
*Author for correspondence

Indian Journal of Science and Technology, Vol 10(3), DOI: 10.17485/ijst/2017/v10i3/84939, January 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Single and Multiple Pattern String Matching
Algorithm

Chinta Someswara Rao1* and K. Butchi Raju2

1Department of CSE, S R K R Engineering College, Bhimavaram, W.G. District - 534 204, A.P. India;
chinta. someswararao@gmail.com

2Department of CSE, GRIET, Hyderabad - 500090, Telangana, India; butchiraju.katari@gmail.co

Abstract
Background/Objectives: Information Retrieval Systems (IRS) are playing an eminent role in different applications like
World Wide Web, DNA sequence retrieval, etc. Basically, the IRS systems use the string matching algorithms. Methods/
Statistical Analysis: Since IRS uses string matching algorithms. If string matching algorithms quality is improved then
automatically information retrieval system will achieve the most relevant results. For this retrieval purpose in this paper,
single pattern and multiple pattern string matching algorithms are proposed. Findings: To assess the efficiency of the
proposed single pattern and multiple pattern string matching algorithm in this paper, DNA sequences of different monkeys
datasets called Saimiri boliviensis (2.46 Gb), Pan paniscus (2.71 Gb), Macaca nemestrina (2.78 Gb), Colobus angolensis
palliates(2.8 Gb), Tarsius syrichta (3.31 Gb) are considered and different tetra patterns TAGA, TCTG are searched in this
data sets. From the experimental results, it is observed that proposed single pattern and multiple pattern string matching
algorithms outperforms compared to other well-known string matching algorithms. Application/Improvements: It is
also observed that multiple pattern string matching algorithm reduces search time and unnecessary comparisons when
compared to single pattern string matching and other existing string matching algorithms. These proposed algorithms
very useful when we searching about the multiple patterns.

Keywords: DNA Sequence, Information Retrieval Systems (IRS), Multiple Patterns, String Matching, Single Pattern

1. Introduction

String matching is the process of searching for the occur-
rence of a specified pattern in a given text. It is one of
the important aspects of many applications as said in the
abstract. It is divided into single pattern and multiple pat-
terns1-9 groups.

Single pattern further divided into suffix, prefix and
substring matching algorithms. The first string matching
algorithm is presented in10, which searches the single pat-
tern. In this first character of the pattern is compared with
the text, if complete match occurs then one position is
shifted to right, if mismatch occurs at any place then also
the search process is shifted one position to right.

Another algorithm proposed in11, which also searches
the single pattern. In this algorithm first character of the
pattern is compared with the text, if complete match/mis-
match occurs then the shift position is calculated with
shift rule.

Algorithm proposed in12also searches the single
pattern, in which right most character of the pattern is
compared with the text character, if complete match
occurs then the shift is calculated with good suffix rule,
if mismatch occurs at any place then shift position is
calculated with bad character rule. Later many of the
researchers revisited these three algorithms and variants
are proposed and still research is continued in this single
pattern area.

mailto:chinta.someswararao@g
mailto:rama.prasanna2@gmail.co

Indian Journal of Science and TechnologyVol 10 (3) | January 2017 | www.indjst.org 2

Single and Multiple Pattern String Matching Algorithm

Another group of the string matching is multiple pat-
terns, in which multiple patterns are searched instead
of single pattern. Algorithm proposed in13 is some other
string matching algorithm which is one of the variants of
the string matching algorithm presented in11, which con-
sists of two portions. In the first portion, the finite state
machine is constructed with set of possible words, where
as in the second portion the text is applied to pattern state
machine.

Algorithm proposed in14, which is another multiple
pattern string matching algorithm which is the combi-
nation of algorithms in12 and in13. It has pre processing
and searching phases. In pre-processing, the finite state
machine is constructed with algorithm in13 whereas in
searching, the search process presented in12 is used to
search the pattern. If mismatch/complete match occurs
then the shift position is calculated with shift table which
is calculated with BM bad character and good suffix rules.

Algorithm presented in15 is one of the variants of the
algorithm presented in12. It also consists of pre-processing
and search processes. In pre-processing, SHIFT, PREFIX
and HASH tables are constructed. In search process, the
right most character of the pattern is compared with the
character of the text, if complete match/mismatch occurs
then the shift position is calculated with SHIFT, PREFIX
and HASH table values.

Algorithm presented in16 is one of the variants of algo-
rithm presented in10. This algorithm first calculates the
hash values of both the windows of pattern and text, and
these values are compared, if they are equal then compar-
ison is performed as like in6, if the values are not equal
then it calculates the hash values for next window.

2. Methodology

The methodology of the proposed approach is divided
into four phases namely input, divide, process and out-
put as shown in Figure 1. In input phase, the input file,
pattern file and processor count is accepted. In divide
phase, the input file is divided into number of sub
files based on the target processors count, and the sub
files are distributed among the target processors along
with the pattern. In process phase, the actual search
process is performed with the single and multiple pat-
tern string matching algorithms. In output phase, the
occurrence count, line number and occurrence posi-
tion is returned.

Algorithm 1: String Matching Algorithm
Process

/* Input */
1. Text file of size n,
2. Pattern file of size m and
3. Number of processors (p) available.
/* Divide */
4. Undergo text file divided into ‘ i ‘ number of

subtexts, each i contains (n/p)+m-1 text characters.
5. The divided sub text files are stored in a directory.
6. Broadcast these sub text files to each processor in

the network along with the pattern.
/* process */
7. for i←0 to sub_text file.length do
8. begin
9. Each Processor searches the pattern string in the

given Sub text file using the single(Algorithm 2)or
multiple(Algorithm 3) string matching algorithms

10. Each processor stores the match count and
occurrence position

11. end for;
/*Output */
12. Number of occurrences and occurrence position

Figure 1. System structure.

Algorithm 2: Single Pattern String Matching
Algorithm

/*Input*/

1. Text (T), Pattern(P)

/*Initialization:*/

2. count=0, position=0, i=0, n=length of the text,

3. T=” ”,P=” ”, StringBuffer sb=null

4. /* Main Method */

5. void main()

Chinta Someswara Rao and K. Butchi Raju

Indian Journal of Science and Technology 3Vol 10 (3) | January 2017 | www.indjst.org

6. begin

7. File.Open()

8. while ((Line = File.readLine()) != null)

9. sb.append(Line);

10. search(sb,pattern);

11, end;

/* Search function */

12. void search(StringBuffer sb,char[] pattern)

13. begin

14. T= sb.toCharArray();

15. P=pattern.toCharArray();

16. n=T.length(),m=P.length();

17. initial_check=0;

18. for iß0 to n-1

19. begin

20. if (initial_check==0)

21. i=shift(i,P);

22. int j = m-1;

23. while(j >= 0 && P[j] == T[i+j])

24. j--;

25. if (j < 0)

26. begin

27. initial_check=1;

28. count++;

29. print the occurrence position

30. i=shift(i,P);

31. end

32. else

33. i=shift(i,P);

34. end for;

35. end;

/* shift function */

36. int shift(int i, char[] Pattern)

37. begin

38. while ((Text[i]!=Pattern[0]) && (i<=n)))

39. i++;

40. return i;

41. end;

/*Output*/

42. The number of occurrences and position of the
pattern

Algorithm 3: Multiple Pattern String Matching
Algorithm

/* Input */
1. Text (T), Pattern_Set
/*Initialization:*/
2. count=0, position=0, i=0, n=T.length,

Pattern_Set={ Set of Patterns }
3. T=” ”,P=” ”, StringBuffer sb=null
/* Main Method */
4. void main()
5. begin
6. Pattern_Set.Open()
7. while ((pattern = Pattern_Set.

readPattern()) != null)
8. begin
9. /* Group the Patterns with Left

Most Character and length;*/
groupi.add(pattern);

10. end;
11. File.Open()
12. while ((Line = File.readLine()) !=

null)
13. sb.append(Line);
14. while ((pattern=groupi.read())

!=null)
15. begin
16. search(sb, pattern);
17. i++;
18. end;
19. end;
/* Output */
20. The number of occurrences and positions

of the patterns

Note: The search and shift functions will be used in the
Algorithm 3 as in those of Algorithm 2.

3. Data Set

In general a monkey chromosome contains 10 (TAGA,
TCAT, GAAT, AGAT, AGAA, GATA, TATC, CTTT, TCTG
and TCTA) Complex DNA Index Structures (CODIS),
here these 10 CODIS are considered as search patterns.

To assess the efficiency of the proposed string matching
algorithms, all the chromosomes of Saimiri boliviensis (2.46
Gb), Pan paniscus (2.71 Gb), Macaca nemestrina (2.78 Gb),
Colobus angolensis palliates(2.8 Gb), Tarsius syrichta (3.31
Gb) and Saimiri boliviensis (2.46 Gb) are considered as data
sets17. The proposed and AC, CW, WM and RK string match-
ing algorithms are implemented in JAVA on WINDOWS
8.1 Operating System with 4 GB of RAM. The experimental

Indian Journal of Science and TechnologyVol 10 (3) | January 2017 | www.indjst.org 4

Single and Multiple Pattern String Matching Algorithm

Table 1. Single pattern, multiple pattern and existing string matching algorithms search results for all datasets
AC CW WM RK Proposed

Single
pattern

Proposed
Multiple
pattern

Saimiri boliviensis (2.46Gb) 909435 886314 865080 843869 820746 400534
Pan paniscus (2.71Gb) 1030662 1009430 988199 965078 942957 461745
Macaca nemestrina (2.78Gb) 1075516 1054284 1033071 1010950 987829 493868
Colobus angolensis palliates(2.8Gb) 1080144 1057022 1033901 1012690 989545 494868
Tarsius syrichta (3.31Gb) 1157898 1136666 1115435 1092311 1068188 534067

0
200000
400000
600000
800000

1000000

AC CW WM RK Proposed
Single

Pattern

Proposed
Multiple
Pattern

Pr
oc

es
sin

g
T

im
e(

m
s)

String Matching Algorithms

Search Time Results for Saimiri boliviensis (2.46 Gb) Data Set

Figure 2. Search Time Results for Saimiri boliviensis (2.46
Gb) Dataset.

0
200000
400000
600000
800000

1000000
1200000

AC CW WM RK Proposed
Single

Pattern

Proposed
Multiple
Pattern

Pr
oc

es
sin

g
T

im
e(

m
s)

String Matching Algorithms

Search Time Results for Pan paniscus (2.71 Gb) Data Set

Figure 3. Search Time Results for Pan paniscus (2.71 Gb)
Dataset.

0
200000
400000
600000
800000

1000000
1200000

AC CW WM RK Proposed
Single

Pattern

Proposed
Multiple
Pattern

Pr
oc

es
sin

g
T

im
e(

m
s)

String Matching Algorithms

Search Time Results for Macaca nemestrina (2.78 Gb) Data Set

Figure 4. Search Time Results for Macaca nemestrina (2.78
Gb) Dataset.

0
200000
400000
600000
800000

1000000
1200000

AC CW WM RK Proposed
Single

Pattern

Proposed
Multiple
Pattern

Pr
oc

es
sin

g
T

im
e(

m
s)

String Matching Algorithms

Search Time Results for Colobus angolensis palliates(2.8 Gb)
Data Set

Figure 5. Search Time Results for Colobus angolensis
palliates(2.8 Gb) Dataset.

0
200000
400000
600000
800000

1000000
1200000
1400000

AC CW WM RK Proposed
Single

Pattern

Proposed
Multiple
Pattern

Pr
oc

es
si

ng
 T

im
e(

m
s)

String Matching Algorithms

Search Time Results for Tarsius syrichta (3.31Gb) Data Set

Figure 6. Search Time Results for Tarsius syrichta (3.31Gb)
Dataset.

results are shown in Table 1. From these results, graphs are
drawn and shown in Figure 2, 3, 4, 5 and 6.

From the Figures 2,3,4,5 and 6, the following observa-
tions can be made:

•	 From the Figure 2 it can be observed that, the pro-
posed multiple pattern string matching algorithms
takes 400534 ms to search the Saimiri boliviensis
data set of size 2.46 Gb, whereas AC algorithm takes
909435 ms for the same data set which is double the
search time when compared to proposed multiple pat-
tern string matching algorithm.

•	 From the Figure 3 it can be observed that, the proposed
single pattern string matching algorithm reduces the search

Chinta Someswara Rao and K. Butchi Raju

Indian Journal of Science and Technology 5Vol 10 (3) | January 2017 | www.indjst.org

time 87705 ms than AC algorithm, 66473 ms than CW
algorithm, 45242 ms than WM algorithm, 22121 ms than
RK algorithm for Pan paniscus dataset of size 2.71 Gb.

•	 From Figures 4, 5 and 6, it can be observed that, the
proposed multiple pattern string matching algorithm
takes maximum search time 534067 ms to search the
Tarsius syrichta data set of size 3.31 Gb, because it is the
largest data set, whereas other algorithms also require
maximum search time for this same data set on the
other hand with the proposed multiple pattern string
matching algorithm the search time is reduced to half
of those of the existing algorithms.

3.1 Parallel Search Times of Single,
Multiple and Existing String Matching
Algorithms

In Algorithm 1, we discussed about the parallel processing,
since it has four phases, input, divide, process and output. For
example, we consider eight processors in the network, from
algorithm 1, the input text file is taken, and divided into eight
parts (, where p is the number (8) of processors),
and distribute among the processors along with the pattern.
The search process is performed by processors, and later the
output is returned. To assess the efficiency of the proposed
single, multiple and existing string matching algorithms,
all the chromosomes of Saimiri boliviensis (2.46 Gb), Pan
paniscus (2.71Gb), Macaca nemestrina (2.78 Gb), Colobus
angolensis palliates (2.8 Gb) and Tarsius syrichta (3.31 Gb) are
considered as data sets and executed in the parallel processing
environment. The experimental results are shown in Table 2.
From these results the graph is drawn as shown in Figure 7.

0

20000

40000

60000

80000

100000

120000

140000

160000

Sa
im

ir
i b

ol
iv

ie
ns

is
 (2

.4
6G

b)

Pa
n

pa
ni

sc
us

 (2
.7

1G
b)

M
ac

ac
a

ne
m

es
tr

in
a

(2
.7

8G
b)

C
ol

ob
us

 a
ng

ol
en

si
s p

al
lia

te
s(

2.
8G

b)

T
ar

si
us

 sy
ri

ch
ta

 (3
.3

1G
b)

Pr
oc

es
si

ng
 T

im
e(

m
s)

Data Sets of Different Size

Paralell Processing Search Times of Single, Multiple and Existing
String matching algorihtms

AC

CW

WM

RK

Proposed Single Pattern

Proposed Multiple Pattern

Figure 7. Parallel Processing Search Times of Single,
Multiple and Existing String matching Algorithms.

From the Figure 7, it is noticed that the pro-
posed multiple string matching algorithm executed
under parallel processing the search time is reduced
by seven times that of sequential processing. The
search times of the single and existing algorithms are
also reduced as like the proposed multiple pattern
algorithms.

From Figures 2, 3, 4, 5, 6 and 7, it is concluded that the
proposed single and multiple string matching algorithms
reduced the search times than those of the existing string
matching algorithms in both sequential and parallel pro-
cessing.

Table 2. Parallel processing search times of single, multiple and existing string matching algorithms
Saimiri

boliviensis
(2.46Gb)

Pan paniscus
(2.71Gb)

Macaca
nemestrina

(2.78Gb)

Colobus
angolensis

palliates(2.8Gb)

Tarsius syrichta
(3.31Gb)

AC 116594 132136 143402 142124 144737

CW 112334 131455 133826 132310 142439

WM 108135 125120 132956 131372 139621

RK 105484 120801 126385 128221 140238

Proposed Single Pattern 102595 117870 123494 123755 135248

Proposed Multiple Pattern 50067 57725 61803 62547 67604

Indian Journal of Science and TechnologyVol 10 (3) | January 2017 | www.indjst.org 6

Single and Multiple Pattern String Matching Algorithm

6. Rao CS, Raju SV. Next Generation Sequencing (NGS)
database for tandem repeats with multiple pattern 2°-shaft
multicore string matching. Genomics Data. 2016:307-17.

7. Rao CS, Raju SV. Similarity analysis between chromosomes
of Homo sapiens and monkeys with correlation coefficient,
rank correlation coefficient and cosine similarity measures.
Genomics Data. 2016:202-9.

8. Rao CS, Balakrishna A, Raju MB, Raju SV. A frame work
for XML ontology to STEP-PDM from express entities: A
string matching approach. Annals of Data Science. 2016
Dec 1; 3(4):469-507.

9. Rao CS, Raju SV. Concurrent Information Retrieval System
(IRS) for large volume of data with multiple patterns mul-
tiple (2N) shaft parallel string matching. Annals of Data
Science. 2016:1-29.

10. Aho A, Alfred V, John E, Hopcroft H. Design and Analysis
of Computer Algorithms, Pearson Education India; 1974.
p.470.

11. Knuth D, James H, Morris Jr, Pratt V. Fast pattern matching
in strings. SIAM Journal on Computing. 1977; 6(2):323-50.

12. Boyer RS, Moore JS. A fast string searching algorithm.
Association of Computing Machinary. 1977; 20(10):
262–72.

13. Aho AV, Corasick MJ. Efficient string matching: An aid to
bibliographic search. Communications of the ACM. 1975
Jun 1; 18(6):333-40.

14. Commentz-Walter B. A string matching algorithm fast on
the average. Berlin Heidelberg: Springer; 1979. p. 118-32.

15. Wu W, Sun S, Manber U. A fast algorithm for multi-pattern
searching. 1994. p. 1-11.

16. Karp RM, Rabin MO. Efficient randomized pattern-match-
ing algorithms. IBM Journal of Research and Development.
1987 Mar; 31(2):249-60.

17. Nuclei Acid Research. 2016. Available from: http://www.
ncbi.nlm.nih.gov

4. Conclusions

The proposed single and multiple pattern string matching
algorithms are executed with DNA genome data sets. The
experimental results have shown that the single pattern
string matching algorithm reduced the search time when
compared with existing string matching algorithms.
Whereas, the multiple string matching algorithms out-
perform in terms of search time as compared to proposed
single pattern and existing string matching algorithms.

5. References
1. Verma A, Kaur I, Singh I. Comparative analysis of data

mining tools and techniques for information retrieval.
Indian Journal of Science and Technology. 2016 Mar; 9(11).
Doi no:10.17485/ijst/2016/v9i11/81658

2. Singhal S, Amit A. Modern information retrieval: A brief
overview. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering. 2001:35-43.

3. Meenakshi A, Suganthi P, Aghila R, Nirmala S. Information
retrieval using dynamic decision Quadtree in soil database.
Indian Journal of Science and Technology. 2016 Mar; 9(10).
Doi no:10.17485/ijst/2016/v9i10/87954

4. Pavani T, Das RP, Naga Jyothi A, Sampath Dakshina
Murthy A. Investigations on array pattern synthesis
using nature inspired metaheuristic algorithms. Indian
Journal of Science and Technology. 2016 Jan; 9(2).
Doi no:10.17485/ijst/2016/v9i2/80642

5. Radhakrishnan S, Neduncheliyan S, Thyagharajan KK.
A review of downlink packet scheduling algorithms
for real time traffic in LTE-advanced networks. Indian
Journal of Science and Technology. 2016 Jan; 9(4).
Doi no:10.17485/ijst/2016/v9i4/84061

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

