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1.  Introduction

Evolutionary Algorithms (EAs) are population based 
stochastic search techniques famous for their capacity 
to handle complicated non-linear optimization 
problems. The primary advantage of EAs over other 
numerical methods is that they just require the objective 
function values, while mathematical properties such 
as differentiability and continuity are not necessarily 
needed. Some popular techniques proposed under the 
evolutionary computation field are genetic algorithms, 
evolutionary algorithms, genetic programming, 
evolutionary programming, and evolution strategies. 
Differential Evolution (DE)1 has appeared as easiest and 
well-organized algorithm to solve optimization problems. 
Some of its numerous attractive qualities are simple 

structure, robust and good convergence speed compare 
of other evolutionary algorithms. It has been effectively 
implemented to a miscellaneous domain of science 
and engineering, such as pattern recognition, image 
processing, power engineering, engineering design, and 
many other problems arise in engineering and science 
field2-8 and has been verified to be better than numerous of 
its counterpart.It has already been proved in evolutionary 
computation literature that DE provides better accuracy 
and high convergence speed than other evolutionary 
algorithm. However, convergence speed of DE does not 
meet up the prospects some time, mainly in case of high 
dimensional or highly multimodal problems9. 

A number of cases are exists in literature to increase 
the performance of DE. Some of them are as; In 
2003, a Trigonometric Mutation Operator (TMO) is 
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recommended and named it as Trigonometric DE (TDE)10. 
Some other variants are (DEahcSPX)11, Simplex DE12, 
clustering-based DE Learning Enhanced DE (LeDE)13, DE 
with orthogonal crossover14, DE/rand-to-best-best/215. 
These DE variants contain some additional component 
which uses DE as an evolutionary structure assisted 
by extra algorithmic components. The other category 
contains those variants which makes an important 
modification within the structure of DE. Some of known 
example of these are, Fuzzy Adaptive DE (FADE)16, Self 
adaptive control parameter based DE (jDE)17, Random 
localization based DE(DERL)18, DE with preferential 
crossover17, Opposition-based DE (ODE)18, Global and 
Local neighbourhood based DE (DEGL)19, Self-adaptive 
DE (SaDE)20, Adaptive DE with optional external archive 
(JADE)21, DE with chaotic local search22, DE with 
Ensemble of mutation strategies and control Parameters 
(EPSDE)23, Modified Randomomized Localization based 
DE (MRLDE)24, Dynamic parameter selection for DE25, 
Cultivated DE26,  Information Utilization Selection Based 
DE (IUDE)27and so on. A complete analysis on DE 
variants can be found also in28-30. 

During some last years, a lot of research work on 
control parameter for DE is proposed. The major control 
parameters in DE algorithm are scaling factor F and 
crossover rate Cr. Storn and Price suggested that a well 
primary choice of F can be 0.5 and 0.9 for Cr. Instead 
of manual fixing of parameters, some researchers also 
suggested adaptive/self-adaptive approaches where the 
control parameters are distorted vigorously based on 
some response of the search region. A few of the research 
done in the improvement of adaptive/self-adaptive 
control parameters approaches can be found in32-35.

Two modified variants of DE named as DEwB-1 and 
DEwB-2 are presented in the paper. Both variants are 
based on mutation schemes in which the base vector is 
taken as the weighted mean of three vectors randomly 
chosen from the population to perform mutation 
operation. A new adaptive strategy is also proposed to 
select the scaling factor and crossover constant which are 
the key control parameters of DE algorithm.

2.  Brief Description of DE

Like other evolutionary algorithm, DE also works in two 
phases: initialization and evolution. In the first phase, 
a population is generated randomly for DE when no 

preliminary knowledge is known about the problem. In 
evolution phase, all the individuals go through mutation, 
crossover and selection process repeatedly until the 
termination criterion is met. 

The working of DE is as follows:

2.1 Initialization
As we know that, DE is a population based evolutionary 
algorithm, so we start by generating a uniformly 
distributed population of individuals. After generating the 
population we evaluate the fitness value of all individuals.

Let the population of size NP at any generation 
G is denote by G G

iP {X i 1,2, ,NP}= =  where each 
individual },,,{ ,,2,1

G
iD

G
i

G
i

G
i xxxX =  is a D-dimensional 

vector. Each vector of the starting population (at G=0) 
can be generate as given in equation-1. 
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Where Xupp and Xlow are initial higher and lower 
bounds for space and rand(0,1) are uniformly distributed 
random numbers having value between 0 and 1. 

2.2 Mutation
In the mutation phase we generate a perturbed or mutant 
vector Vi

G corresponding to each individual Xi
G. For this 

purpose first we select 3 mutually different individuals 
say Xr1

G, Xr2
G, and Xr3

G, from the population randomly and 
obtain Vi

G by equation-2. 
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where F is a real and constant factor called scaling 
factor and use to control the magnification of the 
difference vector )( 32

G
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G
r XX − . As suggested by Storn and 

Price1 the value of F is should be taken any value from 0 
to 1

2.3 Crossover
The next phase of DE algorithm is crossover operation 
where we generate a trial vector Ui
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where j∈ {1,…, D}, j0 is a random parameter index, 
elected just the once for each i. Cr is another important 
control parameter which is also known as crossover factor 
or crossover probability and generally having value as Cr∈ 
[0, 1].

2.4 Selection
The last operation of DE algorithm is selection operation. 
In this operation target and trial vectors compare with 
each other by their fitness value and retain in next 
generation with minimum fitness value. The selection 
process of vector for next generation is:





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=+

otherwiseX
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G
i
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iG

i
)()(1

		        (4)

3.  �DE with Weighted base Vector 
(DEwB)

In this Section, the proposed variants DEwB-1 and DEwB-
2 are described. The mutation strategies and self adaptive 
control parameter strategies are given below:

3.1 Proposed Mutation Strategies 
In the proposed algorithms (DEwB-1 and DEwB-2), 
the base vector is selected either as a random vector or 
as a weighted mean of three selected vectors during the 
mutation operation. The idea of taking base vector as a 
weighted mean of selected individuals was first used by34 
and was called improved donor formulation for DE. In 
our study, an enhanced variant of DE is proposed by 
modifying the original idea of34. In the proposed variant, 
first a probability (Pd) is fixed and a uniformly distributed 
random number (R) is created having value between 0 
and 1. Now select the base vector by weighted mean for 
smaller value of R than Pd, otherwise select it randomly 
(as per equation-2)

If Xw is the base vector obtained by the new strategy, 
then it may be defined as:

DEwB-1:	 )(
321 321
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DEwB-2:	 )(
21 321
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G
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Here 321 ,, µµµ are uniformly distributed random 
number between (0, 1) and should satisfy the condition; 
∑ =

i i 1µ  which means that there should be a convex 

combination between Xr1
G, Xr2

GandXr3
G.

The mutation scheme may be represented as DE/
donor/1 and the corresponding proposed variant is called 
DE with weighted base vector (DEwB).

From equation-5 and 6, it can be seen that the only 
difference between basic DE and DEwB is in the selection 
of base vector. In DEwB, we take base vector as the 
convex combination of three selected vectors G

rX 1 ( G
bestX

for DEwB-2) G
rX 2 and G

rX 3 . From the condition it can 
also be seen that if we take 11 =µ  then 032 == µµ , then 
DEwB-1 and DEwB-2 will be similar to DE/rand/1 and 
DE/best/1 variants respectively. A graphical explanation 
of DEwB-1 is given in Figure 1.

Figure 1.    Graphical explanation of DEwB-1 mutation 
process.

By convex combination of vectors we have a benefit 
that each of the newly weighted vectors will remain 
inside the boundary of triangular region for which

G
rX 1 , GX 2 and G

rX 3  are vertices. Out of these weighted 
vectors, only one vector will produce randomly for ith 
target vector. From the Figure 1, it can be noticed that 
by using donor mutation scheme, the mutant vector will 
possibly be at a smaller distance from the global minima 
rather than basic mutation scheme. Hence we may get a 
fast convergence speed by using donor mutation scheme. 
But a problem may also occur with this scheme, if we use 
donor mutation scheme continuously then sometime 
the algorithm may behave like a greedy algorithm which 
may cause lack of diversity in the algorithm. Therefore, 
to minimize these risks, we fixed a probability, so that 
it can have a choice to select the base vector either as a 
weighted or random vector. By fixing the probability we 
can also acquire the advantage of both DE/rand/1 and 
DE/donor/1 schemes and increase the convergence speed 
in a systematic manner.
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3.2 �Control Parameter Setting for DEwB 
Algorithms

In the basic DE algorithm, the values of F and Cr are kept 
constant throughout the search process which may not 
work efficiently for every problem. The manual tuning of 
these parameters is a complicated task in itself due to the 
compound interactions, even if one carries out preliminary 
experimentation, the optimal parameter settings may 
never be found. Hence, self-adaptive control parameters 
can play a major role in such a situation. Thus, changing 
the control parameters values in consecutive iterations 
make available more randomness to the algorithm which 
consecutively may assist in getting better the working of 
algorithm in terms of exploitation and exploration. 

In our study a new self adaptive control parameter 
approach is proposed to change the control parameter F 
and Cr during the run. For each G

iX , control parameter 
G

iF and G
iCr are defined in equation-7. 

l u l 1 2G
i

l u

u l 3 4G
i

l u

F (F F ) * rand if rand Pf
F

(F F )/2 otherwise

Cr (Cr * rand ) if rand Pc
Cr

(Cr Cr )/2 otherwise

ì + - <ïï=íï +ïî
ì - <ïï=íï +ïî

		        (7)

Here rand1, rand2, rand3, and rand4,are uniformly 
distributed random numbers between 0 and 1, Pf and Pc 
represents the probability to adjust F and Cr respectively. 

Crl and Fl, are lower bound, Cru and Fu are upper bound 
for Cr and F respectively. In the paper these constants are 
taken as have taken Pf=Pc=0.5, Fl = Crl =0.1 and Fu =Cru 
=0.9. So that F and Cr always having a value between 0.1 
and 0.9, also if the condition is not satisfied then value of F 
and Cr will be 0.5 which have been considered as the most 
suitable control parameter values by many researchers.

The main contribution of our proposed variants is that 
the rule for self adaptive control parameters is very simple 
and there is no need to guess particular values of F and Cr.

The pseudo-code of proposed variants is given in 
Table 1.

Table 1.    Pseudo-code of proposed DEwB
Initially at G=0, generate uniformly distributed random population PG={X1

G, X2
G..., XNP

G} using Equation-1 
calculate f (Xi

G)
While (Until reach to stopping condition  )
     {
         For i=1:NP
               {
                   Generate value of F and Cr as given in equation-7
                   Select three vectors, Xr1

G Xr2
G and Xr3

G from PG which are mutually  

                   Different and also different from Xi
G.

                   If (rand<Pr) /* rand =any uniform random number between 0& 1*/
                       {
                             Generate mutant vector as defined in equation-5 (for DEwB-1) or  by Equation-6 (for DEwB-2)
                       }
                  Else
                      {
Generate mutant vector as defined in equation-2
                       }
Generate trial vector Ui

G as defined in equation-3
                 Calculate f (Ui

G)
Perform selection operation to select fittest vector from Xi

G and Ui
G      by using Equation-4

             }* end for loop
       Update population PG+1={X1

G+1, X2
G+1..., XNP

G+1}
    } /* end while loop*/
End
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4.  �Application of DEwB-1 and 
DEwB-2

4.1 Benchmark Problems 
General benchmark problems are selected from13,23 for 
experiments. This test bed although thin, forms a launch 
start pad to authenticate the capability of an optimization 
algorithm. 

4.2 Molecular Potential Energy Problem	
A large number of real life problems from science and 
engineering may be designed as global optimization 
problem with variables in continuous region. In the 
domain of chemistry, a problem of intense current interest 
is to discover the lowest-energy structure of a molecule. 
This structure is very important because it read out many 
of the properties of the molecule. It seems likely that the 
lowest-energy structure is related to the global minimum 
of the molecular potential energy function35. The number 
of local minimisers that increase exponentially with the 
size of molecule is the main difficulty in this problem. 
As a result the molecular energy minimization problem 
is exceptionally challenging, unsolved problems in 
molecular biophysics and is paid much attention by 
chemists, physicists as well as the researchers from 
the field of computer science and mathematics also. 
Minimizing the potential energy problem of a molecule 
has been addressed by several researchers from time 
to time35-37. The mathematical model of this problem is 
highly multimodal as well as complicated in nature. 

For a 3-diemnsional space, a molecule having a linear 
sequence of n-beads centred at y1, y2,....yn. Let Li,i+1is 
the bond length or simply Euclidean distance between 
two successive beads yiand yi+1 and let ψ,i+1 be the bond 
angle for every three successive beadsyi, yi+1 andyi+2, 
corresponding to the line having the first two with the 
relative location of the third bead. In the same way, let τi, 

i+3 be the torsion angle for every four successive beads,yi, 
yi+1,yi+2, yi+3between the normal’s through the planes 
formed by the beads yi, yi+1,yi+2 andyi+1, yi+2,yi+3. 

Hence the potentials force field corresponding to 
bond lengths Li,i+1, bond angles ψi,i+1 and torsion angles 
τi,i+3 may be define respectively as;

∑
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where ai,j, bi,j and ci,j are bond stretching force, angle 
bending force and torsion force constant respectively. 
The constants ψ0

i,j and L0
i,j correspond to the selected 

bond angle and bond length respectively. τ0
i,j represent 

the phase angle and describe the minima location. Lj, 
j=1,2,3 represents the set of couple of atoms removed by 
j covalent bonds. 

Furthermore, a potential F4to distinguish the 2-body 
connections between eachcouple of beads split by more 
than 2 covalent bonds along the chainis defined as:

∑
∈










 −
=

3),( ,
4

)1(

Mji ji

i

l
F 				          (9)

In order to lead the optimal spatial position of the 
beads, total molecular potential energy ∑

=

=
4

1i
iFF  need 

to be minimize. Taking the parameters as defined in35 

potential energy function can be modelled as:
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Hence the problem is to minimize F by evaluating 

optimal value of τi,i+3 for i=1,2,..,n. By restricting of τi,i+3;
50 3, ≤≤ +iiτ the existence of only one global minimum is 

guaranteed35.
From equation-10, it can be noticed that the given 

problem is a non-convex optimization problem and 
having numerous local minimiser even for small value 
of n. As defined in equation-10, the number of local 
minimiser of the function is 2n-3. These local minimisers 
are corresponding to a met a stable state of the molecule 
which is not truly stationary but is about stationary state.

5.  Experimental Settings

5.1 Parameter Settings
In order to conduct a fair judgment, all the algorithms 
are implemented under similar experimental settings. 
The value of F and Cr are taken as 0.5 and 0.9 respectively 
for basic DE23 and also for other modified variants of DE 
which are used for comparison. Other parameter settings 
are given as below13,20,23.

Population size NP=100. 
For all benchmark problems, the dimension is taken 

as, D=30. 
In case of potential energy problem, the dimension is 

taken as, D=10, 15, 20 and 25. 
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Probability factor Pr, Pc and Pf are fixed at 0.5.
Value to reach ( ε ) is fixed as 10-08 except for function 

F7 where ε  is fixed as 10-02.
Maximum NFE are fixed as 500000 for each functions.
Software: Dev C++.

5.2 Comparison Criteria
It used five different comparison criteria which are 
mentioned:

5.2.1 Number of Function Evaluation (NFE)
NFE means total number of points on which fitness value 
has been calculated to reach ε≤− optimalglobal ff , where 
ε  any fixed value is and called Value To Reach (VTR). We 
record NFE in each runs before reach max-NFE and then 
find average NFE of total runs.

5.2.2 Error and Standard Deviation
In each run, we record average error which is absolute 
difference between global value and optimum value 

|| optimalglobal ff − on predefined maximum NFEs. The 
average and standard deviation of the fitness values are 
also calculated.

5.2.2.1 Success Rate
Success rate is defined as:    Succesful RunsSR *100

Total Runs
=

5.2.2.2 Acceleration Rate
To compare the convergence speeds between the 
algorithms, acceleration rate is defined as:

others DEwB

others

NFE NFEAR %
NFE

-
=

5.2.2.3 Convergence Graph
The convergence graphs represent the mean fitness 
performance in different generation in the respective 
experiments.

6.  �Numerical Result for 
Benchmark Problems

The proposed DEwB-1 and DEwB-2 algorithms are 
investigated by comparing it with DE algorithm and some 
of its enhanced variants such as TDE, LeDE, jDE, ODE, 
SADE, JADE and DERL, Every result is taken as average 

of 50 independent runs so that the effect of the stochastic 
nature of the algorithms can be minimized. 

6.1 �Comparison of DEwB-1 and DEwB-2 
with DE, TDE and DERL

The simulated results and comparison of DEwB-1 and 
DEwB-2 with DE, TDE and DERL are given in Table 2, 
in the term of average NFE, and average error of 50 runs.

Table 3, it can be seen that DEwB-1 and DEwB-2 take 
less NFE with respect to DE, TDE and DERL to reach the 
given accuracy for each benchmark problem except F3, F4, 
and F5. 

In the case of F3 and F5, DERL takes 212550 and 
263050 NFEs respectively while DEwB-1 takes 441110 
and 500000 NFE (do not reach to VTR in case of F5) 
respectively and DEwB-2 takes 233160 and 299500 NFE 
respectively and hence DERL leads both DEwB-1 and 
DEwB-2. In the case of F4, only DE successfully reaches to 
accuracy and hence leads all other algorithms. 

Table 3, it can be observed that, in total 9 cases (F1, F2, 
F6 - F8, F10, - F13), DEwB-2 takes first place while DEwB-1 
got second place. In the cases of F3 and F5, DEwB-2 got 
second position. DEwB-1 leads over all other algorithms 
only in the case of F9. Both DEwB-1 and DEwB-2 are 
failed to achieve accuracy in two cases (F4, F5 for DEwB-1 
and F4, F9 for DEwB-2).

Table 4, results are shown in term of Success Rate (SR) 
and Acceleration Rate (AR). From the table, it is clear that 
both DEwB-1 and DEwB-2 perform fast rather than DE, 
TDE and DERL for every benchmark problems except 
F4. The average acceleration rate of DEwB-1 is 51.31% 
while average acceleration rate of DEwB-2 is 57.31% with 
respect to DE. In the same way the average AR of DEwB-
1 is 30.98% and AR of DEwB-2 is 38.91% over TDE and 
33.37% and 37.09% over DERL by DEwB-1 and DEwB-2 
respectively.

Also the success rate of each algorithm is given in 
Table 4 and it can be seen that both DEwB-1 and DEwB-2 
fails to achieve accuracy in two cases (F4, F5for DEwB-
1 and F4, F9 for DEwB-2) and hence success rate is 0 in 
these cases. If we want to see overall better average success 
rate then from the last column of Table 2, it is clear that 
DEwB-1 gives 82% success rate while DEwB-2 gives 80% 
success rate. 

Hence from Table 3 and 4, it is observed that both 
DEwB-1 and DEwB-2 gives faster performance in term of 
NFE, AR and SR and prove their efficiency over DE, TDE 
and DERL.
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Table 2.    Benchmark functions with their global value
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Table 3.    Comparison of DEwB-1 and DEwB-2 with DE, TDE and 
DERL in the term of average NFE and average error of 50 runs
Fun DE TDE DERL DEwB-1 DEwB-2
F1 104650 

(8.71E-09)
61700 

(8.74E-09)
54880 

(8.94E-09)
42220 

(8.11E-09)
34510 

(8.75E-09)
F2 175120 

(9.68E-09)
98930 

(9.40E-09)
92210 

(8.75E-09)
61470 

(9.09E-09)
48080 

(9.65E-09)
F3 416730 

(9.09E-09)
285950 

(9.38E-09)
212550 

(9.00E-09)
441110 

(9.71E-09)
233160 

(9.64E-09)
F4 347000 

(4.98E-09)
500000 

(6.68E-01)
500000 

(8.08E-07)
500000 

(3.85E+00)
500000 

(4.23E-02)
F5 444550 

(8.78E-09)
417370 

(9.34E-09)
263050 

(9.02E-09)
500000 

(1.79E+01)
299500 

(9.59E-09)
F6 32680 

(0.0E+00)
19460 

(0.0E+00)
21470 

(0.0E+00)
12410 

(0.0E+00)
10380 

(0.0E+00)
F7 200390 

(8.71E-03)
55780 

(8.87E-03)
109160 

(7.84E-03)
32660 

(6.71E-03)
23260 

(7.97E-03)
F8 500000 

(2.20E+03)
500000 

(4.03E+03)
500000 

(9.27E+02)
194550 

(8.54E-09)
118100 

(9.66E-09)
F9 500000 

(5.23E+01)
427400 

(9.24E-09)
500000 

(3.97E+00)
169960 

(9.94E-09)
500000 

(2.98E+00)
F10 161580 

(9.50E-09)
92340 

(9.32E-09)
103360 

(9.08E-09)
65060 

(9.21E-09)
51790 

(9.71E-09)
F11 107800 

(9.28E-09)
62178 

(9.43E-09)
70210 

(8.62E-09)
43440 

(8.67E-09)
35230 

(7.91E-09)
F12 93610 

(8.90E-09)
56050 

(9.00E-09)
64110 

(8.91E-09)
35420 

(9.16E-09)
29800 

(8.10E-09)
F13 102710 

(9.11E-09)
64140 

(9.05E-09)
69210 

(8.77E-09)
39810 

(7.71E-09)
33190 

(8.81E-09)

Table 4.    Comparison of DEwB-1 and DEwB-2 with DE, TDE and DERL in the term of Success rate 
and Acceleration rate. Here 1,2,3,4 and 5 denotes DE, TDE, DERL, DEwB-1 and DEwB-2 respectively 
and  4/1, 4/2 and 4/3 means DEwB-1vs DE, DEwB-1 vs TDE and DEwB-1 vs DERL respectively. 5/1, 
5/2 and 5/3 means DEwB-2vs DE, DEwB-2 vs TDE and DEwB-2 vs DERL respectively.

Fun Success rate (%) Acceleration rate (%)
1 2 3 4 5 4/1 5/1 4/2 5/2 4/3 5/3

F1 1 1 1 1 1 59.55 67.02 31.57 44.06 23.06 37.11
F2 1 1 1 1 1 64.89 72.54 37.86 51.39 33.33 47.85
F3 1 1 1 1 1 -- 44.05 -- 18.46 -- --
F4 0.24 0 0 0 0 -- -- 0 0 0 0
F5 0.80 1 1 0 0.90 -- 32.62 -- 28.24 -- --
F6 1 1 1 1 1 56.13 63.30 36.22 46.65 42.19 51.65
F7 1 1 1 1 1 83.70 88.39 41.44 58.30 70.08 78.69
F8 0 0 0 1 0.64 61.09 76.38 61.09 76.38 36.70 61.57
F9 0 0.20 0 0.70 0 66.01 0 60.23 -- 66.00 0
F10 1 1 1 1 1 59.73 67.94 29.54 43.91 37.05 49.89
F11 1 1 1 1 0.94 59.70 67.31 30.13 43.34 38.12 49.82
F12 1 1 1 1 1 62.16 68.16 36.80 46.83 44.75 53.51
F13 1 1 1 1 1 61.24 67.68 37.93 48.25 42.47 52.04
Avg 0.77 0.78 0.76 0.82 0.80 51.58 57.31 30.98 38.91 33.37 37.09



Pravesh Kumar, Millie Pant, Musrrat Ali and H. P. Singh

Vol 10 (18) | May 2017 | www.indjst.org Indian Journal of Science and Technology 9

6.2 �Comparison with DEahcSPX, ODE and 
LeDE

In order to check the efficiency of DEwB-1 and DEwB-2 
over some other modified variants of DE, a comparison 
of DEwB-1 and DEwB-2 with DEahcSPX, ODE and LeDE 
is given in this section,. The comparison is simulated in 
Table 5 and 6 in term of NFE and AR respectively. The 
results for DEahcSPX, ODE and LeDE are taken from13.

From the Table 5, it observed that, DEwB-2 leads in 8 
cases and got second place in 2 cases, while DEwB-1 got 
second place in 8 cases and leads in one cases. LeDE and 
ODE takes less NFE in 3 and cases respectively.

Similar performance of all variants is given in Table 6 
in term of AR.

6.3 �Comparison of DEwB-1 and DEwB-2 
with jDE, SaDE and JADE

In Table 7 comparison is given in term of average error and 
standard deviation of 50 runs. Here all parameter settings 
and Max-NFE has been taken on the basis of23. From the 
table it can see that when compare to jDE, DEwB-1 and 
DEwB-2 gives less error in the total cases of 8 and 10 
benchmark problems respectively while in 2 cases, both 
DEwB-1 and DEwB-2 gives similar performance like jDE.

Table 5.    Comparison of DEwB-1 and DEwB-2 with 
DEahcSPX, ODE and LeDE in the term of average NFE 
of 50 runs
Fun DEahcSPX ODE LeDE DEwB-1 DEwB-2
F1 80371 67524 49494 42220 34510
F2 121695 140170 77464 61470 48080
F3 358081 489210 140176 441110 233160
F4 432319 145880 157499 NA NA
F5 360646 NA 282972 NA 299500
F6 28095 25008 17123 12410 10380
F7 82875 60230 33302 32660 23260
F8 137125 147472 111013 194550 118100
F9 209903 190604 187813 169960 NA
F10 126294 106694 76111 65060 51790
F11 85085 79888 50579 43440 35230
F12 72429 63710 41384 35420 29800
F13 81787 72395 50720 39810 33190

In the comparison of SaDE, DEwB-1 and DEwB-
2 gives better performance in the total cases of 8 and 9 

benchmark problems respectively and for 3 cases of 
DEwB-1 and for 2 cases of DEwB-2, both DEwB-1 and 
DEwB-2 perform similar to SaDE.

Table 6.    Comparison of DEwB-1 and DEwB-
2 with DEahcSPX, ODE and LeDE in the term of 
Acceleration rate. Here 4/1, 4/2 and 4/3 means DEWB-
1vs DEahcSPX, DEWB-1 vs ODE and DEwB-1 vs 
LeDE respectively. 5/1, 5/2 an 1d 5/3 means DEwB-2vs 
DEahcSPX, DEwB-2 vs ODE and DEwB-2 vs LeDE 
respectively
Fun 4/1 5/1 4/2 5/2 4//3 5/3
F1 47.46 57.06 37.47 48.89 14.69 30.27
F2 49.48 60.49 56.14 65.69 20.64 37.93
F3 -- 34.88 9.83 52.33 -- --
F4 -- -- -- -- -- --
F5 -- 16.95 -- -- -- -5.84
F6 55.82 63.05 -- 58.49 27.52 39.37
F7 60.59 71.93 45.77 61.38 1.92 30.15
F8 -- 13.87 -- 19.91 -- --
F9 19.02 -- 10.83 -- 9.50 --
F10 48.48 58.99 39.02 51.45 14.51 31.95
F11 48.94 58.59 45.62 55.90 14.11 30.34
F12 51.09 58.85 44.40 53.22 14.41 27.99
F13 51.32 59.41 45.01 54.15 21.51 34.56

‘--‘ indicate that the DEwB gives slow convergence speed

From the table, it can easily see that JADE gives 
better performance in the comparison of both DEwB-1 
and DEwB-2. JADE gives minimum error in total cases 
of 8 and 7 cases with respect to DEwB-1 and DEwB-
2 respectively while DEwB-1 and DEwB-2 gives better 
performance than JADE only in 3 and 5 cases respectively.

6.4 Statistical Analysis
In order to verify the significance of the results of DEwB-1 
and DEwb-2 comparison to other considered enhanced 
DE variants, a non-parametric statistical analysis is 
performed in this section.

So as to check the global difference between the 
results of Table 3,5 and 7, Friedman test37 is applied and 
the statistical results are simulated in Table 8,10 and 
12 respectively. We can see that the p-value obtain by 
Friedman test is smaller than the significance level which 
are taken as α = 0.05 and 0.1. Hence we can conclude that 
among the experiential results there are some significant 
differences. 
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Table 8.    Results on Friedman test based on 
NFE given in Table 3
N Friedman value df p-value
13 24.998 4 <0.001

A post-hoc statistical testing is made by using these 
results to distinguish concrete differences between 
algorithms. Firstly, Bonferroni-Dunn’s test26,38 is employed 

to identify significant differences for the control algorithms 
DEwB-1 and DEwB-2. As achieve by Critical Difference 
(CD) by Bonferroni-Dunn’s method and Friedman’s test, 
the ranking of algorithms are given in Table 9,11 and 13 
based on their error values as presented in Table 3,5 and 7 
respectively. Bonferroni-Dunn’s method to calculated CD 
value is given in appendix I.

Table 7.    Comparison of DEwB-1 and DEwB-2 with jDE, SaDE and JADE in the term 
of average NFE of 50 runs
Fun Max-NFE jDE SADE JADE DEwB-1 DEwB-2
F1 150000 2.5E–28 

(3.5E–28)
4.5E–20 

(6.9E–20)
1.8E–60 

(8.4E–60)
2.7E–40 

(2.7E–40)
2.59E–50 

(5.39E–50)
F2 200000 1.5E–23 

(1.0E–23)
1.9E–14 

(1.05E–14)
1.8E–25 

(8.8E–25)
7.2E–31 

(2.8E–31)
2.6E–39 

(1.9E–39)
F3 500000 5.2E–14 

(1.1E–13)
9.0E–37 

(5.43E–36)
5.7E–61 

(2.7E–60)
9.1E–10 

(1.1E–09)
2.4E–21 

(4.3E–21)
F4 500000 1.4E–15 

(1.0E–15)
7.4E–11 

(1.82E–10)
8.2E–24 

(4.0E–23)
3.79E+00 
(8.8E+00)

4.2E-02 
(4.0E–01)

F5 300000 1.3E+01 
(1.4E+01)

2.1E+01 
(7.8E+00)

8.0E–02 
(5.6E–01

2.01E+01 
(1.89E+00)

3.59E–10 
(5.4E–10)

F6 150000 0.0E+00 
(0.0E+00)

0.0E+00 
(0.0E+00)

0.0E+00 
(0.0E+00)

0.0E+00 
(0.0E+00)

0.0E+00 
(0.0E+00)

F7 300000 3.3E–03 
(8.5E–04)

4.8E–03 
(1.2E–03)

6.4E–04 
(2.5E–04)

1.1E–03 
(2.8E–04)

6.2E–04 
(5.1E–04)

F8 900000 1.1E–10 
(0.0E+00)

1.1E–10 
(0.0E+00)

1.1E–10 
(0.0E+00)

3.2E–12 
(5.4E–13)

3.4E–12 
(6.5E–11)

F9 500000 0.0E+00 
(0.0E+00)

0.0E+00 
(0.0E+00)

0.0E+00 
(0.0E+00)

0.0E+00 
(0.0E+00)

2.9E+00 
(1.7E+00)

F10 50000 3.5E–04 
(1.0E–04)

2.7E–03 
(5.1E–04)

8.2E–10 
(6.9E–10)

1.8E–06 
(4.2E–07)

2.8E–08 
(9.2E–09)

F11 50000 1.9E–05 
(5.8E–05)

7.8E–04 
(1.2E–03)

9.9E–08 
(6.0E–07)

2.4E–10 
(2.9E–10)

3.5E–13 
(4.3E–13)

F12 50000 1.6E–07 
(1.5E–07)

1.9E–05 
(9.2E–06)

4.6E–17 
(1.9E–16)

5.1E–13 
(3.6E–13)

4.2E–16 
(3.8E–16)

F13 50000 1.5E–06 
(9.8E–07)

6.1E–05 
(2.0E–05)

2.0E–16 
(6.5E–16)

1.2E–11 
(1.1E–11)

4.3E–15 
(3.9E–15)

Table 9.    Ranking achieved by Friedman test and Critical Difference (CD) calculated by 
Bonferroni-Dunn’s method for Table 3
Algorithms DE TDE DERL DEwB-1 DEwB-2 CD at α=0.1 CD at α=0.05
Ranking 4.38 3.19 3.35 2.50 1.58 1.3898 1.5492

Table 10.    Results on Friedman test based on 
NFE given in Table 5
N Friedman value Df p-value
13 21.969 4 <0.001
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Figure 2(a), 2(b) and 2(c), Bonferroni-Dunn’s graphic 
demonstrate variation between rankings attain by 
algorithms. In the Figure 2, a horizontal cut line is drawn 
that represents the threshold for the best performing 
algorithm with the least ranking bar. At each significance 

level taken in the paper (i.e. 5% and 10%) a cut line is 
sketched at height equal to the summation of the critical 
difference and ranking of the control algorithm. The bars 
go beyond this line are associated to an algorithm with 
inferior performance than the control algorithm.

Table 11.    Ranking achieved by Friedman test and Critical difference (CD) calculated by 
Bonferroni-Dunn’s method for Table 5
Algorithms DEahcSPX ODE LeDE DEwB-1 DEwB-2 CD at α=0.1 CD at α=0.05
Ranking 4.23 3.88 2.38 2.69 1.81 1.3898 1.5492

Table 13.    Ranking achieved by Friedman test and Critical difference (CD) calculated by 
Bonferroni-Dunn’s method for Table 7
Algorithms jDE SaDE JADE DEwB-1 DEwB-2 CD at α=0.1 CD at α=0.05
Ranking 3.58 4.15 1.96 3.08 2.23 1.3898 1.5492

Table 12.    Results on Friedman test based on 
NFE given in Table 7
N Friedman value Df p-value
13 20.071 4 <0.001

(b)(a)

Figure 2.    Bonferroni Dunn bar chart. The Bar present rank of correspondence 
algorithm and Horizontal cut lines shows the significant level.

(c)
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In conclusion, using the application of Bonferroni-
Dunn’s test, it can be see that both DEwB-1and DEwB-
2 gives significant performances in comparison to the 
other enhanced variants of DE. From the Figure 2(a), it 
may be notice that the DEwB-2 has performed better than 
the DE, TDE and DERL while in case of DEwB-1 there 
is no significant difference in the results. Similarly from 
Figure 2(b), it can be easily observed that LeDE, DEwB-
1 and DEwB-2 performed equally and the performance 
of DeahcSPX and ODE are worse in comparison to 
these algorithms. From Figure 2(c), it is clear that the 
performances of JADE, DEwB-1 and DEwB-2 are same 
but the performances of jDE and SaDE are worse. All 
these tests are conducted at the 5% and 10% significance 
levels.

7.  �Numerical Results for 
Molecular Potential Energy 
Problem

The simulated results for molecular potential energy 
problem at different dimension are presented in Table 14. 
The results are obtained in term of average NFE, mean 
fitness value, Success Rate (SR) and mean CPU time of 50 
runs. The best results are represented as boldface.

From the Table 14 it can be easily observe that for 

D=10, the average NFE taken by DE, TDE and DERL are 
43970, 37980 and 28120 respectively while the average 
NFE taken by DEwB-1 and DEwB-2 are 23220 and 12320 
respectively which are less than other algorithms.

In the same way we can see that for D=15, 20 and 25, 
the NFE obtained by DE are 110875, 209533 and 297840 
respectively while the NFE obtained by TDE are 87380, 
157010 and 228300 respectively and the NFE obtained by 
DERL are 62950, 82350 and 127330 respectively. The NFE 
obtained by DEwB-1 and DEwB-2 are 46090, 79610 and 
117090 while the NFE taken by DEwB-2 are 34680, 60950 
and 75600 for D=15, 20 and 25 respectively. So it is easily 
observed that DEwB-2 has obtained fewer NFE in the 
comparison of all other considered variants of DE while 
DEwB-1 has taken second place in each case of D=10, 15, 
20 and 25 and hence both DEwB-1 and DEwB-2 proved 
the competence over DE, TDE and DERL. 

The AR of DEwB-1 and DEwB-2 over DE, TDE and 
DERL are shown in Table 15 for each D=10, 15, 20 and 
25. For D=10, the AR of DEwB-1 are 47.19%, 38.86% and 
17.42% over DE, TDE and DERL respectively while for 
D=10, the AR of DEwB-2 over DE, TDE and DERL are 
71.98%, 67.56% and 56.18% respectively which shows 
that DEWB-2 gives fast acceleration rate over DE, TDE 
and DERL compare to DEwB-1. Similar results may be 
seen from the Table 16 for D=15, 20 and 25.

Similar performance for CPU time can be analysis 

Table 14.    Numerical results and comparison for molecular potential energy 
problem of DEwB-1 and DEwB-2 with DE and TDE algorithm
Dim Terms DE TDE DERL DEwB-1 DEwB-2
D=10 NFE 43970 37980 28120 23220 12320

Fitness -0.5893 -0.5893 -0.5893 -0.5893 -0.5893
CPU time (Sec) 0.35 0.24 0.24 0.20 0.12
SR% 100% 100% 100% 100% 100%

D=15 NFE 110875 87380 62950 46090 34680
fitness -0.4933 -0.4933 -0.4933 -0.4934 -0.4934
CPU time (Sec) 1.50 1.20 0.80 0.30 0.20
SR% 100% 100% 100% 100% 100%

D=20 NFE 209533 157010 82350 79610 60950
Fitness -1.0005 -1.0005 -1.0005 -1.0005 -1.0005
CPU time (Sec) 2.7 1.8 0.8 0.8 0.6
SR 92% 98% 100% 100% 100%

D=25 NFE 297840 228300 127330 117090 75600
Fitness -0.9045 -0.9045 0.9045 -0.9045 -0.9045
CPU Time (Sec) 4.4 3.6 2.2 1.4 0.8
SR 84% 94% 96% 100% 94%
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from Table 14 and 15. We can see that for each case of 
D=10, 15, 20 and 25, both DEwB-1 and DEwB-2 obtained 
the optimal solution very quickly rather than other 
algorithms time. The AR of DEwB-1 with respect to DE 
are 42.85%, 80.00%, 70.37% and 68.18%, with respect to 
TDE are 16.66%, 75.00%, 55.56% and 61.12% and with 
respect to DERL are 16.67%, 62.50%, 0.00% and 36.37% 
for D=10, 15, 20 and 25 respectively, while AR of DEwB-
2 with respect to DE are 65.71%, 86.66%, 77.77% and 
81.81%, with respect to TDE are 50%, 83.33%, 66.77% and 
78.78% and with respect to DERL are 50%, 25%,75% and 
63.64% for D=10,15,20 and 25 respectively. Hence DEwB-
2 is again shown its efficiency over all other variants in 

term of CPU time also.

7.1 Convergence Graphs
Figure 3 and 4 represented the convergence graphs for 
benchmark problems and potential molecular energy 
problem respectively. The convergence graphs are 
obtained in term of fitness values with respect to their 
correspondence NFE values. From the convergence 
graphs we can see that for all problems, initially all 
algorithms having almost equal fitness values but as the 
NFEs increases, both DEwB-1 and DEwB-2 gained fast 
convergence rate over all other algorithms and hence 
proved the efficiency in term of convergence speed.

Table 15.    Acceleration rate (AR) for DEwB-1 and DEwB-2 over DE, TDE and 
DERL for molecular energy problems
Dim Terms DEwB-1 v/s DEwB-2 v/s

DE TDE DERL DE TDE DERL
D=10 NFE 47.19 38.86 17.42 71.98 67.56 56.18

CPU Time 42.85 16.66 16.67 65.71 50 50
D=15 NFE 58.43 47.25 26.78 68.72 60.31 44.90

CPU Time 80.00 75.00 62.50 86.66 83.33 75
D=20 NFE 62.00 49.29 3.32 70.91 61.18 25.98

CPU Time 70.37 55.56 0.00 77.77 66.67 25
D=25 NFE 60.68 48.71 8.04 74.61 66.89 40.62

CPU Time 68.18 61.12 36.37 81.81 77.78 63.64
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8.  Conclusion

Two modifications in DE algorithm is DEwB-1 and DEwB-
2is presented in the paper. These modified algorithms 
are analyzed on a set of 13 standard, unconstrained 
benchmark functions for high dimensions. Various 
performance measures used for analysing the algorithms 
indicate that the proposed modifications facilitate in 
improving the performance of original DE algorithm. The 

proposed algorithms are applied on a real life application 
to determine the molecular potential energy modelled as 
a nonlinear optimization problem. From the numerical 
and statistical results, it was observed that the proposed 
variants DEwB-1 and DEwB-2 performed better than 
the original DE algorithm and other improved variants 
of DE algorithm. Encouraged by its performance over 
benchmark and molecular potential energy problems, the 
future plan is to apply these variants on more complicated 

Figure 3.    BConvergence graphs of function: (a) F1 (b) F2 (c) F5 (d) F9 (e) F10 (f) F11

Figure 4.    Convergence graph for molecular potential energy problem at D=10, 15, 20, 25.
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real life problems. Also, the study of its mathematical 
properties and theoretical analysis may be considered as a 
future research direction.
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Appendix I

Critical difference is use to check the significant difference 
between performance of two classifiers on the basis 
of their corresponding average ranks. As suggested by 
Demsar (2006), the CD value is calculated as:

k(k 1)CD q
6N

a
+

=

where k denotes the number of algorithms and N 
denotes number of benchmark problems. The value of αq
on significant level at 0.05 and 0.1a=  is given in Table 
16. 

Table 16.    Critical values for the two-tailed Bonferroni-Dunn test; the number of 
classifiers include the control classifier
Classifier 2 3 4 5 6 7 8 9 10

05.0q 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773

1.0q 1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539
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