynamic recur-
rence determination to decrease obstruction with radars4, 
and most APs change their channel task progressively. 
Further, remote systems can be sent in unforgiving situ-
ations. Electric apparatus and other hardware utilized as 
a part of modern plants may produce clamor that lessens 
the nature of correspondence5, so CR strategies might be 
utilized to adapt to this obstruction. Once the best chan-
nel is chosen, MAC conventions organize transmissions 
on that channel, lessening the parallel transmissions, 
for instance by planning transmissions amid sit still cir-
cumstances of different systems6. This is known as range 
sharing, which is corresponding to channel choice. 

This work proposes Machine Learning (ML) answers 
for channel determination (likewise referred to in the 
writing as range choice) in WSN. In spite of the fact that 
there are a couple of CR recommendations in the writing 
utilizing ML procedures in WSNs, those arrangements 
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as a rule are not assessed on genuine hubs, and the vast 
majority of them are intended for gadgets with elite limit. 
This paper proposes and assesses in asset compelled 
equipment a ML display that considers the execution 
of past transmissions and gatherings, with a specific 
end goal to anticipate the level of control of each chan-
nel. Rather than assessing a solitary ML calculation, we 
examine the execution of numerous calculations, and 
additionally how each information parameter adds to the 
last yield of the model. At last, the most productive cal-
culations were executed and tried on a proving ground. 
Results demonstrated that ML enhanced the execution 
of the WSN by decreasing the measure of transmission 
endeavors and the transmission delay in situations with 
obstruction from different systems.

As expressed in the past section, there are executions 
of CR answers for WLAN and different innovations. 
Despite the fact that they are exceedingly viable, the 
greater parts of them have high vitality utilization or 
computational many-sided quality, which blocks its uti-
lization in WSN. Moreover, the appropriation of more 
strong equipment might be taken a toll restrictive, since 
most WSN arrangements require a high measure of sen-
sor hubs. The proposition of CR for WSN utilize ascribes 
that are less demanding to gather, and require low com-
putational and vitality assets. ML procedures are typically 
utilized in CRs to upgrade QoS measurements, or param-
eters got from at least one layers of the convention stack. 
One of the fundamental favorable circumstances in the 
utilization of ML systems is their capacity to display the 
conduct of the system in future interims, permitting the 
use of proactive arrangements, for example, channel 
exchanging7.

A standout amongst the most mainstream ML pro-
cedures in CRs is Artificial Neural Networks (ANN). A 
few creators propose the utilization of Self-Organizing 
Maps. The fundamental thought is to collect multi-
dimensional examples, which are utilized to infer a 
grouped neural system, where the similitude of the neu-
rons is controlled by the separation from each other. 
Each group speaks to a specific order. Notwithstanding, 
a few applications may request a substantial number 
of neurons keeping in mind the end goal to accom-
plish an adequate precision. This causes an exponential 
increment in the forecast time and memory utilization, 
henceforth rendering ANN too exorbitant to con-
vey on some WSN stages. A couple of examinations 
use Partially Observable Markov Decision Processes8, 

and Reinforcement Learning. The basic burden of 
these frameworks is the dependence of extremely cor-
rect reward capacities. Many WSNs, by having limited 
equipment, can’t play out the figuring required for these 
capacities in practical time or with the important exact-
ness. This work receives ML models that, even with the 
lessened accuracy of existing stages, give sufficient exe-
cution. Other than utilizing ML, numerous works in the 
writing utilize diverse ways to deal with display range 
choice in CRs. Crafted by reviews late deals9 with CRs. 
The creators overview channel determination and chan-
nel portrayal (considered by the creators as a past stage 
to channel choice), and additionally reconfiguration. 
The creators additionally characterize the best in class 
into unified and conveyed choice calculations.

The two range choice techniques for WSNs10. The first 
depends on RSSI (Received Signal Strength Indicator) 
and CCA (Clear Channel Assessment) estimations of 
each channel. The second technique depends on physi-
cal layer information and application necessities, and 
the importance of each information is a component 
of its entropy. Those strategies, be that as it may, were 
not assessed on genuine WSNs. Some CR answers for 
WSNs depend on vitality as it were. In two methodolo-
gies are tentatively examined: on the time space, where 
just a single channel is detected, and on the recurrence 
area, where various channels is detected, in this way 
understanding the positioning and choice of the best 
channel. Both methodologies utilize just the RSSI as 
credit to decide how occupied is the detected channel. 
Actualizing CR in genuine WSN has been an inexorably 
normal concern. In the creators analyzed three expecta-
tion strategies, deciding the possibility of its usage on 
a business WSN stage. The focal point of is not quite 
the same as our own: they evaluate the correspondence 
quality among neighboring hubs for directing, while in 
this work we gauge the nature of correspondence in an 
arrangement of channels, with a specific end goal to pick 
the best one.

This article is sorted out as takes after. The ML defi-
nition is displayed in Section 2, and the preparation set 
is exhibited in Section 3. Area 4 exhibits an exactness 
examination of the ML calculations, and an affectability 
test on the info parameters is talked about in Section 5. 
The assessment on a genuine stage is portrayed in Section 
6. A discourse of the vitality utilization of the proposed 
arrangements is exhibited in Section VII. Section VIII 
reaches the determinations and future work.
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2. � Spectrum Decision Employing 
ML

This section reveals our channel indicator, which was 
displayed utilizing ML. The indicator is the focal bit of 
our range choice approach, since it assesses the nature 
of each channel. Having a gauge of the connection qual-
ity, the range choice errand is decreased to picking the 
channel with the best quality. We at first built up an 
order based indicator, partitioning channel into classes 
of channel quality from best to most noticeably awful. 
Notwithstanding, after preparatory tests, we watched 
that the aftereffects of class partition were poor. Utilizing 
degeneration based indicator, which yields a genuine 
esteem, demonstrated more powerful.

In this way, in this paper we propose a degenera-
tion based indicator, which approximates the nature of 
a connection by assessing the quantity of transmission 
endeavors for the following N parcels (the expectation 
window), where N is a configurable esteem. This yield was 
picked on the grounds that the quantity of retransmissions 
indicates the nature of the connection, since it is impacted 
by external and inner obstruction. A channel that trans-
mits information with less endeavors is a channel with 
better execution, since it will display bring down post-
ponements and misfortune rates. Figure 1 demonstrates a 
disentangled rendition of the indicator. With a specific end 
goal to create the expectation, we should gather various 
data sources (set 1 in the past condition). The following 
attributes were selected as input for our predictor:

•	 Received Signal Strength Indicator (RSSI): 
Quantifies the received signal strength on the 
radio. A fixed number of samples are collected 
before each transmission. In our work, this metric 
is read from the transceiver hardware.

•	 Number of Transmission Attempts: Number of 
attempts made to transmit a packet, successfully or 
not, until either the packet is successfully sent or 
the node gives up.

•	 Reasons of each Failed Attempt: The cause of 
retransmissions are also accounted for, as follows:
•	 ERX: The radio was busy receiving another 

packet.
•	 ECCA: CCA algorithm shows that the channel 

is busy.
•	 ENACK: The radio transmitted a packet but its 

acknowledgment has not been received.

•	 Performance Data from the Last Received Packet: 
The RSSI and the LQI (Link Quality Indicator) 
from every received packet are collected.

Figure 1.  Regression-based predictor.

As the input values vary significantly at each transmis-
sion or reception, they are sampled many times and 
aggregated. This summarizes the recent history of the 
past transmissions and also filters outliers and spikes. 
A weighted moving average was used for this purpose. 
Equation (1) shows the calculation of the moving average, 
where It is the input value at time t, and Ut-1 is the moving 
average value at time t-1. The value of ∞ determines the 
smoothness and responsiveness of the signal. In order to 
prevent a decision based on unreliable data, the medium 
should be probed several times. We call this sequence of 
probes the sensing window of the predictor. Smaller val-
ues of α generates better predictors, as will be evaluated 
in Section IV, however, it demands more data, since the 
variation between samples is small, and the convergence 
time will be longer.
 
	 Ut = Ut-1(1 - ∞) + It α	 (1)

The most complex and costly part of Machine 
Learning based algorithms is its training. In our algo-
rithm, training occurs only once, before the network is 
deployed. Only a few sensor nodes are required to gather 
the input data, while the processing occurs on a PC. The 
final code deployed on the sensor nodes contains only the 
final Machine Learning model. In order to achieve best 
results, the training process could be repeated before each 
deployment, capturing the characteristics of the medium 
on each location. However, if the training set is diverse 
(that is, having many types of sources interference and 
types of network coexisting), a single training set could 
be used for many deployments.
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3. � Data Collection for the 
Training Bases

We captured data for the training sets using scenarios 
with varying degrees of interference and coexistence. The 
scenarios aim to obtain a generic training set, so that the 
prediction models are independent of the topology and 
types of coexisting networks. We collected data from 
three different scenarios:

•	 Low Interference: Only the sensor nodes were 
transmitting data among themselves, with low 
Wi-Fi interference.

•	 Average Interference: In addition to the data 
transmitted by the WSN nodes, two Wi-Fi routers 
transmitted data among themselves in low power 
(5 dBm), and distant from each other (six meters), 
in the same frequency range used by the WSN.

•	 High Interference: Similar to the Average Interference 
scenario, however the routers were close to each 
other and the WSN (approximately thirty centime-
ters), and transmitting at a higher power (20 dBm).

We selected the Iris WSN platform11 as the collection 
platform. The WSN consisted of ten sensor nodes, each 
connected to a computer for performance data storage. 
Each node transmitted 28-byte packets every 500ms. 
Before each transmission, ten RSSI samples were collected, 
which makes up the list of selected attributes, presented in 
Section II, and at the end of the transmission the remain-
ing attributes were also collected. The sensor nodes were 
placed in pairs, so that the effects of randomness in the 
performance of ML algorithms could be reduced. 

4. � Accuracy Analysis of the ML 
Model

Using the training set from the previous section, we used 
Matlab to measure the accuracy of the proposed ML model 
using different ML algorithms. All the algorithms that gen-
erated a model within a reasonable time (less than one week) 
were considered in this work. For this reason, SVM (Support 
Vector Machine), considered the state of the art in ML, was 
discarded. The algorithms evaluated are listed below:

•	 Function-based algorithms: Isotonic Regression, 
Linear Regression, MLP Regression, Multilayer 
Perceptron, Pace Regression, RBF Regression.

•	 Search-based algorithms: K-Nearest Neighbors 
(KNN)

•	 Algorithms based on meta-learning: Additive 
Regression with Decision Stump as base algorithm, 
Bagging - with REP Tree as base algorithm.

•	 Algorithms based on decision rules: Conjunctive 
Rule, Decision Table, M5 Rules.

•	 Algorithms based on decision trees: Decision 
Stump, Extra Tree, M5P, REP Tree.

We used the Ten-Fold Cross Validation method, 
thereby obtaining one hundred training-test combina-
tions for each algorithm. In order to rank the algorithms, 
we used the paired t-test, which considers the depen-
dency among samples, and therefore is the most suitable 
for use in conjunction with Ten-Fold Cross Validation. 
We adopted the Root Mean Squared Error (RMSE) as 
the main performance metric which is more resilient 
to outliers, an important factor in WSNs due to sharp 
fluctuations of the electromagnetic environment. The 
performance analysis of each algorithm was divided into 
two stages. The first one analyzed the impact of α on the 
performance of the ML algorithms. The second stage ana-
lyzed the influence of the size of the prediction window 
on the performance of each ML algorithm.

4.1  Evaluation of α
We measured the RMSE for values of α between 0.01 and 
0.09 with a step of 0.02. For each value of α, a distinct 
training set was created. The size of the prediction win-
dow was fixed at 10, of which the sum of transmission 
attempts was scaled into a range between 0 and 100. Table 
1 presents the average RMSE obtained in ten runs of each 
ML algorithm. We observed that a reduction in the value 
of αcauses an increase in the performance. This is due to 
the fact that, the smaller the value of α, the lower the vari-
ability of the input values. As we have considered three 
different scenarios, the low variability in the input values 
causes the training set to approach three distinct clusters, 
each of them related to a collection scenario. This in turn 
reduces the complexity of the models generated by the 
regression algorithms, and thus increasing their perfor-
mance.

4.2 � Evaluating the Size of the Prediction 
Window

The length of the expectation window impacts the quan-
tity of transmission endeavors to be assessed, in this 
manner affecting the accuracy of the indicator: it ought 
to be simpler to foresee the performance of more trans-
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missions, since the impacts of commotion and mistake 
would be littler on the general yield. As in the past stage, 
for every window measure that was tried, a relating pre-
paring set was made, with a similar scaling of the forecast 
window utilized as a part of the past area. In these tests, 
the measure of the forecast window was changed in the 
vicinity of 1 and 30, with α fixed at 0.01, which dem-
onstrated the best execution in the past area. Figure 2 
displays the normal RMSE acquired in ten keeps running 
for the five ML calculations with the best execution on the 
previous assessment. We dispose of the aftereffects of the 
other algorithms for comprehensibility reasons, however 
the patterns are like those demonstrated here. We watch a 
logarithmic conduct for all the algorithms, while expand-
ing the measure of the forecast window. This shows bigger 
windows are prudent, however the advantages decrease as 
the window measure increments.

5.  Sensitivity Analysis
The objective of affectability examination in ML is to 
survey the commitment of each info credit to the yield 
of the indicator. As such, it evaluates the significance of 

each gathered data on the channel quality estimation. 
This data is helpful, if there is a need to diminish the mea-
sure of information qualities, for instance if the model 
is excessively mind boggling, making it impossible to 
be instantiated on genuine WSNs, so characteristics that 
reason next to zero effect are expelled. Further, affectabil-
ity investigation additionally recognizes properties that 
intensify the forecast. With a specific end goal to acquire 
the effect of each trait on the forecasts of the ML calcula-
tions, a progression of preparing sets have been made.

For every one, we evacuated one of the traits, and 
re-inferred the model. At that point, we thought about 
the RMSE of the entire model against the RMSE of the 
diminished models. It was watched that the expulsion of 
a few traits produced little upgrades (under 10%) in the 
RMSE. Those enhancements happened with the evacua-
tion of the RSSI traits gathered before every transmission, 
and in addition the LQI and the RSSI gathered on every 
gathering. One explanation behind the change with the 
evacuation of RSSI would be the low determination of 
the gathered esteems, because of equipment restrictions. 
We additionally watched the most astounding drop in the 
RMSE for ECCA and ENACK, showing that those param-
eters are the most vital in the model, and thusly ought to 
get more consideration in future work. For instance, we 
could devise a more refined preprocessing calculation for 
those information sources.

6.  Hardware Implementation
To assess how the ML models admission, all things 
considered, we actualized them over a basic channel deter-
mination convention. This area demonstrates exploratory 

Table 1.  Root mean squared error: varying Α.

ML Algorithm
Weight (α)
0.01 0.03 0.05 0.07 0.09

Isotonic Regression 8.32 8.26 8.29 8.32 8.34
Linear Regression 8.50 8.54 8.82 9.12 9.43
MLP Regression 7.99 8.00 8.03 8.07 8.10
Multilayer 
Perceptron 8.68 8.77 8.78 8.83 8.80

Pace Regression 8.50 8.54 8.80 9.10 9.39
RBF Regression 8.20 8.09 8.11 8.17 8.23
KNN 3.64 3.75 4.06 4.98 6.30
Additive Regression 8.06 8.06 8.06 8.07 8.10
Bagging – REP Tree 6.29 7.00 7.34 7.55 7.67
Conjunctive Rule 8.83 8.80 8.80 8.79 8.79
Decision Table 7.74 7.91 7.98 8.02 8.03
M5 Rules 8.32 8.52 8.53 8.03 7.98
Decision Stump 8.91 8.84 8.82 8.80 8.82
Extra Tree 6.40 7.90 8.84 9.47 9.90
M5P 7.07 7.74 7.73 7.86 7.93
REP Tree 6.78 7.58 7.86 7.98 8.03

Figure 2.  Root Mean Squared Error - Varying the size of 
the prediction window.
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outcomes generally advantageous and most noticeably 
bad situations, with low and abnormal amounts of imped-
ance, individually. The hubs were arranged to work in five 
back to back channels, however more channels could be 
effortlessly bolstered. Six sensors were utilized, reenact-
ing a bunch of the sensor arrange. The Central Node, a 
hub picked discretionarily in the group, executes the pro-
posed range choice model. Alternate hubs, called Helper 
Nodes, were settled on every one of the five assessed 
channels. The reason for these hubs is to speak with the 
Central Node when required. In spite of the fact that for 
this assessment we utilize one Helper Node for each chan-
nel, the convention can be altered so just a single Helper 
Node can be utilized to detect all channels alongside the 
Central Node. The strategy for the decision of a Helper 
Node, and also the decision of the Central Nodes (consid-
ering a WSN formed by hundreds or thousands of hubs), 
is left as future work. 

Four ML models were assessed. The chose ones were 
the best performing calculations of Section V that like-
wise fit the memory and handling necessities of the Iris 
stage. This stage was picked in light of the fact that it has 
extremely unobtrusive equipment, and if the proposed 
arrangements chip away at Iris they in all probability 
will deal with all the more effective stages. One model of 
each class introduced in Section IV was executed: Rep 
Tree, M5 Rules, Additive relapse with Decision Stump as 
base calculation, and Isotonic Regression. As gauge, two 
arrangements were actualized. The to start with, called 
Fixed, works on a settled channel and does not perform 
range detecting. The second, called RSSI, was propelled 
by12 . It gathers 100 RSSI tests in each detected channel, 
and chooses the channel with the littlest entirety of RSSI 
tests. Table 2 demonstrates the ROM and RAM memory 
utilization, in bytes, for the actualized models. All calcula-
tions were executed utilizing drifting point factors, which 
are imitated in programming on the Iris stage since the 
chip does not have a scanning point unit. A more profi-
cient usage in view of whole numbers is outside the extent 
of this work.

As expected, the Fixed solution showed the lowest 
memory consumption, since it has no prediction model 
implemented. Moreover, the M5 Rules solution showed 
the highest consumption, since it is based on a decision 
tree that requires an extensive amount of floating point 
numbers. The other solutions had similar memory con-
sumption, mainly because those work with a similar 
amount of floating point values. The power consumption 

was not measured in this work, since its experimental 
measurement requires the execution of the algorithms for 
longer times (weeks of months), or the use of very sen-
sitive multi-meters. The precise measurement of energy 
consumption13 is thus left for future work, however a 
qualitative discussion is presented in Section 7.

6.1  Low External Interference Scenario 
This scenario evaluates the WSN in an environment 
with low interference from other networks. Here, the 
Helper Nodes were positioned approximately six meters 
away from the Central Node, and the main source of 
interference was the WLANs in the vicinity of the test 
environment. Spectrum decision solutions and the base-
lines were run in sequence during 15 minutes each, and 
five independent experiments were performed. The 
results are presented with a confidence interval of 95%. 
Table 3 shows the results.

Table 3.  Results for the low interference scenario

Implemented 
Solution

Delivery 
Rate (%)

Attempts/ 
Packet

Collisions/ 
Packet

Latency/ 
Packet(ms)

REP Tree 96.67 1.79 0.39 6.91
M5 Rules 97.23 1.73 0.24 6.56
Additive 

Regression 98.75 1.34 0.17 5.84

Isotonic 
Regression 92.89 1.96 0.51 7.34

RSSI 98.00 1.63 0.25 6.44
Fixed 91.99 2.52 0.64 8.71

The proposed solutions were able to detect variations 
in the behavior of local WLANs, resulting in the choice of 
different channels and improving the performance of the 

Table 2.  Memory consumption of the implemetations

Prediction Model
Memory Consumption(Bytes)

ROM RAM

M5 Rules 46492 1284

REP Tree 24638 1284
Additive Regression 24308 1284
Isotonic Regression 24306 1284
RSSI 22812 1363
Fixed 21950 1271
Total Capacity 120 K 8 K
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links over the Fixed solution. However, the performance 
improvements vary for each algorithm. Only one of the 
spectrum decision solutions (Additive Regression) was 
better than the Fixed solution for all the analyzed metrics. 
For the other spectrum decision solutions, with the excep-
tion of Isotonic Regression, we could see an improvement 
on the average number of transmission attempts per 
packet. In addition to the average transmission attempts, 
M5Rules was also better than the same baseline accord-
ing to the average latency per packet. The performance of 
the ML solutions, when compared to the RSSI solution, 
was very similar. The main source of interference was the 
signal generated by the WLANs, and was not significant 
as shown by the very high delivery rates even for the fixed 
channel approach. The spectrum decision solutions were 
built to handle sources of interference of greater magni-
tude, due to the characteristics of the training set. Thus, in 
cases where the interference is very low, those algorithms 
do not outperform the simple RSSI solution, although 
they provide a comparable performance.

6.2  High External Interference Scenario
In this section we evaluate the behavior of the proposed 
spectrum decision solutions in a coexistence scenario 
with heavy interference. The Helper Nodes were placed 
near the Central Node, at a distance of about thirty centi-
meters. As the main source of interference, in addition to 
the WLANs located in the test area, we placed two rout-
ers near the WSN transmitting data to each other, at high 
power and the maximum traffic possible with iperf. The 
WLAN was operating at frequencies next to those used 
by the WSN. In order to make the RF medium even more 
unpredictable, the routers communicate for 15 seconds, 
and then switch to another random channel. Due to tim-
ing limitations, the routers needed to pause for 10 seconds 
before each 15 second transmission burst, in order to 
guarantee that the channel change was successful. Table 
4 shows the results obtained for five independent experi-
ments and confidence interval of 95%.

In this test scenario we observed significant improve-
ments in the performance of the WSN, when comparing 
the proposed solutions against the baselines. This is due 
to the use of a wider range of attributes, which makes a 
difference when interference (internal or external) of 
greater magnitude is observed. In such cases, the use of 
RSSI readings may lead to bad choices, since the signal-
to-noise and interference ratio varies considerably. Thus, 

it is necessary to employ more sophisticated decision 
algorithms, such as those proposed in this work. Table 4 
also suggests that the performance of the ML approaches 
is very similar, when analyzing the confidence inter-
vals. Despite the differences in performance obtained in 
Matlab, the inaccuracies inherent of real deployments and 
the natural variations in the wireless medium may explain 
the similar performance on a real WSN. This also indi-
cates that the predominant factor in the performance of a 
spectrum decision solution based on ML is the model and 
the selection of the input data, and not the choice of the 
ML algorithm. Therefore, we believe that, for spectrum 
decision in WSN, it is better to select the ML algorithm 
which generated the simplest prediction model in terms 
of computational resources.

7. � Discussion- Energy 
Consumption

As discussed about in Section 6, the proposed ML mod-
els enhanced the system execution for all the deliberate 
measurements. Be that as it may, one can scrutinize the 
vitality utilization of the proposed convention, contrasted 
with the acquired advantages14. The detecting period of 
the convention will have high vitality utilization, in light 
of the fact that the sensor hub needs to send numerous 
tests and afterward process the information utilizing the 
ML models. The trials utilized a little transmission period, 
fading the vitality advantages of channel determination. 
The explanation behind a little interim was to get brings 
about a matter of weeks, since numerous trials were keep 
running for every design. In any case, in genuine organi-
zations, the interim among detecting cycles can be higher 
than the one received in Section 6. The proposed ML mod-

Table 4.  Results for the high interference scenario

Implemented 
Solution

Delivery 
Rate(%)

Attempts/ 
Packet

Collisions/ 
Packet

Latency/ 
Packet(ms)

REP Tree 94.73 2.63 0.32 8.02
M5 Rules 93.86 3.22 0.34 8.34
Additive 

Regression 93.36 2.98 0.40 8.93

Isotonic 
Regression 95.71 2.31 0.24 7.86

RSSI 88.97 3.37 0.42 9.56
Fixed 88.12 3.56 0.43 9.98
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els were worked to choose the best channel utilizing an 
expansive expectation window, so they should keep a rea-
sonable execution even with longer detecting interims15. 
With a bigger interim between detecting cycles, a decline 
in the vitality utilization is normal, which can conquer 
conventional MAC and impedance alleviation techniques 
that point on vitality utilization. The correlation with 
these strategies is left as future work. At long last, since 
most parameters of the models were picked observation-
ally, a further report should be possible keeping in mind 
the end goal to enhance these parameters and decrease 
the detecting time of the convention, diminishing con-
siderably more the vitality utilization. This examination is 
likewise left as future work.

8.  Conclusions
Given the pollution of the ISM band and the power limi-
tations in WSN, this article proposed the utilization of 
expectation models produced by ML calculations for 
the choice of the best working channel. Relapse models 
of low computational cost were manufactured in light of 
information gathered from genuine stages. These models 
gauge the execution of transmissions in the short and long 
terms, permitting the decision of the channel with better 
correspondence quality. The fundamental test in WSN 
is the memory and handling limitations. In this way, the 
proposed models were assessed in the Iris stage. The tests 
demonstrated that the utilization of ML builds the execu-
tion of the WSN when contrasted with settled channel 
and vitality based channel determination techniques. The 
fundamental execution picks up were found in conjunc-
tion situations with swarmed systems. As future work, 
we will add more information parameters to the model. 
Further, we will refine the pre-handling of the most vital 
info parameters. We will likewise endeavor to diminish 
the quantity of detected channels at every cooperation in 
view of past channel gauges. Besides, we will explore in 
the case of learning is doable by utilizing semi-regulated 
ML calculations. 

9.  References
1.	 Akyildiz IF, Lee W-Y, Vuran MC, Mohanty S. Next gen-

eration/dynamic spectrum access/cognitive radio wireless 
networks: A survey. Elsevier Computer Networks. 2006 
Sep; 13(50):2127–59. Crossref.

2.	 Yucek T, Arslan H. A survey of spectrum sensing algorithms 
for cognitive radio applications. IEEE Communications 
and Surveys Tutorials. 2009; 1(11):116–30. Crossref.

3.	 Sherman M, Mody A, Martinez R, Rodriguez C, Reddy 
R. IEEE standards supporting cognitive radio and net-
works, dynamic spectrum access, and coexistence. IEEE 
Communications Magazine. 2008; 7(46):72–9. Crossref.

4.	 Tran T-D, Silva R, Nunes D, Silva J. Characteristics of chan-
nels of IEEE 802.15.4 compliant sensor networks. Wireless 
Personal Communications. 2012 Dec; 3(67):541–56. Crossref.

5.	 Glaropoulos I, Lagana M, Fodor V, Petrioli C. Energy 
efficient COGnitive-MAC for sensor networks under 
WLAN co-existence. IEEE Transactions on Wireless 
Communications. 2015 Jul; 7(14):4075–89. Crossref.

6.	 Bantouna A, Stavroulaki V, Kritikou Y, Tsagkaris K, 
Demestichas P, Moessner K. An overview of learning mech-
anisms for cognitive systems. EURASIP Journal on Wireless 
Communications and Networking. 2012 Jan; 1:22. Crossref.

7.	 Tsagkaris K, Bantouna A, Demestichas P. Self-organizing 
maps for advanced learning in cognitive radio sys-
tems. Computers and Electrical Engineering. 2012 Jul; 
4(38):862–81. Crossref.

8.	 Tanwongvarl C, Chantaraskul S, Wehrle K, Spaniol O. 
Intelligent channel assignment in cognitive wireless sen-
sor networks: Learning from virtual channel environment. 
Proceedings of International Chinese Information Systems 
Association; 2014. p. 1–4.

9.	 Kaarthik K, Sivagurunathan TP, Sivaranjani S. A review on 
spectrum sensing methods for cognitive radio networks. 
Journal of Advances in Chemistry. 2016 Nov; 8:5053–7.

10.	 Robert C, Moy C, Wang C-X. Reinforcement learning 
approaches and evaluation criteria for opportunistic spec-
trum access. Proceedings of International Cricket Council; 
India. 2014. p. 1508–13. Crossref.

11.	 Masonta M, Mzyece M, Ntlatlapa N. Spectrum decision in 
cognitive radio networks: A survey. IEEE Communications 
Surveys and Tutorials. 2012 Nov; 3(15):1088–107.

12.	 Correia LHA, Oliveira EE, Macedo DF, Moura P, Loureiro 
AAF, Silva JS. A framework for cognitive radio wirelesssen-
sor networks. Proceedings of International Sustainability 
and Carbon Certification (ISCC); India. 2012. p. 611–6.

13.	 Silva VF, Macedo DF, Leoni JL. Machine Learning-based 
spectrum decision algorithms for wireless sensor networks. 
Proceedings of IEEE; Central North Carolina. USA. 2016. 
Crossref.

14.	 Stabellini L, Javed M. Experimental comparison of dynamic 
spectrum access techniques for wireless sensor networks. 
Proceedings of VTC-Spring; India. 2010. p. 1–5. Crossref.

15.	 Liu T, Cerpa AE. Data-driven link quality prediction using 
link features. ACM Transactions of Sensor Networks, 2014 
Jan; 2(10):1–37. Crossref.

https://doi.org/10.1016/j.comnet.2006.05.001
https://doi.org/10.1109/SURV.2009.090109
https://doi.org/10.1109/MCOM.2008.4557045
https://doi.org/10.1007/s11277-011-0395-3
https://doi.org/10.1109/TWC.2015.2416336
https://doi.org/10.1186/1687-1499-2012-22
https://doi.org/10.1016/j.compeleceng.2012.03.008
https://doi.org/10.1109/ICC.2014.6883535
https://doi.org/10.1109/CCNC.2016.7444931
https://doi.org/10.1109/VETECS.2010.5494184
https://doi.org/10.1145/2530535

