
Abstract
Objectives: To design an 8-bit RISC microcontroller in VHDL and implement it on an FPGA, taking as a reference the
mid-range microcontroller core of Microchip 16FXXX. Methods/Analysis: This microcontroller has been designed us-
ing modular blocks and correspond Harvard-type architecture. It has a stack of eight levels and an Arithmetic Logic Unit
(ALU) for operations with 8-bit data and bit-oriented instructions. Also, it has a program memory of 8Kx14-bit and a data
memory of 512x8-bit. The number of storage locations of these memory modules is easily scalable and/or modified as
needed by the designer due to high abstraction level which has been used in its description. Similarly, the other blocks (as
well as the microcontroller in general) are easily modified, providing a modular system resulting in excellent versatility to
be adapted to be additional modules including: input and output ports, timers, blocks for communication among others.
Findings: The proposed device has an instruction OPCODE correspondent to PIC16FXX processor core, so the system can
be programmed with the same machine language. It also presents a high support for compilers such as MPASM (Microchip
Assembler) and CCS PIC-C (C language). The compatibility with the C compiler is quite interesting, making easy the devel-
opment of large-scale digital designs, thanks to the existence of extensive libraries in this programming language. Novelty/
Improvements: The system provides the enough user support. A document was generated with all data and instructions
that the designer needs to take into account for executing or modifying the microcontroller design. This support, along
with the open source firmware, was published on the Internet, so that communities can access it, adopt it and/or modify it.

Implementation of an 8-Bit Softcore Microcontroller
on Xilinx Spartan FPGA Family

Julio Enrique Rodríguez Prieto, Edwar Jacinto Gómez and Fernando Martínez Santa*

Technological Faculty, Universidad Distrital Francisco José de Caldas, Bogotá D.C., Colombia;
juerodriguezp@correo.udistrital.edu.co, ejacintog@udistrital.edu.co, fmartinezs@udistrital.edu.co

Keywords: Embedded Microcontroller, FPGA, Harvard Architecture, SoftCore, VHDL

1.  Introduction
Generally, in digital designs, there are different design
methods, mainly such as the ones that use sequential and
parallel systems features1,2. A system based on simulta-
neous functional features or of parallel type, implies an
increment in the amount of hardware used but an impres-
sive performance in the processing speed; as there is an
increment in the hardware use, a final block is obtained
with a higher economic spending3,4. A microcontroller
implemented on a FPGA and not made directly as ASIC,
carries low cost, due to it is possible to take advantage of
the FPGA as development platform or as part of the final
prototype. On an ASIC, making a prototype must do in
mass and the final result is irreversible; also, its flexibility
is low as to the amount and peripheric availability.

Microcontrollers are totally sequential devices, but
at the same time they offer low resource spending, lower
design and development time than the prototypes based
on program able logic devices; which is better for appli-
cations where the flow control is irregular. Also, the use
of FPGA offers the option of including integrated system
that combines microcontrollers and additional hardware
for concurrent working2-5.

The use of microcontrollers in FPGA-based designs,
guaranties the optimization in fast systems which need
to attend low speed tasks such as slow communication
channel reading, keyboards, displays and peripheric
management6,7.

Nowadays there are some works about processors
design, mainly the ones that have a didactic focus8-11.

On the other hand, there are some microprocessor core

*Author for correspondence

Indian Journal of Science and Technology, Vol 10(22), DOI: 10.17485/ijst/2017/v10i22/114827, June 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Implementation of an 8-Bit Softcore Microcontroller on Xilinx Spartan FPGA Family

Indian Journal of Science and Technology2 Vol 10 (22) | June 2017 | www.indjst.org

versions published on internet12-21. Few of those VHDL and
Verilog designs have been done keeping correlation with
Microchip PIC microcontrollers18-21. However, there are
interesting proposals that try to establish compatibility, but
have some testing errors. An example is the design named
risc16f8418 a microcontroller described on Verilog and
published inwww.opencores.org, which has not the enough
support by the author to debug the proposed system.

The idea of this project was born when working with
C compilers16,17 for Microchip microcontrollers (specifi-
cally CCS Pic C Compiler®), and used them to program
core microcontrollers implemented on FPGAs. That is
why a microcontroller with the most of features of a PIC
microcontroller of the16fXXX family is wanted to do, to
be used on a FPGA.

2. Architecture
It is important to notice, that in order to imitate the
architecture and the features of the core of PIC16FXXX,
a correspondent analysis was done to understand its
working just having as a reference the datasheet of this
microcontrollers. Although the concept diagram of the
designed device is not the same, it is possible to notice
a lot of similarities with PIC microcontrollers. Figure 1
shows the block diagram of all the implemented system.

Harvard architecture was defined for the microcon-
troller design22-24, after each module was described, starting
by the ALU, following by the registers, RAM, ROM and
finishing with the Control Unit. Unidirectional buses were

used in the inner data flow, which produce a structure with
high working speed and low resource consume cost.

The program counter is implicit in the data memory
then que the registers that can be affected by this mod-
ule do it immediately, likewise other specific purpose
registers are located within the RAM as: FSR, STATUS,
PORTA, PORTB and the availability to refer new periph-
erals or additional modules.

It has two non-configurable ports by means of the
assembler or C programming, but modifiable from the
VHDL description: by default, the device initially has the
only input port A (PORTA) and the only output port B
(PORTB).

2.1  The ALU
The Arithmetic-Logic Unit was the first designed block.
It works doing 8-bit and bit-oriented operations between
the accumulator register W and another data that can
come from of RAM or the instruction register. It has a
carry (c) input for arithmetic and rotating operations, a
4-bit selector for the ALU to decode 18 operations; output
flags: carry (c), digit carry (dc) and zero (z), which go to
the STATUS register.

2.2  Accumulator W
The accumulator register (Working Register) is a block
which loads the8-bitdata from the ALU output and hold
them for in the next clock cycle of the same ALU operates
that data with a new one from the RAM or the IR.

2.3  Data Multiplexer
It is a combinational circuit that selects one of two pos-
sible inputs according to a selection input bit. It selects
between data from the IR or the RAM and gives the result
to the ALU.

2.4  Instructions Register
It is a register like the Accumulator, but it is a 14-bit reg-
ister. It receives the instructions from the ROM and hold
them to be used by different blocks as the data multi-
plexer MUX, the address multiplexer ADDR MUX, the
ALU and the Control Unit.

2.5  Address Multiplexer
The ADDR MUX selects if a direct or indirect address-
ing will be done to the data memory. If the addressing is

Figure 1.  Block diagram of the designed SoftCore
microcontroller.

Julio Enrique Rodríguez Prieto, Edwar Jacinto Gómez and Fernando Martínez Santa

Indian Journal of Science and Technology 3Vol 10 (22) | June 2017 | www.indjst.org

direct, 7 bits from the OPCODE (Operation code) given
by the IR are taken and concatenated with RP1 and RP0
(bits number 6 and 5 respectively of the STATUS regis-
ter) in order to give an address of 9 bits for the RAM. If
on the contrary, the addressing is indirect, 8-bitfrom the
FSR register are taken and concatenated with IRP (bit
number 7 of the STATUS register) for giving 9-bits to
the RAM.

2.6  ROM
The program memory is ad only memory, but it cannot
be implemented as Flash memory, due to the inability
of the FPGA to support non-volatile memory systems.
Wherever, in the ROM 14-bit instruction codes are
loaded, these correspond to the instructions of the
machine language. The memory is of 8K words like the
one of the PIC 16F877 and can be scalable it means its
storage capacity can be increased or decreased modifying
the VHDL description of the block, reaching the desired
storage capacity by the designer.

2.7  RAM
The data memory is of 512 scalable positions, with a data
width of 8 bits. Exactly 7 memory positions are reserved
for Specific Purpose Registers (SPRs) and the rest can be
used as general purpose storage positions. The specific
purpose registers keep their original positions in order
to be keeping the comb ability even if new modules are
included to the microcontroller design. The RAM is a
block that contains integrated the program counter along
with the rest of the Specific Purpose Registers (SPRs). In
fact, the program counter being a 13-bitregister is com-
posed by two 8-bit registers located within the RAM. The
chosen method to describe all the integrated memory
system, guaranteed update the data in the SPR registers
immediately. As shown in Figure 2 the described RAM is
composed by additional outputs and inputs, correspon-
dent to the registers and the PC.

It has control inputs (PC_control) and PC data when
executing a CALL or GOTO instructions (PC_in) also of
the STACK input. The ALU_flags and ALU_loads mod-
ify the STATUS register and the PORTA_inis the input
peripheral of the microcontroller. Therefore, PORTB is
the output port. PC_OUT, STATUS_OUT and FSR_OUT
has independent outputs, and the rest of block is a regular
RAM with clock input, data input, addressing, and data
output.

Figure 2.  VHDL block of the RAM.

When a device like the PIC 16F84 is implemented
using the proposed design, the memory capacity is lim-
ited to just 256 bytes that is not even the half of the total
capacity, but it is possible to scale to a device like the PIC
16F877 that has implemented 512bytes and thus to take
advantage of the data memory capacity. The data memory
organization is shown in Figure 3.

The non-assigned registers are available for the
addition of new modules by the designer, thanks to the
high abstraction level of the description of this module,
and thus to keep the programming compatibility with
Assembler and C languages. Following each register is
described.

•	 IND: The register 00h (IND) in the same way as a PIC
microcontroller is a reference register to call the FSR
register and do indirect addressing.

•	 PCL: Keeps the8 least significant bits of the program
counter.

•	 PCLATH: stores the remaining 5 most significant bits
of the program counter.

•	 STATUS: contains the state of the ALU flags and the
configuration bits of direct and indirect addressing.
Thus, the bit number 7 of the STATUS, is IRP, bit used
in indirect addressing; the bit number 6 and 5, RP1
and RP0 respectively are used in direct addressing;

Implementation of an 8-Bit Softcore Microcontroller on Xilinx Spartan FPGA Family

Indian Journal of Science and Technology4 Vol 10 (22) | June 2017 | www.indjst.org

Figure 3.  RAM memory organization based on
PIC16F84A25.

the bit 2 corresponds to the Z flag of the ALU; the bit
1 corresponds to DC of the ALU and the bit 0 is the
carry flag of the ALU. The bit number 4 and 3 are not
used.

•	 PORTA: Is the register in charge of storing data of the
port, for this case (initial setup) is only input.

•	 PORTB: Is the register in charge of managing data of
the output port of the microcontroller (initial setup).

2.8  Stack
The STACK of the program counter is basically a RAM
memory of type LIFO (Last In First Out) of 8 positions,
for 13-bit data. It stores the value of the program counter
when a subroutine is called by means of the instruction
CALL and it is red with the instructions RETURN or
RETLW.

2.9  Control Unit
The Control Unit is a big Finite State Machine (FSM)
that decodes the 14-bit operation code. It controls all
the blocks of the system in order to execute the micro-
instructions of each instruction. The Figure 4 shows the
state diagram of the Control Unit.

2.10  Instructions Set
This system implements a RISC architecture type [15]
because it has a reduced number of instructions. Of
the total of 35 instructions, 3 are not implemented yet.
The microcontroller accepts the same instructions set
of the PIC16fXXX microcontrollers family [17], but it

Figure 4.  State diagram of the control unit.

does not execute the same action with the instructions:
CLRWDT, RETFIE and SLEEP. Due to the absence of
blocks dedicated to these instructions, the device does
a “not operation” instruction instead, it means, that
these instructions are equivalent to the instruction NOP.
Following in the Table 1, the accepted instructions by the
Soft-core microcontroller are described.

3.  Results
According to the state sequence (Figure 4) for the instruc-
tions execution, it is possible to notice that the number
of micro-instructions in each cycle is 4 in the most of
instructions, except in the jump ones which executes
8 states, an equivalent to two work cycles. The most of
instructions are executed in 3 states and executes a fourth
one where no operation are done; this was done in that
way in order to keep the times and being totally compat-
ible with PIC microcontrollers, specifically with the CPU
of the 16fXXX family. Then there is ease in the calculus of
the delay times and in the general processing.

Finding in this project the expected compatibility
both in the processing times and in the structure, it is pos-
sible to do applications that use integrated development
environments. One of these is CCS PIC-C which is quite
versatile thanks to the huge amount of libraries for the
managing of external peripherals. These libraries reduce
the development time to the designers.

After the VHDL description of each module, these are
integrated and interconnected in order to form the final
core of the microcontroller (Figure 5). After that, it was

Julio Enrique Rodríguez Prieto, Edwar Jacinto Gómez and Fernando Martínez Santa

Indian Journal of Science and Technology 5Vol 10 (22) | June 2017 | www.indjst.org

Table 1.  Instructions set of the softcore microcontroller, based on PIC16F84A25.

Instruction Syntax Data type Operation Affected Flags

ADDLW k O<=k<=255 (W) + k -> (W) C, DC, Z

ADDWF f,d 0<=f<=127; d[0,1] (W) + (f) -> (destination) C, DC, Z

ANDLW k O<=k<=255 (W) AND (k) -> (W) Z

ANDWF f,d 0<=f<=127; d[0,1] (W) AND (f) -> (destination) Z

BCF f,b 0<=f<=127; 0<=b<=7 0 -> (f)

BSF f,b 0<=f<=127; 0<=b<=7 1 -> (f)

BTFSS f,b 0<=f<=127; 0<=b<=7 PC += 2, if (f)==1

BTFSC f,b 0<=f<=127; 0<=b<=7 PC += 2, if (f)==0

CALL k O<=k<=2047 (PC) + 1 ->TOS;k -> (PC<10:O>); (PCLATH<4:3>) -> PC<12:11>

CLRF f 0<=f<=127 00h -> (f);1 -> Z Z

CLRW 00h -> (W);1 -> Z Z

CLRWDT Not operation

COMF f,d 0<=f<=127; d[0,1] NOT(f) -> (destination) Z

DECF f,d 0<=f<=127; d[0,1] (f) - 1 -> (destination) Z

DECFSZ f,d 0<=f<=127; d[0,1] (f) - 1 -> (destination); pc += 2, if result == 0

GOTO k O<=k<=2047 k -> PC<10:O>; PCLATH<4:3> -> PC<12:11>

INCF f,d 0<=f<=127; d[0,1] (f) + 1 -> (destination) Z

INCFSZ f,d 0<=f<=127; d[0,1] (f) + 1 -> (destination); pc += 2, if result == 0

IORLW k O<=k<=255 (W) OR k -> (W) Z

IORWF f,d 0<=f<=127; d[0,1] (W) OR (f) -> (destination) Z

MOVF f,d 0<=f<=127; d[0,1] (f) -> (destination) Z

MOVLW k O<=k<=255 k -> (W)

MOVWF f o sf 5 127 (W) -> (f)

NOP Not operation

RETFIE Not operation

RETLW k O<=k<=255 k -> (W);TOS -> PC

RETURN TOS -> PC

RLF f,d 0<=f<=127; d[0,1] (f<6:0>& (carry)) -> (destination); f<7> -> (carry) C

RRF f,d 0<=f<=127; d[0,1] ((carry) & f<7:1>) -> (destination); f<0> -> (carry) C

SLEEP Not operation

SUBLW k O<=k<=255 k - (W) -> (W) C, DC, Z

SUBWF f,d 0<=f<=127; d[0,1] (f) - (W) -> (destination) C, DC, Z

SWAPF f,d 0<=f<=127; d[0,1] (f<3:0>) -> (destination<7:4>); (f<7:4>) -> (destination<3:0>)

XORLW k O<=k<=255 (W) XOR k -> (W) Z

XORWF f,d 0<=f<=127; d[0,1] (W) XOR (f) -> (destination) Z

Implementation of an 8-Bit Softcore Microcontroller on Xilinx Spartan FPGA Family

Indian Journal of Science and Technology6 Vol 10 (22) | June 2017 | www.indjst.org

Figure 5.  Main schematic of the microcontroller (left)
integrated with a peripheral output device (right).

Figure 6.  Report of used resources (only 1 block of RAM
was used).

implemented in software using a FPGA of the Spartan
3AN family, specifically XC3S700AN. The following
features were reached according to the report of Xilinx
ISE ver. 12.1, software: 1% of Flip Flops (148 of 11776),
13% of Slices (790 of 5888), 5% of RAM Blocks (1 of 20),
Maximum delay: 1070000ns equivalent toa maximum
work speed for the microcontroller of 900MHz.Figure 6
shows the graphical report of the used resources within
the FPGA according with the tool Net list Design Plan
Ahead 12.1.

4.  Conclusion
There is in this project, without a doubt, an exploita-
tion of the standard architecture that promises a large

compatibility and the use of robust compilers that includes
a lot of devices and libraries widely tested and certified.
Additionally, communities on internet gives support to
these kind of projects, thanks to the use of open code
and free distribution of microcontroller design projects.
Particularly, this project along with all its source code and
documentation was shared in opencores.org website in
order to be used or modified by anybody who needs it.

The design of this type of architecture gives the ver-
satility of managing the memory capacity because the
dedicated blocks are easily scalable and modifiable from
the same VHDL description.

On the other hand, the obtained result spends less
resource within the FPGA, thanks to an optimization
done developing combinatory blocks as the ALU, which
has standard features. Like-wise, as the program memory
as the data memory of the microcontroller have been
mapped, in only one RAM block of hardware, predefined
in the FPGA.

The methodology of this microcontroller guaranties
a parallel working with another type of microcontrollers
or hardware modules of the same type, in order to be able
to use in multitasking mode. This feature plus its reduced
size, makes it possible to implement a lot of different
microcontrollers in the same FPGA. According to the
amount of logic gates of current FPGAs, one design can
contain even hundreds of these microcontrollers.

Under no circumstances, the objective of this project
has been to replace a microcontroller; instead of this, this
offers to the designer some design advantages of using Soft
Core microcontrollers (under known and tested architec-
tures), and encourage them to include these devices in
their FPGA designs.

At an academic level, this project can be reused as tool
for teaching some of the themes of the basic courses or
even in advanced levels of subjects related with the dig-
ital design. With this system, the students can reach to
comprehend of didactic way the behavior of the compu-
tational systems and like-wise include them in their own
practice designs, taking advantage of FPGA development
boards, which have well capacities and integrated periph-
erals. In the case of designing prototypes, adapted FPGAs
can be used, with versatile connection interfaces.

5.  References
1.	 Angelov V, Lindenstruth V. The Educational Processor

Sweet-16. In: 2009 International Conference on Field

Julio Enrique Rodríguez Prieto, Edwar Jacinto Gómez and Fernando Martínez Santa

Indian Journal of Science and Technology 7Vol 10 (22) | June 2017 | www.indjst.org

Programmable Logic and Applications. IEEE; 2009.
p. 555–9. Crossref

  2.	 Jaquenod GA. Dise-o de Unmicrocontrolador MC6805
Usandológicaprogramable FLEX de ALTERA. NUEVA
Telegr Electron. ARIEL ARBO EDITOR SRL; 2001.
p. 130–8.

  3.	 Jaquenod GA, Villagarcía Wanza HA, De Giusti MR, Bria
ON. Adaptación Del Núcleo IP De Unprocesadortipo
MC6805 Para Operar en un Ambientemultiprocesador y
Multitarea. In: VII Congreso Argentino de Ciencias de la
Computación; 2001, p. 1−10.

  4.	 Jaquenod GA, De Giusti MR. Dise-o de
Microcontroladoresempotradosmedianteprocesamiento
Serial: análisisusando FLEX10K para sintetizarunmicro-
controladortipo COP8SAx. In: VII Workshop IBERCHIP
Uruguay, 2001, p. 1-11.

  5.	 Zavala HA, Nieto CO, Ruelas HJA, Dominguez CAR.
Design of a General Purpose 8-bit RISC Processor for
Computer Architecture Learning, Comput y Sist. 2015 Jun
29; 19(2):371−85.

  6.	 Ria-o J, Ladino C, Martínez F. Implementación de la trans-
formada FFT Sobreuna FPGA Orientada a Suaplicación
en Convertidoreselectrónicos de Potencia, Tekhnê. 2012;
9:21–32.

  7.	 Ruge IAR, Alvarado JD. Sistema Basado en FPGA
Para la Evaluación de Redesneuronalesorientadas al
Reconocimiento de Imágenes, Rev Tecnura. 2013;
17(36):87–95. Crossref

  8.	 Lopez Presa JL, Perez Calle E. MMP16 a 16-bit Didactic
Micro-Programmed Micro-Processor. In: 2011 3rd
International Conference on Computer Research and
Development, IEEE, 2011, p. 61–66.

  9.	 Costa RV, Fernandes S, Casilo L, Soares A, Freire D. SICXE:
Improving Experience with Didactic Processors. In: 2012
Brazilian Symposium on Computing System Engineering,
IEEE, 2012, p. 83–89. Crossref PMid:22266531.

10.	 Casillo LA, Silva IS. Adapting a Low Complexity Data
path to MIPS-1. In: 2012 VIII Southern Conference on
Programmable Logic, IEEE, 2012, p. 1–6. Crossref

11.	 Jansen D, Dusch B. Every Student Makes his Own
Microprocessor. In: 10th European Workshop on
Microelectronics Education (EWME), IEEE, 2014,
p. 97–101. Crossref

12.	 Guzman F. Natalius 8 bit RISC: Overview. Date accessed:
08/06/2012. Crossref

13.	 Pepelyashev D. 8-bit Microcontroller with Extended
Peripheral Set: Overview. Open Cores. Date accessed:
10/08/2008. Crossref

14.	 Riedel U. Tiny 8: Overview. Open Cores. Date accessed:
11/02/2007. Crossref

15.	 Hays K, Jshamlet, Open 8 uRISC: Overview, Open Cores.
Date accessed: 20/06/2016. Crossref

16.	 Godinho D. 1664 Microprocessor: Overview, Open Cores.
Date accessed: 26/03/2010. Crossref

17.	 Tan S. aeMB: Overview. Open Cores. Date accessed:
20/12/2009. Crossref

18.	 Clayton J. risc16f84. Overview. Open Cores. Date accessed:
28/06/2014. Crossref

19.	 Usselmann R. Mini-Risc Core: Overview Open Cores. Date
accessed: 10/03/2009. Crossref

20.	 Wei L. Clai RISC - Runs 12 Bit Opcode PIC Family:
Overview. Open Cores. Date accessed: 13/02/2009. Crossref

21.	 Mikej. RISC5x: Overview. Open Cores. Date accessed:
09/09/2011. Crossref

22.	 Prado DFG. Embedded Microcontrollers and FPGAs Soft-
Cores, Electrónica-UNMSM. 2006; 18:3–14.

23.	 Yue-li H, Jia-lin C, Feng R, Zhi-jian L. Design of a High
Performance Microcontroller. In: High Density Micro
System Design and Packaging and Component Failure
Analysis, 2004 HDP’04 Proceeding of the Sixth IEEE
CPMT Conference on. IEEE, 2004, p. 25–33.

24.	 Ortega VHG, Savedra JCS, Ortega S, Tovar RH.
Microprocesadordidáctico de Arquitectura RISC
Implementado en un FPGA, e-Gnosis. 2009; 7:1−9.

25.	 PIC16F84A Data Sheet. Microchip Technology Data
Sheets. Date accessed: 29/11/2012. Crossref

https://doi.org/10.1109/FPL.2009.5272412
https://doi.org/10.14483/udistrital.jour.tecnura.2013.2.a07
https://doi.org/10.1109/SBESC.2012.24
https://doi.org/10.1109/SPL.2012.6211779
https://doi.org/10.1109/ewme.2014.6877404
http://opencores.org/project,natalius_8bit_risc
http://opencores.org/project,mcu8
http://opencores.org/project,tiny8
http://opencores.org/project,open8_urisc
http://opencores.org/project,1664
http://opencores.org/project,aemb
http://opencores.org/project,risc16f84
http://opencores.org/project,minirisc
http://opencores.org/project,lwrisc
http://opencores.org/project,risc5x
http://ww1.microchip.com/downloads/en/DeviceDoc/35007b.pdf

