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Abstract
Objectives: In this study, the thermal analysis of a thin film exposed to laser heating, was investigated using Cattaneo 
Vernotte non-Fourier heat conduction model. Methods/Statistical Analysis: Nonfourier equations were derived based 
on radiative heat loss and also variable thermal conductivity. Then Variational Iteration Method (VIM) and Reduced 
Differential Transformation Method (RDTM) were used to solve these equations. Findings: VIM is an efficient choice 
to find an approximate solution of nonlinear non-Fourier heat conduction and its accuracy is higher than RDTM. 
Considering the thermal conductivity vary with temperature creates a significant difference in the temperature profiles, 
which shows the importance of nonlinear analysis of the problem. In certain values of relaxation time, temperature 
variations take place and out of that certain domain, variations of relaxation time doesn’t effect on temperature at all. 
Application/Improvements: There is a remarkable difference between the Fourier and non-Fourier solutions of heat 
conduction equations that demonstrate the importance of non-Fourier analysis of this type of equations.
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1.  Introduction
Nowadays, using of energetic laser rays has more applica-
tions in medicine, manufacturing and material processes. 
In fact, the ability of the laser in controlling of depth and 
width of the heating of the specified place and the control-
ling of the power of the irradiated beam, make using of 
these tools interesting in the industry and medical applica-
tions1. The lasers are powerful sources of heat generation 
and the produced heat in the certified body by them 
should be analyzed properly and carefully, especially when 
radiative heat loss has a significant role in such cases. In 
fact, studying of heat transfer in some cases like the pro-
cesses of melting and freezing in the furnaces2, heat pipes 
and combustion chambers3,4 and laser heating5, should be 
done in the combined mode of conduction-radiation.

One of the cases that the classic law of Fourier heat 
conduction confronts failure is transferring high heat flux 
in short period of time. Laser heating is a good example 

of better understanding this process. Therefore, it is better 
to use non-Fourier models in the laser heating problems. 
First6,7 developed a new macroscopic heat conduction 
model according to a Fourier approach. Since this model 
showed a wave-like behavior for heat conduction, they 
called it heat wave model or in honor of these scientists, it 
was known as (C-V) model.

In the recent years, using of non-Fourier equations 
for investigating laser heating is reported in a large num-
ber of studies. In8 used a numerical method for analyzing 
of heat wave propagation on a body under laser irradia-
tion. In9 used the non-Fourier model for the problem 
of laser heating of a thin film and solved it analytically. 
In10 investigated parabolic and hyperbolic heat equation 
of skin under short and long periods of laser irradiation. 
Non-Fourier analysis of the thermal damage caused by 
laser heating was the subject of a studying done11,12 ana-
lyzed the laser heating of living tissues by the non-Fourier 
model in a newer study. 
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Since in the present work, thermal conductivity is vari-
able and the thermal radiation is also taken into account, 
we are facing a non-linear problem (with the high degree 
of nonlinearity). Therefore it is the semi-analytical meth-
ods which are built for this purpose. VIM which is used 
in this paper is one of the most flexible and most pow-
erful of these tools that are used for solving of linear or 
nonlinear equations in a large number of investigations. 
This method was invented13 and then many researchers 
emphasized on its suitable converging14–19. Recently many 
applications of this method have been reported. In20 
developed three new equations of forth order of Emden-
fowler type by VIM. A solution of the transverse forced 
vibrations in a thermo-elastic thin beam by VIM was the 
subject of a work done21,22 used VIM to present an ana-
lytic solution for particle breakage equation. In23 solved 
the problem of flap wise bending vibration of rotating 
tapered beams by VIM.

RDTM is another method which is used in this study. 
Although this method is not as famous as VIM, it has a 
lot of abilities in solving PDE problems. In24 introduced 
RDTM to solve PDE problems. Then they solved both 
non-linear and linear wave-like equations by RDTM in 
another study25. Solving of two dimensional Volterra inte-
gral equations by RDTM was the subject of study done26. 
Recently RDTM is used to solve partial differential-
algebraic equations27.

Only a few authors have presented semi-analytical 
solutions for non-linear non-Fourier heat equations. 
Homotopy perturbation method was utilized28 to derive 
explicit solutions for a nonlinear Fourier heat transfer 
problem. In29 solved the same problem by variational 
iteration method (VIM). In30 in another work used 
Differential Transformation Method (DTM) to investi-
gate convective–radiative lumped systems with variable 
surface emissivity and specific heat. The last three papers, 
mentioned above, have been used semi-analytical tech-
niques to solve ordinary differential equations and to the 
best of the author’s knowledge, semi analytical methods 
have not been utilized to solve partial differential equa-
tions of Fourier heat conduction problems. 

In this study, the temperature distribution in a 
thin film under laser irradiation is determined using a 
Fourier approach. Non-linear equations were derived 
due to variable thermal conductivity and also radia-
tive heat loss. Derived equations were solved by VIM 
and RDTM. Utilizing semi-analytical techniques to 

solve nonlinear PDE of non-Fourier heat conduction-
radiation equation is the originality and novelty and of 
this paper.

2.  Mathematical Modeling
Figure 1 indicates a simplified schematic of the problem. 
A film with the thickness of L and with the initial tem-
perature of T0 is heated by laser heat flux from the left 
side and left and right boundaries are kept at T0 and zero 
temperatures, respectively. Moreover, radiative heat loss 
is considered.

Figure 1.  Schematic of the Problem.

Energy equation assuming the presence of a heat 
source is as follows:
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The conduction heat flux equation dominating on the 
concern problem based on the heat wave model (6, 7) is:
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The radiative heat flux can be used as follows31: 
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A variation in thermal conductivity is considered as a 
function of the film temperature, as follows32:

	 k k T x t T= + −( ) 0 01 λ ( , ) � (4)

The heat flux of laser heat source is modeled as 
follows33,34: 
	 g x t I t R x( , ) ( )( ) exp( )= − −1 µ µ � (5)
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The following dimensionless parameters are introduced: 











t
c t
L

x x
L

T Ve
c
L

k c
T

T x t T x

= = = = =

=

0
0

0 0 0

0
34

, , , , N ,

( , ) ( ,

   γ λ
τ

ασ
tt

T
q x t

q x t L
T k

G G
T

L

C) , ( , )
( , )

,
/

,

.

*

*
0 0 0 0

3

1

    

 = =

= −( )
σ π

β β ω

� (6)

Thus equations (1) and (2) are written the dimension-
less form:
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The dimensionless form of the initial and boundary are:
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3.  Basic Concepts of VIM
In this section, the fundamental ideas of VIM are pre-
sented. Consider the following nonlinear differential 
equation in its general form:

	 Lu x t Nu x t g x( , ) ( , ) ( , t)+ = � (10)

Where L and N are linear and nonlinear opera-
tors respectively and g(x, t) is the non-homogeneous 
term, which in turn is an analytic continuous function. 
According to VIM, the correction functional can be 
defined as follows:
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Where, λ is Lagrange multiplier that can be deter-
mined using various ways. The subscript of n represents 
the nth approximate of the restricted variation, where
δ un = 0 . The one is free to choose the initial guess (u0), 
but it can be achieved by solving the following equation: 

		  Lu x t0 0( , ) = � (12)

Finally, the converged solution that is the exact solu-
tion of the problem can be obtained by the successive 
limit of approximations:
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4.  Basic Concepts of RDTM
In this section, the basic ideas of RDTM are presented. 
Suppose that u(x, t) is analytic and continuously differen-
tiable with respect to t. Then:

	 U x
k t

u x tk

k

k
t

( )
!

( , )=
∂
∂









=

1

0

� (14)

Where Uk (x) is transformed of u(x, t). Then the 
inverse of Uk (x) is as follows:
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By combining (14) and (15):
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Some functions and their transformation are pre-
sented in Table 1. Now, consider a general PDE as follows:

	 Lu x t Ru x t Nu x t g x t( , ) ( , ) ( , ) ( , )+ + = � (17)

Where L is the highest order of differentiation which 
is invertible. R is the linear differential operator which is 
containing of remaining terms, Nu is containing of non-
linear terms and g is the non-homogeneous term. An 
initial condition is supposed as follows:

		  u x f x( , ) ( )0 = � (18)

Finally, with general equation of (17) and initial con-
dition of (18) and also with transformed functions of 
Table 1, it can be achieved to an iterative formula. For the 

problem of this paper L
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 and the iterative formula is 
as follows:
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Where Uk(x), RUk(x), NUk(x) and Gk(x) are trans-
formed functions of Lu(x, t), Ru(x, t), Nu(x, t) and g(x, t) 
respectively. Transformed function of initial condition is 
also as follows:
		  U x f x0 ( ) ( )= � (20)

Substituting equation (20) in equation (19) and 
sweeping an iterative process, finally the values of Uk(x) 
will be determined. Then the inverse transformation of 
the obtained values of U xk k

n( ){ } =0
 will result an approxi-

mate solution as follows:
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Where n is the order of approximate solution. Thus, 
the exact solution of the problem is as follows:
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5.  VIM Application
In this section, it is solved Equations (7) and (8) based 
on VIM. To continue the solution process, heat source 
term in Equation (7) should be evaluated. One assump-
tion for this term is taken from35, i.e. ψ 0 1=  and
φ  t tA( ) = + ( )( )1 2sin / . To solve Equation (7), the cor-
rectional function is written as follows: 
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The correctional function of the Equation (8) is of the 
following form:
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To determine Lagrange multipliers by the new method 
introduced36, we do as follows: we solve the linear part 
of equations by the Laplace transform method and set it 
equals to (−1)n, where n is the highest order of the avail-
able derivative in the linear part of equation. Boundary 
conditions appeared in the solution process should be 
set equal to zero. Finally, everywhere the variable t was 
appeared, it should be replaced by ( ) ( )− −1 n tτ  . By doing 
all the aforementioned stages, the Lagrange multipliers 
for the problem can be obtained:
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The only thing remaining is determination of the ini-
tial functions. For this purpose, Equation (12) is used 
with the following initial conditions: 
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This way, VIM formula to determine the desired 
functions is obtained: 
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6.  RDTM Application
The transformed form of equation (7) according to itera-
tive equation (19) is as follows:
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The transformed form of equation (8) based on itera-
tive equation (20) is as follows:
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Initial conditions of equation (9) are transformed in 
the following form:

	 U x V x0 00 1( ) , ( ) . = = � (31)

By substituting equation (31) in equations (29) and 
(30), the values of Uk(x–) and Vk(x–) are obtained. The 
final solution is also obtained based on equations (21) 
and (22).

7.  Results and Discussion
For validating the solution methods, they are compared 
with31 which is a numerical study that is shown in 
Figure 2. As the figure shows, there are significant differ-
ences among the diagram of numerical solution and the 
diagrams corresponding to VIM and RDTM. Especially 
the diagram of RDTM doesn’t show a proper prediction 
of the related trend of numerical solution. Quantitatively, 
the average error for RDTM is 26.42 % and for VIM is 
11.56 %. Although it seems that the mentioned error is 
too high for an analytical solution, it should be noted 
that an analytical solution for a problem similar to the 
solved problem in the present study (with the same level 
of nonlinearity) can’t be found in the literature. In fact 
the semi-analytical methods are not able to produce a 
diagram with such sharp front and if the readers know 

semi-analytical methods, they will definitely remember 
the smooth diagrams with soft curves resulted from these 
methods. Of course, it is necessary to mention that VIM 
has a less error compared with RDTM and it follows the 
trend of numerical method somewhat in producing a 
progressive thermal wave.

Figure 2.  Validation of VIM and RDTM with a Numerical 
Study (31).

Furthermore, the reason of existence of high errors in 
boundaries is in fact the lack of imposing the boundary 
conditions in the process of solving. The linear operator 
is considered in the direction of dimensionless time, so 
it is lost the effect of boundary conditions to get to the 
solution.

An analytical researcher may believe that the men-
tioned error is so much for solving an analytical solution, 
but it should be noted that advantages of semi-analyti-
cal methods such as VIM compared to the conventional 
numerical methods make the use of these tools highly 
desirable for experimental scientists. Determining the 
approximate solution of the problem helps these research-
ers to choose their equipment properly and it reduces the 
cost and the quantity of their experiments. 

VIM is used to obtain the rest of results. Figure 3 
shows the effect of dimensionless absorption coefficient 
(B) on the profile of temperature inside the body. As it is 
seen, with the increase of B in a certain point inside the 
film, the values of dimensionless temperature decreases, 
this is natural because according to the equation (7), with 
the increase of B, the dissipation of laser energy becomes 
steeper and it doesn’t have enough time to increase the 
temperature of the film. Furthermore, with the increase 
of x– in a given B, the same behavior is seen that is predict-
able according to equation (6).
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Figure 3.  The Effect of B on Temperature Profiles.

The effect of dimensionless time on the temperature 
profile is shown in Figure 4. With the increase of dimen-
sionless time in a certain point of body, the dimensionless 
temperature increases. In fact with increasing of time, 
the thermal energy of laser increases the temperature. 
Moreover in a given time, the increase of x∼, decreases the 
dimensionless temperature. Because, with increasing of 
x∼, the internal energy of the body decreases exponentially 
and during time, the thermal energy of laser negligibly 
affects far parts of the body.

Figure 4.  The Effect of t  on Temperature Profiles.

In the (Figure 5), the effect of γ on the temperature 
profiles is studied. As it is shown in the figure, increasing 
of γ causes increase of temperature of the body. In some 
references such as31, a different result has been achieved. 
In fact these references have reported decreasing of 
temperature with the increase of γ. There is an obvious 
reason for the distinction between the results of present 
paper and the results of others; different heat source has 
been chosen. Figure 5 also shows the important effect 

of variable thermal conductivity. In fact in the sensitive 
applications that little temperature changes is important, 
nonlinear analysis has a significant role.

Figure 5.  The Effect of γ on Temperature Profiles.

The effect of Vernotte number on the temperature 
profile is seen in the Figure 6. With the increase of Ve, 
dimensionless temperature also increases. Moreover, 
the Fourier model (Ve=0) shows different behavior 
compared with non-Fourier model and it predicts lower 
temperature values. Besides, it is seen that, increase of 
Ve causes temperature variations only up to certain 
values of Ve and beyond of those certain values, varia-
tions of Ve doesn’t have any effect on the variations of 
temperature.

Figure 6.  The Effect of Vernotte Number on Temperature 
Profiles.

8.  Conclusion
On this paper the effect of laser heating of a metal film 
temperature was studied. The thermal wave model of 
Cattaneo-Vernotte was used. Thermal conductivity was 
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considered temperature-dependent and the effect of 
thermal radiation was also considered and then the non-
linear equations were obtained. To solve the equations, 
semi-analytical methods of RDTM and VIM were used 
and following results were obtained, briefly:

1)  The accuracy of VIM is higher than RDTM.
2)  Although VIM has somewhat error, but it can be a 

good and efficient choice for the researchers who are 
seeking to determine a relatively good solution of the 
problem as quick as possible.

3)  Considering the thermal conductivity vary with 
temperature creates a significant difference in the 
temperature profiles, which shows the importance of 
nonlinear analysis of the problem. 

4)  Using laser as a heat source with thermal radiation, 
remarkable difference between the Fourier and the 
non-Fourier solutions is evident that must be taken 
into account in the analysis of similar problems.

5)  Only in certain values of relaxation time, tempera-
ture variations take place and out of that certain 
domain, variations of relaxation time doesn’t effect 
on temperature at all.
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