
Indian Journal of Science and Technology, Vol 10(30), DOI: 10.17485/ijst/2017/v10i30/107654, August 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

The quality of software can be highly improved by testing
the software so that it can satisfy the specific requirements
of the customer. Effective test cases, prioritization and
optimization of test cases are some issues in software
testing, which is to be solved. For this purpose Cost, effort
and time of the software testing are very important factors.
Software industry suffers with a heavy loss of $500 billion
due to reduced in software quality. So for high quality
software testing is required, which is a process to test
the runtime quality and quantity of the software and the
tested software can only meet the specific requirements
of the user1. In Software Development Life Cycle(SDLC),
testing is a very important and expensive task. Testing is
done after designing and coding the software, shown in
Figure 1.

Basically testing techniques are of two types functional
testing and structural testing. Functional requirements
are needed in functional testing, which is known as black

box testing and structural testing is based on internal
coding, known as white box testing. The combination
of the above two basic techniques is known as Gray box
testing2. Software failure causes by different faults and
those faults can be detected by software testing, so that
the software will work properly.

Figure 1. Phases of SDLC.

Abstract
Background/Objectives: This research paper presents how Genetic algorithm is efficiently used in random test case
generation during functional software testing. Methods/Statistical Analysis: Different hybridized Genetic Algorithms
are used to generate test data automatically and optimized those test cases to solve many complex problem related to
software testing. Findings: Genetic Algorithms are successfully used in software testing with increasing number of test
case generation and provides a means of an automatic test case generator. Applications/Improvements: This study gives
us a brief idea to implement Genetic Algorithms in software testing for optimum results and also it can be used with the
neural networks and fuzzy systems for different types of testing to improve the performance.

Keywords: Black-Box Testing, Fitness Function, Genetic Algorithm (GA), Neural Network, Software Testing,
Test case Generation

A Review of Random Test Case Generation
using Genetic Algorithm

Deepti Bala Mishra1, Saurabh Bilgaiyan1, Rajashree Mishra2,
Arup Abhinna Acharya1 and Samaresh Mishra1

1School of Computer Engineering, KIIT University, Bhubaneswar – 751024, Odisha, India;
dbm2980@gmail.com, saurabhbilgaiyan01@gmail.com, aacharyafcs@kiit.ac.in, smishrafcs@kiit.ac.in

2School of Applied Sciences, KIIT University, Bhubaneswar – 751024, Odisha, India;
rmishrafma@kiit.ac.in

Vol 10 (30) | August 2017 | www.indjst.org Indian Journal of Science and Technology2

A Review of Random Test Case Generation using Genetic Algorithm

Software testing is the process of verification and
validation to make sure that the software covers all the
desired business and technical needs3, 4. It is a very
expensive process as it needs about 50% cost of total
software life cycle. Different testing tools can be used for
manual or automatic testing. Manual software testing
suffers from the drawbacks such as operation speed,
high investment of cost, more time consuming, resources
unavailability, inefficient and inaccurate test checking.
These drawbacks can be overcome by automated the
testing process5, 6. During software testing a maximum
of 50% resources are consumed of the total software
development resources. If the testing is performed using
automated testing then it will lead to reduce in software
development cost by a significant margin7-9.

A test case is a data which acts as input for the software
testing and it consists of unique identifier, requirement
references from a software specification, a series of steps,
events, preconditions, input, output, expected result and
actual result10,11. Genetic algorithm, neural networks,
fuzzy logic, etc. are some of the software techniques
which are applied successfully in different engineering
and applied sciences field. Among all evolutionary search
techniques, Genetic Algorithm can give an optimal
problem to the task of test case generation and solution
can easily found12-14. In the field of software engineering
many optimization problems has been solved by applying
Genetic Algorithm as parallelism and search space
operations are the important characteristics11,15,16 and for
testing purpose this can be used to generate test plans
automatically.

This paper presents a survey of how GA is efficiently
used to generate test cases for software testing. Further the
paper is partitioned into 4 sections. Section 1 presents the
Introduction, section 2 contains a brief description about
Genetic Algorithm and the working flow of GA, section
3 presents related work in the field of test case generation
using Genetic Algorithm for functional testing, and
section 4, gives a short conclusion followed by our future
work.

2. Genetic Algorithm

Genetic algorithm is a natural genetic based search
technique, which is developed by John Holland in 1970.
It is used to solve many complex and real life problems
by applying function optimization methods. In software

testing so many problems related to test cases are solved
by producing high quality test data automatically17-19.

GA has emerged as a practical, robust optimization
technique and search method and it is inspired by the way
nature evolves species using natural selection of the fittest
individuals. It is a best way to solve a set of problems with
less information11, 20.

The solution to a specific problem can be solved by a
population of chromosomes, the strings of binary digits
and each digit is called a gene and the population can be
created randomly.

Basically four different types of operators are used
in the process of GA such as selection, crossover, and
mutation and elitism (optional) 11, 18.

Selection: The use of selection operator is to select the
best parents for performing other GA operations. Usually
the selection is done on the basis of fitness value of the
individuals, which is obtained from the fitness function.
Fitness function can be defined as a specific function
depending upon the criteria which returns a number
indicating the acceptability of the program. This function
is used in the selection process to determine the optimum
point and the variants survive to the next iteration21,22.
Selection methods are of six different types such as
roulette wheel, stochastic universal sampling, linear rank,
exponential rank, binary tournament and truncation.

Crossover: After selecting the better individuals by
using selection operator, the crossover is applied to the
chromosomes. In this operation two individuals swaps
genes or sequence of bits between them when they satisfy
the probability factor of the operator. For binary encoding
different types of crossover operators are used like one
point, two point, uniform and arithmetic. Mutation is
performed after crossover if the mutation probability is
true for the given iteration.

Mutation: It is used to maintained genetic diversity
in the population by altering chromosomes to introduce
new good traits. Basically six types of mutation operators
are used in Genetic algorithm such as Bit string, flip bit,
boundary, uniform, non uniform and Gaussian.

Elitism: Elitism process involves copying a small
proportion of the fittest candidates into the next
generation, which are related to the best solution found.

2.1 Process of Genetic Algorithm
The basic process of Genetic algorithms mainly involves
creating an initial set of random solutions (population)

Deepti Bala Mishra, Saurabh Bilgaiyan, Rajashree Mishra, Arup Abhinna Acharya and Samaresh Mishra

Vol 10 (30) | August 2017 | www.indjst.org Indian Journal of Science and Technology 3

and evaluating them3,8,11,12, by using the GA operators
shown in Figure 2. After the better solutions are identified
(parents) they are again used to generate new solutions
(children). These values can be used to replace with
other population. This new generation (population) is
then reevaluated and the process for generating new
values continues until a final solution is found based on
a specified condition of the fitness function15, 23. Finally,
the optimum data is obtained by function optimization
technique23.

Figure 2. Flow of Genetic Algorithm.

2.2 �Generating Random Test Cases by using
Dev-C++ code:

int main()
{
	 clock_t c;
	 time_t t0;
	 char *s;
	 c=clock();
	 t0=time(NULL);
	 s=ctime(&t0);
	 cout<< “ current time=” <<ctime(&t0)<< endl;
	 unsigned seed =time(NULL);
	 srand(seed);
	 int i,j,k;
	 double array_1[120][25][20];
		 for(i=1;i<100;i++)
	 {
 for (j=1;j<5;j++)
	 {
		 for (k=0;k<4;k++)
		 {
			 array_1[i][j][k]=rand()%2;
			
		 }
	 	 }
	 	 }
	 cout<<”Randomly generated Strings are:-
”<<endl<<endl<<”----					
	 ------------”<<endl;
	 for(i=1;i<100;i++)
	 {
 for (j=1;j<5;j++)
	 {		 for (k=0;k<4;k++)
				 cout<<array_1[i][j]
[k];
		 }
	 cout<<endl;
}
	 return (0);
}

The above code will generate 100 numbers of string
populations randomly and then the parameters such as
cross over rate and mutation rates are determined in order
to build an efficient function to find our chromosome.

Vol 10 (30) | August 2017 | www.indjst.org Indian Journal of Science and Technology4

A Review of Random Test Case Generation using Genetic Algorithm

Initially we take 100 numbers of populations for finding
the optimal solution for a specific problem, we can
increase the number of generation and population until
the best solution is found. Using genetic algorithm, new
populations are produced which will go for the cross over
and mutation by defining a fitness function to a specific
problem.

3. Related Works

This section provides a short description about the
different hybridized GA techniques applied for software
testing.

In14, the authors proposed a hybrid fuzzy based GA
with age extension (FAexGA), to generate test cases for
mutation testing. They found a very minimal set of test
cases. The faults in test cases are exposed by the use of
mutated versions of the original method. The proposed
method uses a FLC (Fuzzy Logic Controller) for obtaining
the probability of crossover. The probability of crossover
differs according to the age intervals allocated during
lifetime. The age and lifetime of chromosomes (parents)
are defined by the FLC state variables. The truth value for
obtaining Young-age, Middle-age and Old-age are shown
in Table 1. Where,

	 Age ∈ [Young-age, Middle-age, Old-age]
	 Crossover Probability ∈ [Low, Medium, High]

Table 1. Fuzzy Rule for cross over probability [14]
Parent 1

Pa
re

nt
 2 Young Middle age Old

Young Low Medium High
Middle age Medium High Medium
Old Low Medium Low

In their work an effective set of test cases are generated
for a Boolean expression of 100 Boolean attributes by
using three logical operators AND, OR, and NOT. An
external application generates the correct expression
randomly and one simple function is evaluated for each
test case to generate an erroneous expression. Here 100-bit
lengthen binary strings of one dimensional are generated
as chromosomes and the function value is calculated by
using the equation (1). They concluded that the Fuzzy
based GA algorithm (FAexGA) can found error in very
short time with distinct number of solutions.

()
1

0
correct erroneous, if Eval Eval

F T
, otherwise

≠
= 


	 (1)

In20, the authors has shown the use of GA method to
generate better test plans for functionality testing. The
method is applied in an unbiased manner to avoid the
expert’s interference. They used the fitness function as
shown in equation (2).

()
1

1
1

k

p i i
i

f t l l
−

+
=

= →∑ 				 (2)

Where p = l1, l2,…,lk is a test plan or sequence of
operations and t is a transition function for converting
one operation li to the next operation li+1 in a sequence.
The sequence is considered as better if the fitness value
is high.

The GA and neural network for the functional testing
of the software under test in24, and the authors applied
the improved Genetic algorithm to the function model,
created using neural network. The following fitness
function, shown in equation (3) is used.

8

1

10max

, c g
c gf
f , c g −

 ≠ −= 
 − ≤

			 (3)

Here c represents the actual output and g represents
the required output of the software under testing. When
the resultant (fitness) value of the proposed algorithm
crosses the maximum point of possible outcome, then
the algorithm terminates its execution and the current
individual is termed as the best test inputs for the
corresponding outputs. The authors found that proposed
GA can generate better test cases with high efficiency.

A Genetic Algorithm based technique was developed
to generate test data from Unified Modeling Language
(UML) state machine diagrams in7. The test data can be
generated and evaluated before coding by finding the
total number of coverage. They have taken the sequence
of triggers as a chromosome in the UML diagram and
the fitness value of each test data is the number of fired
transitions. They have discussed four case studies as
Coffee vending Machine, Student enrollment system,
Class management system and a telephone system and
have done experiments their different properties with
their proposed tool. In their experiments they have taken
the best solutions which cover maximum number of

Deepti Bala Mishra, Saurabh Bilgaiyan, Rajashree Mishra, Arup Abhinna Acharya and Samaresh Mishra

Vol 10 (30) | August 2017 | www.indjst.org Indian Journal of Science and Technology 5

transitions. They found the developed system works in a
very good manner for the cases where the final state is
not present and their fitness function for a chromosome
is shown in equation (4).

aW+bX+cY+Z 					 (4)

In equation (4) a, b and c represents constant values
and if there will be no guard condition for selected
transition then a=0, W, X, Y and Z denotes the number
of states in test case, the recently covered transitions, the
number of states reached and the number of path coverage
for the test cases respectively.

In25, authors state that GA can be applied for
optimizations and improve the performance to obtain the
local optimal solution of a specific problem. The applied
a new algorithm called as Genetic-Particle Swarm Mixed
Algorithm (GPSMA) to automatically generate software
test data. The proposed technique uses the update mode
in each individual to replace the mutation process in the
algorithm which is based on population division. The
proposed algorithm can generate and search specific test
data in a domain to satisfy the test condition and it uses
the Triangle Classify Program to address the problems of
test data generation.

1

ji
n

ji
j

T
i

T
=

∂ =

∑
				 (5)

They introduced a fitness function shown in equation
(5), where i, represents the number of generation, j is the
sub population and is the impact factor of mutation,
called as the “excellent rate of production”, in the equation
(4), Tij is the total quantity of optimal individuals.

In15, a method called as US-RDG was proposed to
generate test cases automatically. They combined the
User Session data with Request Dependence Graph
(RDG) for web application and applied their approach
for gray box testing. Their simulated results show that
when the test suit is very small then US-RDG effects
better than the traditional user session-based testing
by higher path coverage and fault detection rate. They
used the conception as transition relation in the form of
“page → request → page”. The relationship between pages
and requests are presented by the transition relations.
Transition relations in the specific application can be

extracted from structural analysis by RDG and finally by
mixing different user sessions the test cases are generated
to cover maximum of transition relations. They found
the performance of US-RDG is very well in test case
generation for web application. They used the fitness
function of a chromosome as shown in equation (6).

Fitness = (α *| CDTR | + | CLTR |) / (α *| DTR | + | LTR|)
						 (6)

Where |CDTR| and |CLTR| represents the number
of data and link dependence transition relations
respectively. The fitness value will become 1 when all the
data and link of a specific application are covered by a
chromosome and to indicate the coefficient of the data
dependence transition relation, the authors introduced a
factor named as α. They have taken α as much as greater
than 1 to increase the proportion of the data dependence
transition relation and assigned 1 to the coefficient of the
link dependence in transition relation. They found the
chromosome, with a bigger fitness value, covers more
data dependence transition relations.

In26, authors used a multi objective optimization in
black box string test case generation for random testing
and adaptive random testing. The authors examined
many string distance functions and hence they introduce
two objectives for effective string test cases such as the
length distribution and the diversity control of the test
cases within a test set. They used one diversity- based
fitness function to generate optimized test sets to reveal
faults more effectively and it is shown in equation (7).

()()
1

test set size

D i i ,
i

F dist t , t test setβ
=

= ∑ 	 (7)

In the above function ti denotes the ith test case and β
is its nearest test case in the test set and the summation
is performed between the two distances test cases. They
found the higher value of the fitness, the more diverse
distribution of test cases.

After an extensive study of different testing techniques,
we came to learn GA parameter is efficiently used for
generating test cases in functional software testing.

Table 2 represents the value points of GA parameter,
corresponding methods used and the results found in
different types of software testing discussed in our work.

Vol 10 (30) | August 2017 | www.indjst.org Indian Journal of Science and Technology6

A Review of Random Test Case Generation using Genetic Algorithm

4. Conclusion and Future Work

In this paper, authors studied how different types of
hybridized Genetic Algorithms are helped in software
testing field by generating automatic test cases randomly.
Genetic algorithm can also be used with the neural
networks and fuzzy systems for performing different
types of testing to improve the performance.

In future it is planned to design a new hybridized
algorithm by taking a better fitness function which will
help us to evaluate the efficiency of test cases and further
we can increase the efficiency of the test result by changing
the input parameters, by increasing the number of
generations and obtain the optimum values for different
types of software testing. It is also planned to applied
hybridized GA with other soft computing techniques
such as neural network for optimized test case generation
in web-based application software.

5. References
1.	 Jones C, Bonsignour O. The economics of software quality.

Addison-Wesley Professional. 2011 July; 19.
2.	 Acharya S, Pandya V. Bridge between Black Box and White

Box–Gray Box Testing Technique. International Journal
of Electronics and Computer Science Engineering. 2012;
2(1):175–85.

3.	 Chauhan N. Software Testing: Principles and Practices, Ox-
ford University Press. 2010.

4.	 Jogersen PC. Software testing: A craftsman approach. 3rd
edition, CRC presses. 2008.

5.	 Srivastava PR, Ramachandran V, Kumar M, Talukder G,
Tiwari V, Sharma P. Generation of test data using meta
heuristic approach. TENCON 2008-2008 IEEE Region 10
Conference. 2008 November; 19: 1–6.

6.	 Michael CC, McGraw GE, Schatz MA, Walton CC. Genetic
algorithms for dynamic test data generation. Proceedings
of 12th IEEE International Conference IEEE on Automated
Software Engineering, 1997. 1997 November 1, p. 307-08.
Crossref

7.	 Doungsa-ard C, Dahal K, Hossain A, Suwannasart T. Test
data generation from UML state machine diagrams using
gas. International Conference on Software Engineering Ad-
vances (ICSEA 2007). 2007 August 25; p. 47–47. Crossref

8.	 Srivastava PR, Kim TH. Application of genetic algorithm
in software testing. International Journal of software Engi-
neering and its Applications. 2009 October; 3(4):87–96.

9.	 Berndt DJ, Watkins A. High volume software testing using
genetic algorithms. Proceedings of the 38th Annual Hawaii
International Conference on System Sciences IEEE. 2005
January 3; p. 318b. Crossref

10.	 Dixit S, Tomar P. Automated test data generation using
computational intelligence. 2015: 4th International Confer-
ence on IEEE Reliability, Infocom Technologies and Opti-
mization (ICRITO) (Trends and Future Directions). 2015
September 2; p. 1–4. Crossref

11.	 Sharma A, Patani R, Aggarwal A. Software testing using ge-
netic algorithms.

Table 2. The GA parameters and the advantages of Hybridized GA found in different types of Black box software
testing
Authors Ps NOI Sm Cm &Cr Mm &Mr Em Results
14 100 200 Random One point,

0.9
Flip, 0.01 Binary FAexGA is efficient for finding error in a

very short time with distinct solutions.
20 150 50 Random Point cross

over, 0.8
Flip, 0.01 Binary Test cases show highest inconsistency of

application
24 100 500 Roulette

Wheel
-, 0.8 -, 0.15 Real Test cases are generated with high efficiency.

7 10 Random Single
point, 0.5

Random,
0.5

Integer Test data can be successfully generated from
the state chart diagrams and GA works very
good in the absence of final state

25 100 10 Roulette
Wheel

Single
point, 0.75

Flip, 0.02 Binary GPSMA is a better method for test data
generation and it uses the excellent rate of
production to interact between sub
populations.

 15 100 20 Roulette
wheel

Two point, -, 0.25 Integer US-RDG generate good test cases for web
application.

 26 100 200 Rank
selection

Single
point, 0.6

-, 0.01 Binary MOGA produced superior failure detection
performance than GA.

(Ps-Population Size, NOI-Number of Iteration, Sm-Selection method, Cr-Cross over rate, Cm-Cross over method, Mr-Mutation rate, Mm-Mutation
method, Em- Encoding method)

https://doi.org/10.1109/ase.1997.632858
https://doi.org/10.1109/icsea.2007.70
https://doi.org/10.1109/HICSS.2005.296
https://doi.org/10.1109/icrito.2015.7359319

Deepti Bala Mishra, Saurabh Bilgaiyan, Rajashree Mishra, Arup Abhinna Acharya and Samaresh Mishra

Vol 10 (30) | August 2017 | www.indjst.org Indian Journal of Science and Technology 7

12.	 Ahmed MA, Ali F. Multiple-path testing for cross site
scripting using genetic algorithms. Journal of Systems Ar-
chitecture. 2016 March 31; 64:50–62. Crossref

13.	 Yang S, Man T, Xu J, Zeng F, Li K. RGA: A lightweight and
effective regeneration genetic algorithm for coverage-ori-
ented software test data generation. Information and Soft-
ware Technology. 2016 August 31; 76: 19–30. Crossref

14.	 Last M, Eyal S. A fuzzy-based lifetime extension of genetic
algorithms. Fuzzy sets and systems. 2005 January 1; 149(1):
131–47. Crossref

15.	 Peng X, Lu L. A new approach for session-based test case
generation by GA. 2011 IEEE 3rd International Confer-
ence on Communication Software and Networks (ICCSN),
IEEE. 2011 May 27; p. 91–96. Crossref

16.	 Pinto GH, Vergilio SR. A multi-objective genetic algorithm
to test data generation. 2010 22nd IEEE International Con-
ference on Tools with Artificial Intelligence IEEE. 2010 Oc-
tober 27; 1: 129–34. Crossref

17.	 Ribeiro JC, Zenha-Rela MA, de Vega FF. Test case evalu-
ation and input domain reduction strategies for the evo-
lutionary testing of object-oriented software. Information
and Software Technology. 2009 November 30; 51(11):
1534–48. Crossref

18.	 Goldberg DE. Genetic algorithms. Pearson Education In-
dia. 2006.

19.	 Wappler S, Lammermann F. Using evolutionary algorithms
for the unit testing of object-oriented software. Proceedings

of the 7th annual conference on Genetic and evolutionary
computation ACM. 2005 June 25; p. 1053–60. Crossref

20.	 Emanuelle F, Menezes R, Braga M. Using Genetic algo-
rithms for test plans for functional testing. 44th ACM SE
proceeding. 2006; p. 140–5.

21.	 Mathur AP. Foundations of Software Testing, 2/e. Pearson
Education India; 2008.

22.	 Rauf A, Anwar S, Jaffer MA, Shahid AA. Automated GUI
test coverage analysis using GA. 2010 Seventh International
Conference on IEEE Information Technology: New Gener-
ations (ITNG). 2010 April 12; p. 1057–62. Crossref

23.	 Andalib A, Babamir SM. A new approach for test case gen-
eration by discrete particle swarm optimization algorithm.
2014 22nd Iranian Conference on Electrical Engineering
(ICEE) IEEE. 2014 May 20; p. 1180–85. Crossref

24.	 Zhao R, Lv S. Neural-network based test cases generation
using genetic algorithm. 13th Pacific Rim International
Symposium on IEEE Dependable Computing, 2007. PRDC
2007. 2007 December 17; p. 97–100. Crossref

25.	 Li K, Zhang Z, Kou J. Breeding software test data with ge-
netic-particle swarm mixed algorithm. Journal of comput-
ers. 2010 January 2; 5(2): 258–65. Crossref

26.	 Shahbazi A, Miller J. Black-Box String Test Case Generation
through a Multi-Objective Optimization. IEEE Transac-
tions on Software Engineering. 2016 April 1; 42(4): 361–78.
Crossref

https://doi.org/10.1016/j.sysarc.2015.11.001
https://doi.org/10.1016/j.infsof.2016.04.013
https://doi.org/10.1016/j.fss.2004.07.011
https://doi.org/10.1109/iccsn.2011.6014682
https://doi.org/10.1109/ictai.2010.26
https://doi.org/10.1016/j.infsof.2009.06.009
https://doi.org/10.1145/1068009.1068187
https://doi.org/10.1109/itng.2010.95
https://doi.org/10.1109/iraniancee.2014.6999714
https://doi.org/10.1109/prdc.2007.63
https://doi.org/10.4304/jcp.5.2.258-265
https://doi.org/10.1109/TSE.2015.2487958

