
Abstract
Objective: Malaria is one of the epidemic diseases and early detection of malaria symptoms in the patients using the 
current manual procedures are skeptical, as the diagnosis patterns depends more on the experience of professionals. To 
overcome the challenges, in this paper we are proposing computer aided model to support in malaria detection at early 
stages using Microscopic Blood Smear Images analysis using machine learning. Methods/Statistical Analysis: There are 
many computer aided models that were proposed and adapted in the process of addressing the diagnosis models. Some 
models like machine learning, image processing, neural network based solutions etc are adapted, which reflects more 
insights into the process. However, the issue of gaps in accuracy still persists, and the proposed model of Heuristic Scale 
to Estimate Premature Malaria Parasites Scope (SEMPS) with multi stage processing of the microscopic images of blood 
smear is processed. Findings: The proposed model is compared with the benchmark models like SVM and Bayesian, the 
outcome in terms of efficiency of the model is imperative from the results. The proposed model has resulted in more ef-
fective and accurate detection of malaria symptoms in the test cases, and the result accuracy is higher than the other two 
benchmarking models of SVM and Bayesian techniques chosen for comparative analysis. Improvements: The computa-
tional complexity of the SEMPS is evinced as linear, where the majority of benchmarking models are found to be up-hard. 
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1.  Introduction
Malaria is an endemic disease more prevalent in African 
and Asian continents, and the number of cases reported 
for malaria related deaths are on surge. One of the key 
challenges in the diagnosis of Malaria is about the detec-
tion at the premature levels, and there is significant need 
for early diagnosis of the conditions to ensure better treat-
ments and reducing the implications of resulting impacts 
like life threat etc. From the review of literature on 
Malaria1, malaria parasites (Species of Parasitic Protozoa) 
are categorized in to four types as:

Plasmodium ovale.•	
Plasmodium falciparum•	 2.

Plasmodium vivax•	 2.
Plasmodium malaria•	 3.

In the hot and humid weather conditions, the para-
site Plasmodium vivax is found in significant manner4. To 
ensure that suitable drugs are administered to the human 
body ailing with disease, early detection of such para-
sites in the human blood at premature level is profoundly 
important. WHO guidelines to the medical practitio-
ners5, 6, recommends that the suspected cases of malaria 
parasite existence are recommended to microscopic diag-
nostic tests of blood smears, if can help identification and 
treating the disease at its early stages. 

Certainly the microscopic diagnostic tests shall sup-
port in identifying parasite type differentiation and also 
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in quantification of the presence to ensure that the disease 
severity is analyzed. Rapid-diagnostic tests are the other 
alternative method in terms of diagnostics, but one of the 
key limitations in Rapid-diagnostic model is the non-fea-
sibility of detecting the disease at pre-mature stages. 

Minimal costs and scope of scalability is leading to 
microscopic diagnostic tests being preferred and adapted. 
Key strategy in microscopic diagnostics is pertinent to 
thick and thin blood smears in the blood samples collected 
from the suspect cases. In identifying the parasite influ-
ence, thick smears are analyzed, while the type of parasite 
can be determined using thin smears6. Thick smears can 
be very resourceful than the thin smears, in identification 
of the malaria symptoms at premature stage. 

Microscopic diagnostic tests provide inputs on the 
parasite type and quantification observed in the blood 
smears. The results from the tests have to be affirmed by 
the authorized professionals having substantial domain 
knowledge, thus resulting in many of inaccurate detections 
or non-diagnosis. Adapting computational technology 
aided solutions for addressing the limitations and using 
the computing solutions to overcome the problem of early 
diagnosis issues could be an effective solution. 

For instance, the machine learning model could be 
very significant for developing a solution with computer 
aided models. A solution like features obtained from 
microscopic images of erythrocytes and other normal 
blood cells could be very vital in differentiating the pre-
mature state of disease scope. 

In the collection of microscopic images, digital image 
processing solutions can be very vital7–18 and more spe-
cifically the edge based segmentation could be an effective 
model19 for analysis. However, some of the limitations in 
the edge based segmentation of microscopic images for 
erythrocytes could be with limited identification of para-
sites due to contrast issues, lack of clarity on the edges 
resulting from color similarities , irregular edges and also 
in terms of noise intensity in the parasite effected;

Considering such limitations in the models, the pro-
posed model is about a new machine learning strategy 
termed CUCKOO Search20 developed on the basis of 
evolutionary computational model, which adapts mor-
phological features and benchmark textures as the basis. 
The proposed solution shall address the limitations envis-
aged in the edge based segmentation. 

Numerous researches and developments has emerged 
since last decade of time, over the process of computer 
aided malaria diagnosis, which has grabbed the attention 

for microscopic image analysis. Many benchmarking 
contributions have been proposed in the earlier studies 
on the model. Some of them are based on supervised 
learning methods21–23 and the decision support system24 

based solution, digital image analysis25–28, and some based 
on the pattern recognition solution29,30. Also, some of the 
solutions were proposed adapting artificial neural net-
work solutions31,32. 

With the rising adaptation of cross modeling, some 
significant models like the segmentation based on histo-
gram equalization which is used to classify the overlapping 
infected cells were also considered in the process33. There 
are many unsupervised models also found in the review 
of literature34–37. Also some of the machine learning mod-
els38 and content based image retrieval models39 has also 
been proposed in the earlier studies, like the parasite esti-
mation using segmented digitized blood smears are some 
of the significant contributions that are reviewed in the 
literature. 

Some of the critical constraints that are envisaged 
in the benchmarking models are about the dullness in 
contrast, intensities observed in similar fashion for both 
effected and normal areas of blood smear images for 
microscopic image segmentation modeling, edge forma-
tion issues and other such factors are turning out to be a 
major impact. Also, apart from one model devised in38, 
all the other models depend on signatures of effected 
images to identify the parasite scope in a new image. Such 
dependency, in the instances of trivial variations could 
lead to more of false alarming conditions. However, such 
constraints could be effectively addressed in the machine 
learning models, but one of the constraints envisaged in 
the machine learning models is about need for consider-
able volume of microscopic images as inputs essential for 
training the system, and it should adapt optimal features.

Around 94 features are used in the machine learning 
method proposed in38, and the SVM machine learn-
ing models40 and also the Bayesian Classifiers41 are also 
adapted to train and test the model for effective machine 
learning. Among the varied models, the optimal range 
of feature selection has resulted in One-way-ANOVA42.
Though the detection accuracy levels of the model is 
reaching to 84%, still there is significant instability in 
divergent count of features. Also, the issues of process 
complexity towards resource utilization is also not linear 
for divergent count of features in the model, and the other 
key constraint is about feature extraction which is carried 
out by segmentation of image using an algorithm called 
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Marker Controlled Watershed model14. The algorithm 
in14 uses the gradients that happen under segmentation 
for estimation, thus the chances of feature value optimal-
ity may not be so effective. 

Considering such factors, the model of evolutionary 
computation based machine learning system is adapted to 
overcome the limits that are identified in38. The proposed 
model CUCKOO of search shall be used over the edge 
based segmentation model to extract the features from 
the chosen blood sample images, as the edge based seg-
mentation is one of the effective methods for image based 
analysis of parasite type detection37.

In the further sections of this report, the model 
proposed in section-II. The experimental study results 
are depicted in Section 3 along with performance anal-
ysis and the conclusion for the model is depicted in 
Section 4. 

2. � Heuristic Scale to Estimate 
Premature Malaria Parasites 
Scope

The definition of scale is defined using hierarchy of multi-
ple stages like acquiring the images of blood smears in the 
image inputs, ensuring that the images are preprocessed. 
Extracting some of the bench marking features identifica-
tion of the optimal features and then applying the Cuckoo 
search on the optimal features in a relative manner, for 
defining the heuristic scales to depict the normal blood 
smears and the parasite prone blood smears at premature 
level.

2.1  Conversion to Grayscale
Using the Colorimetric gray conversion 43Luma coding 
grayscale conversion44, and Green channel gray conver-
sion44, the RGB (three channels) microscopic image is 
converted to a single channel. Also PCA- related grayscale 
conversion45 is also adapted in the approach for conver-
sion, and among all the conversion methods adapted, 
PCA based grey scale has provided more optimal qual-
ity images of microscopic blood smear46–48. Hence PCA 
is adapted as an effective approach for RGB microscopic 
image conversion to grayscale. 

Using the linear least-square model, the maximum 
contrast in the grayscale is developed in the PAC based 
model. RGB color coordinate is used for assessing the pri-
mary axis of the RBC color and the best fit regression line 

developed by PCA regression which certainly reduces the 
distance between point and the axis line that are influ-
enced by parasite impacted cell image in the regression 
space. Also, the illustrative visualization of the regression 
line, with inputs to RGB image and the output grayscale is 
depicted in Figure 1. 

The variation of angles amidst the angles could be 
represented by R, G and B that are obtained first and 
sequentially, the cosine values of them are transformed 
to grayscale values. Equation that is used to gather the 
regression weights are: 
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In the above depicted equation (Eq.1), minimum of 
the weights x, y, z that are applied to R, G and B. The image 
of the pixel count is depicted by|Pix| and ri, gi, bi denotes 
the red, green and blue values of the ith pixel.

2.2  Contrast Correction in Illumination 
The poor illumination of the microscopic images could be 
attributed to varied range of conditions. However, in terms 
of identifying infected erythrocytes any kind of dullness 
persisting in contrast shall be a major constraint. Hence, 
the emphasis is on improving the contrast levels is a key 

(a) (b) 

Figure 1.  Imagery example of PCA image conversion from 
RGB image to grayscale. (a) RGB input image. (b) Grayscale 
output image.
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step in the segmentation process. To increase the contrast 
level of gray scale image ( , )b m n  the technique termed 
gamma equalization (GE) 49, 14is adapted as depicted in the 
equation below(see Eq2):
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( ( , ) ( , ) )

m n m nb m n m n
m n m n
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γ γγ
γ γ

−=
−

� (2)

Under the gamma threshold levels of 0.5, the contrast 
gray scale image for the input gray scale can be seen in 
the Figure 2. 

The given grayscale input image and the resultant 
image from the gamma equalization process under 
gamma threshold 0.5 can be found in Figure 2.

2.3  Noise Tumbling
The noise of some common type called Salt & Pepper and 
other super imposed patterns always impact the micro-
scopic images of blood smears50. Technique of Median 
filter is adapted for removing such noise patterns51, and 
also the Median filter is used in combination of Gaussian 
Filter 50 to reduce the super imposed patterns in the blood 
smear images shown in Figure 3.

Identifying spectral peaks of pattern noise•	
Special filtering process is applied to any kind of Moiré 

pattern noise from Fourier amplitude spectrum in a given 
image using (Equation (3)) 
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l(c, d) Is the image of size R1 × S1. The amplitude of the 
spectral  (a, b)th coefficients is L (a, b). The peaks shall 

(b)(a)

Figure 2.  Imagery of Gamma equalization process. (a) 
Input Image for Gamma Equalization. (b) Output image of 
the Gamma Equalization for ( 0.5)τ = .

(a) (b)

Figure 3.  Input and resultant blood smear images of 
applying combined Gaussian and median filter. (a) Grayscale 
image input. (b) Output image.

be visible as bright spots in amplitude spectra, similar 
to impulses in visual conditions. Any kind of impulsive 
noises can be detected by profound solution of median 
filter52–54 and hence such solution is adapted in detec-
tion and filtering of noise. Also the following two steps 
are followed in detection o spectral peak in the Fourier 
amplitude spectrum. 

Defining low-frequency area•	
The transformation of the initial image in to 2D wavelet 

is carried out, and if the relevant functions are identified to 
be discrete, the scaling and aggregate of wavelets shall be 
bipartite in to two phases. Hence, the wavelet transform is 
applied to each axis initially. In extension to such bipartite 
signal (in terms of image in the form of 2D signal) has 
been portioned in to sub bands as LL, HL, LH and HH55.

The sub bands HL and LH depict the signal deviation 
in X-axis and Y-axis in the decomposed image. To impro-
vise the ability of coding, the maximal bits and minimal 
or zero bits are spent on low and high frequency bands in 
respective manner. 

Localize a spectral peak•	
The (a, b)th spectral coefficient mn

abL  is considered as 
peak, if the following justification exists:

	 ( , )
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The window of size with local median of A × B sur-
rounding to (a, b)th spectral coefficient Lab is

( )A B abMED L×  and pre-defined threshold value 
denoted by T.

Number of peaks identified the threshold value than T 
are found inversely proportional. 

Gaussian Filtering:•	
Detection of spectral peak is adapted for Gaussian fil-

tering which corrects spectral coefficient of interest and 
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amplitude towards spectrum coefficients and the filtering 
process is carried out as 
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mn
abL  Indicates the set of amplitude spectrum coeffi-

cients chosen from the window of size m n×  in surround 
of ( , )tha b  spectral coefficient abL . The Gaussian filtering 
process (Equation (5)) results set of amplitude spectrum 
coefficients mn

abL  and the Gaussian filter used is repre-
sented by mnG .

Also a typical Gaussian filter shall be applied even to 
explore Gaussian surface which is covered by two con-
nected peaks. The process overhead shall be found to be 
adapted in Gaussian filtering process and it contains some 
pairs of noise peaks and also the process overhead could 
be substantially high. 

It is imperative from the above process that the usage 
of Median and Gaussian filters are very much divergent 
but effective in terms of noise filtering. Also, the median 
filters restrict the size of region around noise peaks and 
also further when Gaussian filter is adapted it shall per-
form over the region defined by median filter. 

2.4  Edge Detection 
The initial and key objective is to improving the visibility of 
the borders of erythrocytes, which is done by Canny-based 
filters56 that preserves continuous edges in effective man-
ner. In order to this the median filter will be used initially 
to smoothen the contours formed on target image of size q 
× q pixels of noise free image. Since the infected area of the 
erythrocyte appears as dark area, the edges and the borders 
related to such darkest regions are highlighted in Figure 4.

2.5 � Segmentation by K-Means Clustering to 
Identify Erythrocyte 

In the preprocessing stage, the grayscale Microscopic blood 
smear image is delivered and it is used as input for process 
of segmentation by using K-Means algorithm that has K 
value as 2, which is since the pixels either fall into infected 
area or normal region of the erythrocyte Figure 5.

The simple clustering technique of K-Means57 shall be 
adapted for clustering the microscopic image data sets that 
are considered. If the dataset U is clustered in di dimen-
sion space as k clusters, as in the selected context the value 
of k is 2. Initially the normal and infected erythrocytes 
shall be used to create prototypes in such a manner that it 
denotes respective cluster. 

Then each entry of dataset U shall be moved to respec-
tive clusters that are based in nearest prototype. Also, for 
each of the prototype cluster that is identified, if any other 
cluster prototype is different to the earlier prototype, the 
clustering is done according to the cluster prototypes. 
However, if no change in the prototypes is envisaged, all 
the clusters observed then shall be used with respective 
entries that are finalized. 

The objective function that estimates the squared 
error is adapted in K-means clustering for identifying the 
nearness of each entry to the dataset U and hence respec-
tive prototypes of the clusters are adapted as follows: 

The objective function, which estimates the squared 
error, is used in K-means clustering to identify the near-
ness of the each entry of the dataset U and respective pro-
totypes of the clusters that is as follows.
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(a) (b)

Figure 4.  Edge detection on image using canny edge 
detection approach. (a) Microscopic image input. (b) Image 
with edge detection as output.

(a) (b)

Figure 5.  The input and output imageryof K-Means 
Clustering. (a) Microscopic image for K-Means clustering – 
Input. (b) Image of two clusters effected (white), uneffected 
(dark).



Heuristic Scale to Estimate Premature Malaria Parasites: Scope in Microscopic Blood Smear Images

Indian Journal of Science and Technology6 Vol 10 (8) | February 2017 | www.indjst.org

The distance amid each point ( )j
iU  and the cluster lv  

is done by 
2( )j

i jU v−  (see Equation (6)). Using this 
objective functions, the results that are obtained denotes 
the distance among the data points and respective cluster. 
Key steps that are adapted in the K-Means process are:

For the K clusters, K data points shall be considered as 
K data points (k value is considered as Equation (2))

Distance between k centroids and data points are 1.	
identified.
Moving the data point to cluster once the cluster of a 2.	
centroid is found within minimal distance.
Application of step 3 to all the data points.3.	
For each cluster optimal centroid is searched for.4.	
The process is repeated of 2, 3, and 4 are repeated until 5.	
no changes are observed in any centroid. 

I.  Apply the step III to all data points.
II.  Find optimal centroid of each cluster.
III. � Repeat steps II, III and IV until the centroid of any 

cluster not changed.

K-means reflects significant times and also the clus-
ter optimality which shall have to be proportionate for 
centroids that are initially adapted. To the selected binary 
image by k-means.

Clustering of the given binary image by k-means shall 
be explored as:

The number of clusters that are set to be 2, when the 
infected erythrocytes shall contain pixels that has high 
intensity is used for normal erythrocytes. 

As the input one is a grayscale image, the scope of dif-
ferentiation that is estimated by their intensity. 

Also, the set of 2 clusters that are formed by assess-
ing at varied level of pixel shall be darkest area or even 
it might not be one. To evaluate such conditions, for the 
initial centroids of cluster 1 and 2, pixels are randomly 
selected for the darkest area for an image and the pixel 
shall randomly be selected from other part of the image in 
respective manner. 

2.6  Connected Component Analysis
In terms of noise removal in the resultant images from 
the FCM process, shall be the emphasis in the process, 
however, for the connected component analysis, there 
is morphological method with a kind of erosion process 
which shall be adapted. Also, the holes that are observed 

in the resulting images shall be achieved using the optimal 
segmentation. 

i.  Morphological Operation
Also, in terms of resulting binary images to the infected 
erythrocytes in a clustering process comprising of spanned 
excess regions hovering on infected erythrocytes, such 
excess regions has to be eliminated. Such process can be 
done by focusing on morphological binary destruction 
operation14. Also, the structuring element ( , )s m n  shall 
be used for destruct binary image ( , )b m n  that delivers 
resultant binary image ( , )r m n . The destruction is car-
ried out as explored in Equation (7).

	 { }1 1 1 1
( , ) ( , ) ( , ) ( , ) ( , )r m n b m n b m n b m n s m n= ∧ ∃ ∈ � (7)

To identify optimal size of the STREL, tests were 
conducted on 3 3,5 5 7 7and× × ×  square particles of 
STREL and it is imperative that 3 3×  squared particles 
are optimal. 

ii.  Filling Holes observed in clustered erythrosine areas 
The resulting images from k-means depict erythrocytes 
that have holes and also the common obstacles shall be 
around segmentation accuracy for infected erythrocytes58. 
Hence the holes have to be filled as follows. 

If ( , )b m n  be the output of the K-means process for 
a parasite binary image. And ( , )im m n  be the marker 
image used for filling the image and surroundings to 
highlight the border of the image. Then resultant image 

( , )r m n  is ( , )b m n  with hole filled (see Equation (8)). 
The result generated from connected component analysis 
which is applied on resultant image of K-means is visual-
ized in Figure 6.

2.7  Features Extraction
The features for the contextual differentiating in the tex-
ture and also the morphological patterns for the given 
greyscale images are profoundly related in the literature 
on the domain. In7–18, which are not considered towards 
distinguishing the normal and diseased erythrocytes. 

Entropy•	
In terms of entropy which indicates the level of uncertainty, 
it is important to differentiate the infected and normal 
erythrocytes, and the model usually relies on available 
entropies that are explored in the literature 15, 16. For mea-
suring the entropies, some of the factors like histogram 
of the region of interest have to be taken in to account. 
Also, in terms of entropies that have to be evaluated, there 
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infected erythrocyte in terms of surface coarseness, the 
grayscale image shall be processed as third dimension for 
the chosen 2 dimension image and the resulting varia-
tion from the process shall conclude coarseness or texture 
deviation in the infected erythrocyte. Also, the approach 
that is adapted for identification of the variations towards 
third dimension shall be as “modified differential box 
counting with sequential algorithm”9,12. 

Local Binary Pattern (LBP) •	
The grayscale image termed Local Binary Pattern (LBP) 
reflects the similarity of the local neighbor regions and the 
other total number of LBP features are 613,17. The circular 
neighborhood and the bilinear interpolation are some of 
the key factors that are used for computation of LBP. 

Let ixP  be the set of pixels found in the range of radius  
R of erythrocyte image I, let pc be the pixel found at cen-
ter of the radius R, let Gpc be the grey value of the pc and 
{ }1,2,3,...i ix ix i cGp p P i P p p∃ ∈ ∧ = ∧ ≠  be the grey 

value of the neighborhood pixel { }ixp p P∃ ∈ . Then each 
pixel { }ix cp p P p p∃ ∈ ∧ ≠  shall be converted in to 
binary pattern (0 or 1) based on the Gpc.

Morphological feature•	
Some the features that are proposed in 14, that has invari-
ant moments7,60, shall be considered as Morphometric 
information features that are extensive for depicting 
anomalous erythrocytes recognition. Also this could be 
attributed to variance of shape and size depicted amidst 
of infected and normal erythrocytes. 

2.8  Features Selection
When E and F shall be set of records, for each record
{ }re re E∃ ∈ ,{ }rf rf F∃ ∈  denotes all features for an 
normal erythrocyte and also infected and respectively

The task of finding hamming distance amid unique 
values towards each attribute of E for the counter part of F

Selection of attributes with hamming distance for 
more than the threshold hdt that set of optimal attributes 
Ea of size n, Fa of size m from E and F respectively

i.  Assessing Hamming Distance is as follows:
Difference between the unique values of same attribute for 
the records identified as true and false are generated from 
Hamming Distance. One of the key strategies for assessing 
the difference for elements is in the coding theory adapted. 
Such strategy shall be applied for managing distance 
between various unique values that are observed and also 
for an attribute for record set that is labeled as true or false. 

(a) (b) 

(c)

Figure 6.  The input and resultant images for connected 
component analysis. (a) Input image for connected 
component analysis. (b) Resultant image with removel of 
falsely clustered erythrosite. (c) Resultant image with filled 
holes.

are five entropies that are considered (Kapur’s15, Renyi’s15, 
Charvat’s15, Havarda’s15, and Yeager’s16 entropies). 

GLCM features•	
The total GLCM features are 19 and all of them are related 
to information measure and variance, entropy and energy 
related aspects 29, 30, that are substantial for exploring the tex-
ture information8. Also, the GLCM matrix which indicates 
the divergent grey shades that is found in the image. The 
matrix shall be used for describing the metrics defined. 

Gray Level Run Length Matrix•	 8 based textural fea-
tures

The features analyze the granular structure for a grayscale 
image. If ( , )i jRLM  is a matrix for run lengths, of size j, 
towards a specified direction for grey value i of a gray-
scale image ( , )I x y , that is used for defining all 11 texture 
features8,10,11.

Fractal dimension•	
Using the fractal dimension model, the surface coarse-
ness in an image can be figured out 59. To ensure that the 
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For a given two vectors 1 2{ , ,..., }mV v v v=  and 1 2{ , ,..., }nW w w w=  
of size c and d respectively. Hamming Distance can be 
measured as follows
Let Z φ←  // is a vector of size 0

{ 1,2,3,.....max( , )}foreach i i c d∃ = Begin
({ } { }) 0i i i iif  v v V w w W  then∃ ∈ − ∃ ∈ ≡

{ } { }i i i iZ v v V w w W← ∃ ∈ − ∃ ∈

Else
1Z ←

End

	

| |

1

{ }

max( , )

Z

j
V W

Z i
hd

c d
=

↔ =
∑

// V Whd ↔  is the hamming distance between V and W, 
{ }Z i  is the thi  element of the vector Z with size | |Z .

2.9  Applying CUCKOO Search
i.  Nest Formation
Prepare 2 1n −  unique subsets { }aE  such that at least one 
subset of sizes { }, 1, 2, ,1n n n− − − − −−  and 2 1m −  unique subsets 
{ }aF  such that at least one subset of sizes { }, 1, 2, ,1m m m− − − − −−

from aE  and aF  respectively.
Prepare a set { }fE  such that { }fE  contains the set of 

respective values appeared in 1 or more records of E for 
attributes of each subset of { }aE

Prepare a set { }fF  such that { }fF  contains the set of 
respective values appeared in 1 or more records of E for 
attributes of each subset of { }fF

Build a hierarchical order TI such that subset [ { }]as s I∃ ∈  
with size of aE  as root and subsets with size 1aE −  as level 
1 nodes and continue further building of that order with 
all subsets of the { }aE  as the subsets of size ( 1)aE i− +  as the 
next level nodes to the level formed by the subsets of size 

aE i−

Similarly build hierarchical order TN such that sub-
set { }as s F∃ ∈    with size of aF  as root and subsets with size 

1aF −  as level 1 nodes and continue further building of that 
hierarchy with all subsets of the { }aF  as the subsets of size 

( 1)aF i− +  as the next level nodes to the level formed by the 
subsets of size aF i−

Further the nodes at different levels of these hierar-
chies are considered as nests identified by the combination 
of level id and node id

For each node of hierarchy TI that representing a nest, 
the respective value sets those belongs { }fE  are considered 
as eggs

{ }f ij
E  is the set of eggs belongs to the nest j in level i of 

hierarchy TI.
For each node of hierarchy TN, the respective value 

sets those belongs { }fF  are considered to be as eggs in the 
nest represented by that node.

{ }f ij
F  is the set of eggs belongs to the nest j in level i of 

hierarchy TN.

ii.  Cuckoo Search
For a given record R that represents the features of the 
erythrocyte, form the 2n  subsets { }fRE  from the values of 
the optimal features reflected by aE  and also form the 
2m  subsets { }fRF  from the values of the optimal features 
reflected by aF . 

The { }fRE  and { }fRF  are considered as set of cuckoo eggs 
to be placed in nests represented by TI and TN respec-
tively.

a)  Cuckoo Search on TI. 
Sort the { }fRE  in descending order of sizes

( )S E φ←  // vector that represents the number of com-
patible nests in each level of hierarchy TI

For each level { 1,2,3,..... }l l n∃ =  Begin 
// l represents the level of the hierarchy from root to 

leaves respectively 
0ls =  // possible number of nests in level l accommo-

dates cuckoo eggs
For each cuckoo egg { }[ ( 1)]fce ce RE ce n l∃ ∈ ∧ ≡ − +  Begin
// ( 1)n l− +  represents the number of features in cuckoo 

egg ce
For each [ 1, 2,3,..... | |]lj j TI∃ =  Begin 
// | |lTI  represents the number of nests in level l of hier-

archy TI
{ } { } { } { }( )a a a aij ijE ce ce E⊂ ∧ ⊂  Begin

// Attributes representing the nest { }f ij
E  must be identi-

cal to the attributes of the features in ce

	
{} { } { }f ij
t ce E← ∪

// forming a temporary set from the union of { }ce , 
which is a set with one element and { }f ij

E  that is a set of 
eggs in the nest j of level l

If {} { }f ij
t E≡  then 1ls + =

End
End

( ) ls E s←

End
End

Further, the similar search process also be performed 
on TN to obtain the ( )s F , which is a vector that repre-
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sents the number of compatible nests in each level of 
hierarchyTN. 

b)  Cuckoo Search on Hierarchy TN. 
Sort the { }fRN  in descending order of sizes

( )s F φ←  // a vector represents the compatible nests at 
each level of the hierarchy TN

For each level { 1,2,3,..... }l l m∃ =  Begin 
// l represents the level of the hierarchy from root to 

last level respectively 
0ls =  // possible number of nests in level l accommo-

dates cuckoo eggs
For each cuckoo egg [ { } | | ( 1)]fce ce RN ce m l∃ ∈ ∧ ≡ − +  

Begin 
// ( 1)m l− +  represents the number of features in cuckoo 

egg ce
For each [ 1, 2,3,..... | |]lj j TN∃ =  Begin 

// | |lTN  represents the number of nests in level l of hier-
archy TN

({ } { } { } { } )a lj a a a ljif N ce ce N⊂ ∧ ⊂  Begin
// Attributes representing the nest { }f ljN  must be identi-

cal to the attributes of the features in ce

	 { } { } { }f ljt ce N← 

// forming a temporary set from the union of { }ce , 
which is a set with one element and { }f ljN  that is a set of 
eggs in the nest j of level l
If | { } | | { } |f ljt N≡  then 1ls + =

End
End

( ) ls F s←

End
End

2.10 � Assessing the State of a Record of given 
Erythrocyte Features

For each level { 1,2,3,..... }TI TIl l n∃ =  of hierarchy TI Begin

	

( )
( )

( )
TI

TI
TI

cnc lcnr l
nc l

=

// ( )TIcnc l  is compatible number of nests in level TIl , ( )TInc l  
is total number of nests in level TIl
End

For each level { 1,2,3,..... }TN TNl l m∃ =  of hierarchy TN 
Begin

	

( )
( )

( )
TN

TN
TN

cnc l
cnr l

nc l
=

// ( )TNcnc l  is compatible number of nests in level TNl , is 
total number of nests in level 
End
For each level Begin
End
Begin

//is the infected ratio for each level of, is the infected 
ratio threshold given 

Erythrocyte record is confirmed to be infected
Else 

Erythrocyte record is confirmed to be Normal
End

3. � Experimental Study and 
Results Analysis

3.1  The Dataset
A dataset is developed based on the samples gathered 
from varied cellular counterparts that are collected from 
varied diagnostics, using statistical guidelines essential 
for contributions in a medical journal61. Total sample 
size collected is 180 (48 P. falciparum, 84 P. vivax, and 
48 normal) from the 800 samples evaluated (661 P. vivax, 
67 normal, and 72 P. falciparum) collected. Selection of 
samples was carried out on the basis of visible clarity that 
could be gained from under microscopic tests. Labels 
that are essential for the samples were affirmed by five 
pathologists. 
Results that are derived from study experiments reflect 
upon the performance graphs and the tables. Levels of 
prediction accuracy shall be stable for hamming dis-
tances within or equal to 0.50 towards a trained and tested 
images in Figure 7. 

Also in terms of overhead and the resource utilization 
for SEMPS, there is optimal ratio level essential for time 
of completion pertaining to the input records that are 
envisaged as linear in Figure 8. Also the ration of memory 
usage towards linear levels is divergent to the number of 
records inspected seen in Figure 9. 

The heuristic scale definition from CUCKOO search 
shall be as optimal for the prediction accuracy that is con-
crete in terms of results to the count of optimal features 
and the prediction accuracy estimated (87%), which is 
substantially an effective count compared to SVM based 
prediction (83.555)38 and also Naïve Bayes prediction 
accuracy resulting (84%)38. 
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A.  Performance Analysis

Figure 7.  The accuracy observed for different number of 
features under varying hamming distance thresholds.

Figure 8.  SEMPS process completion time vs linearity.

Figure 9.  SEMPS memory usage vs linearity.

4.  Conclusion
In the proposed model of Heuristic Scale to Estimate 
Premature Malaria Parasites Scope (SEMPS) with multi 

stage processing of the microscopic images of blood 
smear ismuch effective than the other models that were 
depicted earlier. The process of image processing and the 
heuristic scale evaluation is carried out using multiple 
phases in order to ensure that the levels of accuracy and 
the process outcome shall be more effective. Some of the 
key factors considered in the process are segmentation, 
optimal feature selection, feature extraction and evolu-
tionary compuation that can be adapted on the baiss of 
heurisitc scale definition.

Some of the critical constraints that are envisaged 
in the benchmarking models are about the dullness in 
contrast, intensities observed in similar fashion for both 
effected and normal areas of blood smear images for 
microscopic image segmentation modeling, edge forma-
tion issues and other such factors are turning out to be a 
major impact, from the earlier processes. 

With the proposed model of CUCKOO search the 
outcome in terms of evaluating the process using the 
image comparisons and the optimal feature utiliza-
tion has been resulting effective outcome. Despite the 
fact that there significant stages involved in the process 
and the adaptation of various benchmarking methods 
like SVM and Bayesian model are considered in the 
experimental study, the results that are envisaged from 
the process signify that the proposed model of SEMPS 
shall be very resourceful in premature stage detection of 
malaria from the microscopic images. Also, the study has 
depicted scope towards using varied directions like the 
identification of correlation of features and the impact 
of such features on the scale definition, and the scope for 
using the genetic algorithm for identifying the optimal 
features. 
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