
Abstract
Objectives: To design an 8-bit RISC microcontroller in VHDL and implement it on an FPGA, taking as a reference the 
mid-range microcontroller core of Microchip 16FXXX. Methods/Analysis: This microcontroller has been designed us-
ing modular blocks and correspond Harvard-type architecture. It has a stack of eight levels and an Arithmetic Logic Unit 
(ALU) for operations with 8-bit data and bit-oriented instructions. Also, it has a program memory of 8Kx14-bit and a data 
memory of 512x8-bit. The number of storage locations of these memory modules is easily scalable and/or modified as 
needed by the designer due to high abstraction level which has been used in its description. Similarly, the other blocks (as 
well as the microcontroller in general) are easily modified, providing a modular system resulting in excellent versatility to 
be adapted to be additional modules including: input and output ports, timers, blocks for communication among others. 
Findings: The proposed device has an instruction OPCODE correspondent to PIC16FXX processor core, so the system can 
be programmed with the same machine language. It also presents a high support for compilers such as MPASM (Microchip 
Assembler) and CCS PIC-C (C language). The compatibility with the C compiler is quite interesting, making easy the devel-
opment of large-scale digital designs, thanks to the existence of extensive libraries in this programming language. Novelty/
Improvements: The system provides the enough user support. A document was generated with all data and instructions 
that the designer needs to take into account for executing or modifying the microcontroller design. This support, along 
with the open source firmware, was published on the Internet, so that communities can access it, adopt it and/or modify it.
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1.  Introduction
Generally, in digital designs, there are different design 
methods, mainly such as the ones that use sequential and 
parallel systems features1,2. A system based on simulta-
neous functional features or of parallel type, implies an 
increment in the amount of hardware used but an impres-
sive performance in the processing speed; as there is an 
increment in the hardware use, a final block is obtained 
with a higher economic spending3,4. A microcontroller 
implemented on a FPGA and not made directly as ASIC, 
carries low cost, due to it is possible to take advantage of 
the FPGA as development platform or as part of the final 
prototype. On an ASIC, making a prototype must do in 
mass and the final result is irreversible; also, its flexibility 
is low as to the amount and peripheric availability.

Microcontrollers are totally sequential devices, but 
at the same time they offer low resource spending, lower 
design and development time than the prototypes based 
on program able logic devices; which is better for appli-
cations where the flow control is irregular. Also, the use 
of FPGA offers the option of including integrated system 
that combines microcontrollers and additional hardware 
for concurrent working2-5.

The use of microcontrollers in FPGA-based designs, 
guaranties the optimization in fast systems which need 
to attend low speed tasks such as slow communication 
channel reading, keyboards, displays and peripheric 
management6,7.

Nowadays there are some works about processors 
design, mainly the ones that have a didactic focus8-11. 

On the other hand, there are some microprocessor core 
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versions published on internet12-21. Few of those VHDL and 
Verilog designs have been done keeping correlation with 
Microchip PIC microcontrollers18-21. However, there are 
interesting proposals that try to establish compatibility, but 
have some testing errors. An example is the design named 
risc16f8418 a microcontroller described on Verilog and 
published inwww.opencores.org, which has not the enough 
support by the author to debug the proposed system.

The idea of this project was born when working with 
C compilers16,17 for Microchip microcontrollers (specifi-
cally CCS Pic C Compiler®), and used them to program 
core microcontrollers implemented on FPGAs. That is 
why a microcontroller with the most of features of a PIC 
microcontroller of the16fXXX family is wanted to do, to 
be used on a FPGA.

2. Architecture
It is important to notice, that in order to imitate the 
architecture and the features of the core of PIC16FXXX, 
a correspondent analysis was done to understand its 
working just having as a reference the datasheet of this 
microcontrollers. Although the concept diagram of the 
designed device is not the same, it is possible to notice 
a lot of similarities with PIC microcontrollers. Figure 1 
shows the block diagram of all the implemented system.

Harvard architecture was defined for the microcon-
troller design22-24, after each module was described, starting 
by the ALU, following by the registers, RAM, ROM and 
finishing with the Control Unit. Unidirectional buses were 

used in the inner data flow, which produce a structure with 
high working speed and low resource consume cost.

The program counter is implicit in the data memory 
then que the registers that can be affected by this mod-
ule do it immediately, likewise other specific purpose 
registers are located within the RAM as: FSR, STATUS, 
PORTA, PORTB and the availability to refer new periph-
erals or additional modules.

It has two non-configurable ports by means of the 
assembler or C programming, but modifiable from the 
VHDL description: by default, the device initially has the 
only input port A (PORTA) and the only output port B 
(PORTB). 

2.1  The ALU
The Arithmetic-Logic Unit was the first designed block. 
It works doing 8-bit and bit-oriented operations between 
the accumulator register W and another data that can 
come from of RAM or the instruction register. It has a 
carry (c) input for arithmetic and rotating operations, a 
4-bit selector for the ALU to decode 18 operations; output 
flags: carry (c), digit carry (dc) and zero (z), which go to 
the STATUS register.

2.2  Accumulator W
The accumulator register (Working Register) is a block 
which loads the8-bitdata from the ALU output and hold 
them for in the next clock cycle of the same ALU operates 
that data with a new one from the RAM or the IR.

2.3  Data Multiplexer
It is a combinational circuit that selects one of two pos-
sible inputs according to a selection input bit. It selects 
between data from the IR or the RAM and gives the result 
to the ALU. 

2.4  Instructions Register
It is a register like the Accumulator, but it is a 14-bit reg-
ister. It receives the instructions from the ROM and hold 
them to be used by different blocks as the data multi-
plexer MUX, the address multiplexer ADDR MUX, the 
ALU and the Control Unit.

2.5  Address Multiplexer
The ADDR MUX selects if a direct or indirect address-
ing will be done to the data memory. If the addressing is 

Figure 1.  Block diagram of the designed SoftCore 
microcontroller. 
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direct, 7 bits from the OPCODE (Operation code) given 
by the IR are taken and concatenated with RP1 and RP0 
(bits number 6 and 5 respectively of the STATUS regis-
ter) in order to give an address of 9 bits for the RAM. If 
on the contrary, the addressing is indirect, 8-bitfrom the 
FSR register are taken and concatenated with IRP (bit 
number 7 of the STATUS register) for giving 9-bits to 
the RAM.

2.6  ROM
The program memory is ad only memory, but it cannot 
be implemented as Flash memory, due to the inability 
of the FPGA to support non-volatile memory systems. 
Wherever, in the ROM 14-bit instruction codes are 
loaded, these correspond to the instructions of the 
machine language. The memory is of 8K words like the 
one of the PIC 16F877 and can be scalable it means its 
storage capacity can be increased or decreased modifying 
the VHDL description of the block, reaching the desired 
storage capacity by the designer.

2.7  RAM
The data memory is of 512 scalable positions, with a data 
width of 8 bits. Exactly 7 memory positions are reserved 
for Specific Purpose Registers (SPRs) and the rest can be 
used as general purpose storage positions. The specific 
purpose registers keep their original positions in order 
to be keeping the comb ability even if new modules are 
included to the microcontroller design. The RAM is a 
block that contains integrated the program counter along 
with the rest of the Specific Purpose Registers (SPRs). In 
fact, the program counter being a 13-bitregister is com-
posed by two 8-bit registers located within the RAM. The 
chosen method to describe all the integrated memory 
system, guaranteed update the data in the SPR registers 
immediately. As shown in Figure 2 the described RAM is 
composed by additional outputs and inputs, correspon-
dent to the registers and the PC.

It has control inputs (PC_control) and PC data when 
executing a CALL or GOTO instructions (PC_in) also of 
the STACK input. The ALU_flags and ALU_loads mod-
ify the STATUS register and the PORTA_inis the input 
peripheral of the microcontroller. Therefore, PORTB is 
the output port. PC_OUT, STATUS_OUT and FSR_OUT 
has independent outputs, and the rest of block is a regular 
RAM with clock input, data input, addressing, and data 
output.

Figure 2.  VHDL block of the RAM. 

When a device like the PIC 16F84 is implemented 
using the proposed design, the memory capacity is lim-
ited to just 256 bytes that is not even the half of the total 
capacity, but it is possible to scale to a device like the PIC 
16F877 that has implemented 512bytes and thus to take 
advantage of the data memory capacity. The data memory 
organization is shown in Figure 3.

The non-assigned registers are available for the 
addition of new modules by the designer, thanks to the 
high abstraction level of the description of this module, 
and thus to keep the programming compatibility with 
Assembler and C languages. Following each register is 
described.

•	 IND: The register 00h (IND) in the same way as a PIC 
microcontroller is a reference register to call the FSR 
register and do indirect addressing. 

•	 PCL: Keeps the8 least significant bits of the program 
counter.

•	 PCLATH: stores the remaining 5 most significant bits 
of the program counter.

•	 STATUS: contains the state of the ALU flags and the 
configuration bits of direct and indirect addressing. 
Thus, the bit number 7 of the STATUS, is IRP, bit used 
in indirect addressing; the bit number 6 and 5, RP1 
and RP0 respectively are used in direct addressing; 
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Figure 3.  RAM memory organization based on 
PIC16F84A25. 

the bit 2 corresponds to the Z flag of the ALU; the bit 
1 corresponds to DC of the ALU and the bit 0 is the 
carry flag of the ALU. The bit number 4 and 3 are not 
used.

•	 PORTA: Is the register in charge of storing data of the 
port, for this case (initial setup) is only input.

•	 PORTB: Is the register in charge of managing data of 
the output port of the microcontroller (initial setup).

2.8  Stack
The STACK of the program counter is basically a RAM 
memory of type LIFO (Last In First Out) of 8 positions, 
for 13-bit data. It stores the value of the program counter 
when a subroutine is called by means of the instruction 
CALL and it is red with the instructions RETURN or 
RETLW. 

2.9  Control Unit
The Control Unit is a big Finite State Machine (FSM) 
that decodes the 14-bit operation code. It controls all 
the blocks of the system in order to execute the micro-
instructions of each instruction. The Figure 4 shows the 
state diagram of the Control Unit.

2.10  Instructions Set
This system implements a RISC architecture type [15] 
because it has a reduced number of instructions. Of 
the total of 35 instructions, 3 are not implemented yet. 
The microcontroller accepts the same instructions set 
of the PIC16fXXX microcontrollers family [17], but it 

Figure 4.  State diagram of the control unit.

does not execute the same action with the instructions: 
CLRWDT, RETFIE and SLEEP. Due to the absence of 
blocks dedicated to these instructions, the device does 
a “not operation” instruction instead, it means, that 
these instructions are equivalent to the instruction NOP. 
Following in the Table 1, the accepted instructions by the 
Soft-core microcontroller are described.

3.  Results
According to the state sequence (Figure 4) for the instruc-
tions execution, it is possible to notice that the number 
of micro-instructions in each cycle is 4 in the most of 
instructions, except in the jump ones which executes 
8 states, an equivalent to two work cycles. The most of 
instructions are executed in 3 states and executes a fourth 
one where no operation are done; this was done in that 
way in order to keep the times and being totally compat-
ible with PIC microcontrollers, specifically with the CPU 
of the 16fXXX family. Then there is ease in the calculus of 
the delay times and in the general processing.

Finding in this project the expected compatibility 
both in the processing times and in the structure, it is pos-
sible to do applications that use integrated development 
environments. One of these is CCS PIC-C which is quite 
versatile thanks to the huge amount of libraries for the 
managing of external peripherals. These libraries reduce 
the development time to the designers.

After the VHDL description of each module, these are 
integrated and interconnected in order to form the final 
core of the microcontroller (Figure 5). After that, it was 
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Table 1.  Instructions set of the softcore microcontroller, based on PIC16F84A25.

Instruction Syntax Data type Operation Affected Flags

ADDLW k O<=k<=255 (W) + k -> (W) C, DC, Z

ADDWF f,d 0<=f<=127; d[0,1] (W) + (f) -> (destination) C, DC, Z

ANDLW k O<=k<=255 (W) AND (k) -> (W) Z

ANDWF f,d 0<=f<=127; d[0,1] (W) AND (f) -> (destination) Z

BCF f,b 0<=f<=127; 0<=b<=7 0 -> (f<b>)

BSF f,b 0<=f<=127; 0<=b<=7 1 -> (f<b>)

BTFSS f,b 0<=f<=127; 0<=b<=7 PC += 2, if (f<b>)==1

BTFSC f,b 0<=f<=127; 0<=b<=7 PC += 2, if (f<b>)==0

CALL k O<=k<=2047 (PC) + 1 ->TOS;k -> (PC<10:O>); (PCLATH<4:3>) -> PC<12:11>

CLRF f 0<=f<=127 00h -> (f);1 -> Z Z

CLRW 00h -> (W);1 -> Z Z

CLRWDT Not operation

COMF f,d 0<=f<=127; d[0,1] NOT(f) -> (destination) Z

DECF f,d 0<=f<=127; d[0,1] (f) - 1 -> (destination) Z

DECFSZ f,d 0<=f<=127; d[0,1] (f) - 1 -> (destination);  pc += 2, if result == 0

GOTO k O<=k<=2047 k -> PC<10:O>;  PCLATH<4:3> -> PC<12:11>

INCF f,d 0<=f<=127; d[0,1] (f) + 1 -> (destination) Z

INCFSZ f,d 0<=f<=127; d[0,1] (f) + 1 -> (destination); pc += 2, if result == 0

IORLW k O<=k<=255 (W) OR k -> (W) Z

IORWF f,d 0<=f<=127; d[0,1] (W) OR (f) -> (destination) Z

MOVF f,d 0<=f<=127; d[0,1] (f) -> (destination) Z

MOVLW k O<=k<=255 k -> (W)

MOVWF f o sf 5 127 (W) -> (f)

NOP Not operation

RETFIE Not operation

RETLW k O<=k<=255 k -> (W);TOS -> PC

RETURN TOS -> PC

RLF f,d 0<=f<=127; d[0,1] (f<6:0>& (carry)) -> (destination); f<7> -> (carry) C

RRF f,d 0<=f<=127; d[0,1] ((carry) & f<7:1>) -> (destination); f<0> -> (carry) C

SLEEP Not operation

SUBLW k O<=k<=255 k - (W) -> (W) C, DC, Z

SUBWF f,d 0<=f<=127; d[0,1] (f) - (W) -> (destination) C, DC, Z

SWAPF f,d 0<=f<=127; d[0,1] (f<3:0>) -> (destination<7:4>); (f<7:4>) -> (destination<3:0>)

XORLW k O<=k<=255 (W) XOR k -> (W) Z

XORWF f,d 0<=f<=127; d[0,1] (W) XOR (f) -> (destination) Z
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Figure 5.  Main schematic of the microcontroller (left) 
integrated with a peripheral output device (right).

Figure 6.  Report of used resources (only 1 block of RAM 
was used). 

implemented in software using a FPGA of the Spartan 
3AN family, specifically XC3S700AN. The following 
features were reached according to the report of Xilinx 
ISE ver. 12.1, software: 1% of Flip Flops (148 of 11776), 
13% of Slices (790 of 5888), 5% of RAM Blocks (1 of 20), 
Maximum delay: 1070000ns equivalent toa maximum 
work speed for the microcontroller of 900MHz.Figure 6 
shows the graphical report of the used resources within 
the FPGA according with the tool Net list Design Plan 
Ahead 12.1.

4.  Conclusion
There is in this project, without a doubt, an exploita-
tion of the standard architecture that promises a large 

compatibility and the use of robust compilers that includes 
a lot of devices and libraries widely tested and certified. 
Additionally, communities on internet gives support to 
these kind of projects, thanks to the use of open code 
and free distribution of microcontroller design projects. 
Particularly, this project along with all its source code and 
documentation was shared in opencores.org website in 
order to be used or modified by anybody who needs it. 

The design of this type of architecture gives the ver-
satility of managing the memory capacity because the 
dedicated blocks are easily scalable and modifiable from 
the same VHDL description. 

On the other hand, the obtained result spends less 
resource within the FPGA, thanks to an optimization 
done developing combinatory blocks as the ALU, which 
has standard features. Like-wise, as the program memory 
as the data memory of the microcontroller have been 
mapped, in only one RAM block of hardware, predefined 
in the FPGA.

The methodology of this microcontroller guaranties 
a parallel working with another type of microcontrollers 
or hardware modules of the same type, in order to be able 
to use in multitasking mode. This feature plus its reduced 
size, makes it possible to implement a lot of different 
microcontrollers in the same FPGA. According to the 
amount of logic gates of current FPGAs, one design can 
contain even hundreds of these microcontrollers. 

Under no circumstances, the objective of this project 
has been to replace a microcontroller; instead of this, this 
offers to the designer some design advantages of using Soft 
Core microcontrollers (under known and tested architec-
tures), and encourage them to include these devices in 
their FPGA designs.

At an academic level, this project can be reused as tool 
for teaching some of the themes of the basic courses or 
even in advanced levels of subjects related with the dig-
ital design. With this system, the students can reach to 
comprehend of didactic way the behavior of the compu-
tational systems and like-wise include them in their own 
practice designs, taking advantage of FPGA development 
boards, which have well capacities and integrated periph-
erals. In the case of designing prototypes, adapted FPGAs 
can be used, with versatile connection interfaces.
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