
Abstract
Background: Pseudo random numbers have indispensable role in designing cryptography systems such as key stream in 
stream ciphers. Efficiency of most crypto systems are in depend on the quality of secret key generated by a pseudo random 
number generator. Improvements/Methods: In the present paper, an efficient pseudo random number generator is 
presented for cryptographic applications. The algorithm is based on controlling distribution of generated random numbers 
with the chaotic henon congruential generator. Statistical Analyses: Statistical tests and histograms are performed over 
the proposed generator and the results confirm the improvements over the proposed algorithms. According to the results 
of statistical tests, proposed algorithms generate pseudo random numbers with acceptable independency and uniformity 
and random sequences with long enough period. Applications: Key streams in stream cipher system can be considered as 
the most important applications of pseudo random numbers. With this regard proposed generators are statistically proved 
as proper key stream generator for designing stream cipher systems. 
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1.  Introduction
Random numbers and random bit generators, RNGs 
and RBGs, respectively, are a fundamental tool in many 
deferent areas. The two main fields of application are 
stochastic simulation and cryptography. In stochastic 
simulation, RNGs are used for mimicking the behavior 
of a random variable with a given probability distribu-
tion. In cryptography, these generators are employed 
to produce secret keys, to encrypt messages or to mask 
the content of certain protocols by combining the con-
tent with a random sequence. A further application of 
cryptographically secure random numbers is the grow-
ing area of internet gambling since these games should 
imitate very closely the distribution properties of their 
real equivalents and must not be predictable or in uneat-
able by any adversary1–3. A random number generator is 
an algorithm that, based on an initial seed or by means 
of continuous input, produces a sequence of numbers or 

respectively bits. We demand that this sequence appears 
“random” to any observer.

Independently of whether a RNG is used for stochastic 
simulation or for cryptographic applications, it has to 
satisfy certain conditions. First of all the output should 
imitate the realization of a sequence of independent uni-
formly distributed random variables. Random variables 
that are not uniformly distributed can be simulated by 
applying special transformations on the output of uni-
formly distributed generators. In this paper we limit our 
discussion on generators that imitate uniformly distrib-
uted variables. 

Moreover, a good RNG should work efficiently, which 
means it should be able to produce a large amount of ran-
dom numbers in a short period of time. For applications 
like stochastic simulation, stream ciphers, the masking of 
protocols or online gambling, huge amounts of random 
numbers are necessary and thus fast RNGs are required. In 
addition to the conditions above RNGs for cryptographic 
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applications must be resistant against attacks, a scenario 
which is not relevant in stochastic simulation4,5. In design-
ing stream cipher, a single pseudo random bit generator, 
plays the role of key stream generator for the stream cipher 
system which is indeed generator of key stream. From the 
cryptographically point of view, a key stream generator 
should have the following important parameters: 

The period of generating key should be sufficiently large •	
to be consistent with the size of the sent message.
Generating bit sequence should be practical and easy.•	
Generated bits should be unpredictable.•	

Also, it should be noted that in order to guaranty unpre-
dictability, the key stream should have two important 
properties: Independence of generating numbers and 
having large period. These properties can be tested by 
statistical tests.

Today’s most of practical stream ciphers are based 
on (LFSR) which makes stream ciphers practical and 
efficient. But LFSR and therefore stream ciphers are inef-
ficient in implementation4. In 1984 Blum and Micali 
described how to generate a PRBG6. In 1999 Pascal Junod 
discussed and proved the security of The Blum-Blum-
Shub Generator from crypto graphical point of view6, and 
it was implemented in 2014 with  Aissa et al7,8. In 2003 
Edkal in his PhD thesis discussed design and analysis 
of stream cipher based on LFSR4. In9 author studied and 
analyzed Chaos-based random number generators in the 
University of Bologna. In10 author studied the relation 
between cryptography and PRNG in his PhD thesis and 
in11 author described the design of a new stream cipher 
based on PRNG.

In the sequel of the work of authors12 in which the 
Linear Congruential Generator is modified by controlling 
the generated numbers with the CHCG and new genera-
tor called (MCHCG) gained suitable properties to be 
applied in cryptography, in the present paper we proved 
that implementing controller on the CHCG lead to far 
better results according to statistical tests.

First, we present the notion of cryptographically 
secure pseudo random bit enumerators (PRBG), and the 
Chaotic Henon Congruential Generator (CHCG).

In the second part, the Modified Chaotic Henon 
Congruential Generator (CHCG), as a very simple and 
provably secure PRBG, is presented, with all the mathe-
matical background needed to understand it. In the third 
part, the proof of its security is treated in details.

The paper is organized as follows: In Section 2, pseudo 
random numbers and Discrete Logistic Map and the 
Chaotic Henon Congruential Generator (CHCG) are 
introduced, in Section 3, we present Modified Chaotic 
Henon Congruential Generator, in Section 4, statisti-
cal tests some comparisons are implemented. Finally in 
section 5 we drive the conclusion.

2.  Preliminaries

2.1  Pseudo-Random Number Generator
A pseudo Random Number Generator (RNG) is defined 
by a structure (S, m, f, U g) where

o	S is a finite set of states.
o	m is a probability distribution on S, called the initial 

distribution.
o	A transition function f : S → S.
o	A finite set of output symbols U.
o	An output function g : S → U.

Then the generation of random numbers is as follows:

Generate the initial state (called the seed) •	 s0 according 
to m and compute u0 = g(s0)
Iterate for •	 i = 1, 2, 3, …, si = f(si–1), ui = g(si).

Generally, the seed s0 is determined using the clock 
machine, and so the random variables u0, u1, …, ui, … 
seems “real” i.i.d. uniform random variables. The period 
of a RNG, a key characteristic, is the smallest integer  
p ∈ N, such that ∀n ∈ N, un+p = un.

Two important statistical properties of the pseudo 
random number generator are uniformity and indepen-
dence13.

The most well-known pseudo random number 
generator are: 

Midsquare method.•	
Linear Congruential Method (LCM).•	
Combined Linear Congruential Generators.•	
Random-Number Streams.•	

9. Pareschi F, Chaos-based random number generator: monotonic implementation, testing and 
application [PhD thesis]. Bologna University; 2006-2009 Dec.  

10. Krhovjak J. Cryptographic random and pseudorandom data generators [PhD thesis]. Masaryk 
University; 2009 Jan. 

11. Babu DS, Patnala MK. Design of a new cryptography algorithm using reseeding-mixing 
pseudo random number generator. International Journal of Innovative Technology and 
Exploring Engineering. 2013; 2(5):284–6.  

12. Vajargah BF, Asghari R. A pseudo random number generator based on chaotic henon map              
(CHCG). IJMEC. 2015; 5(15):2026–37. 

13. Ekdahl P. On LFSR based Stream Ciphers. [PhD thesis]. Lund University; 2003.  
14. Panneton F, Ecuyer PL, Matsumoto M. Improved long-period generators based on linear recurrences 

modulo 2. ACM Transom Mathematical Software. 2006; 32(1):1–16.   
15. Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, 

Heckert A, Dray J, Vo S. A statistical test suite for random and pseudorandom number generators for 
cryptographic applications. National Institute of Standards and Technology. Special Publication 800-
22 Revision 1; 2008. 
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2.2 � The Chaotic Henon Congruential 
Generator (CHCG)

As mentioned in many contexts12–14, a problem of Linear 
Congruential Generator (LCG) has considerably small 
period. That’s why LCG is not sufficient for encryption. 
In12, author’s to combine the LCG and henon map, until 
the generated number becomes suitable for application in 
encryption and named The Chaotic Linear Congruential 
Generator (CHCG). The author’s purpose was to have key 
stream with high period. As we know, the henon map is 
sensitive to initial value and has chaotic behavior. Because 
of this property, to use a henon map when the number, 
generated by LCG, is same. With this procedure, it is pos-
sible to generate suitable key stream. The algorithm of 
CHCG has presented as following:

Algorithm 1: CHCG
select x0

  for i = 1 to n
    xi = axi–1+ b (mod m)
      for j = 1 to i – 1
        if xi == xj

          xi+1 = 1 + axi + bx2
i–1

        end if
      end for
    end for

3.  �The Modified Chaotic Henon 
Congruential Generator 
(MCHCG)

Although the CHCG has proved suitable for stream 
cipher systems application but the statistical properties 
can still be improved. In the present paper, we are going 
to improve the uniformity as well as independency of the 
CHCG. This is done by applying a proper controller to 
regulate the distribution of PRNs generated by CHCG. 

The interval in which we are going to produce random 
numbers is divided into number of subintervals, and at 
every step of the algorithm a subinterval is chosen ran-
domly and then recall BBS to generate PRN at this interval. 
The process of randomly choosing subintervals leads to 
far better results for independency of the CHCG referring 
to statistical tests presented the next section. On the other 
hand the subintervals forced controlled CHCG to gener-
ate PRN more uniform according to the statistical tests 
and Histogram plots. Noting that subintervals should be 

chosen with same chance as much as possible to guarantee 
the uniformity. The algorithm is presented as follows:

Algorithm 2: Modified CHCG
Start: Choose a seed S.
Preparation: �Divide the interval I into some subinter-

vals Ij.
Run: CHCG generator for generating y1, y2, …
For j = 1, 2, …
1.  Choose a subinterval randomly and name it I*.
2.  Transform yj into subinterval I* put into xj.
Return: x1, x2, … As generated random numbers by 
MCHCG.

4.  Statistical Tests
To ensure the security of an encryption system the cipher 
must have some properties such as better distribution, 
long period and high complexity. We used the four suite 
tests in order to test the randomness of sequences gener-
ated by our pseudorandom number generator. The results 
of statistical tests are shown in tables and figures.

In this section the MCHCG is tested by differ-
ent statistical tests in order to show the improvements 
over the CHCG algorithm. In this section, in all tests 
and figures the CHCG and MCHCG generators run by  
x(0) = 0.5, a = 75, b = 250, m = 231 – 1, r = 3.999.

4.1  Histogram Analysis
Figure 2, Figure 3, Figure 4 comparative uniformity of 
distribution of the generators, MCHCG (b) w.r.t CHCG 
(a). First, we generate 1000, 10000, 50000 numbers by 
CHCG and MCLCG. Next, we present, histograms of gen-
erating numbers with CHCG and MCHCG. It can be seen 
that the presented method, i.e., MCHCG is very close to a 
uniform distribution, compared with CHCG method.
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Figure 2. Histogram of frequency .  Frame (a) and Frame (b) respectively ,  for  

1000 generated numbers by CHCG and MCHCG. 

 

 

 

Figure 3. Histogram of frequency .  Frame (a) and Frame (b) respectively ,  for  

10000 generated numbers by CHCG and MCHCG. 
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Figure 2.  Histogram of frequency. Frame (a) and Frame 
(b) respectively, for 1000 generated numbers by CHCG and 
MCHCG.
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4.2  Correlation Test Results
We generated 1000, 10000, 50000, 100000 numbers by 
CHCG and MCHCG Generators, then the correlation 
test is applied to these numbers. The results show that, 
the generated numbers by MCHCG have more indepen-
dence, according to CHCG and MCHCG is efficient in 
the sense that to be applied in cryptography. The final 
result is obtained and present in Table 3.

Now, we generate 1000 numbers by CHCG and 
MCHCG and present, a scatter plot of generating numbers 
with CHCG and MCHCG. It can be seen that the CHCG 
and the MCHCG are independent approximately, but 
presented method, i.e., MCHCG has more independence 
comparing with CHCG method. 

4.3 � Chi-Square Goodness of Fit Test Results
1000, 10000 numbers are generated by CHCG and 
MCHCG generators and then these numbers are tested 
via chi-square goodness-of-fit. The final result is obtained 
and present in Table 1.

4.4  Serial Test Results
The focus of this test is the frequency of all possible 
overlapping m-bit patterns across the entire sequence. The 
purpose of this test is to determine whether the number 

Table 1.  Correlation coefficient results for CHCG 
and MCHCG

N CHCG CHCG
1000 0.0370 –0.0019

10000 0.0386 0.0007
50000 0.0405 0.0003

100000 0.0418 0.0009

Table 2.  Chi-square goodness of fit test results

CHCG MCHCG
N Result P H ϑ N Result P H ϑ

1000 8.6587 0.5782 0 9 1000 0.0569 1 0 9
10000 16.9873 0.1680 0 9 10000 0.0359 1 0 9

Table 3.  Serial test results

CHCG MCHCG
N Result P N Result P

1000 pass 0.3724  1000 pass 0.6980
10000 pass 0.6247 10000 pass 0.7682
20000 pass 0.7328 20000 pass 0.8056

Figure 3.  Histogram of frequency. Frame (a) and Frame 
(b) respectively, for 10000 generated numbers by CHCG and 
MCHCG.
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Figure 4.  Histogram of frequency. Frame (a) and Frame 
(b) respectively, for 50000 generated numbers by CHCG and 
MCHCG.
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Figure 4. Histogram of frequency .  Frame (a) and Frame (b) respectively ,  for  

50000 generated numbers by CHCG and MCHCG. 
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50000 generated numbers by CHCG and MCHCG. 

 

Figure 5.  Scatter plot. Frame (a) and Frame (b)  respectively, 
for 1000 generated numbers by CHCG and MCHCG.

 

 

Figure 4. Histogram of frequency .  Frame (a) and Frame (b) respectively ,  for  

50000 generated numbers by CHCG and MCHCG. 

  

Figure 5. Scatter plot .  Frame (a) and Frame (b) respectively ,  for 

1000 generated numbers by CHCG and MCHCG. 
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Figure 6.  Histogram of frequency in 2D. Frame (a) and 
Frame (b) respectively, for 215 – 1 generated numbers by 
CHCG and MCHCG.
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1000 generated numbers by CHCG and MCHCG. 
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of occurrences of the 2m m-bit overlapping patterns is 
approximately the same as would be expected for a ran-
dom sequence. Random sequences have uniformity; that 
is, every m-bit pattern has the same chance of appearing 
as every other m-bit pattern15. 

In this section, we run serial test for generating num-
bers with CLCG and MCHCG and check randomness 
of the generators. Figure 5, comparative uniformity of 
distribution of the generators, MCHCG (b) w.r.t CHCG 
(a) in 2D. It can be seen that the presented method, i.e., 
MCHCG is very good, compared with CHCG method.

4.5  Run Test Results 
The focus of this test is the total number of runs in the 
sequence, where a run is an uninterrupted sequence of 
identical bits. A run of length k consists of exactly k iden-
tical bits and is bounded before and after with a bit of the 
opposite value. The purpose of the runs test is to deter-
mine whether the number of runs of ones and zeros of 
various lengths is as expected for a random sequence. In 
particular, this test determines whether the oscillation 
between such zeros and ones is too fast or too slow15. We 
check MCHCG and CHCG methods with the run test 
and results present in Table 4. 

5.  Conclusions
In the present paper, we introduced a modification of 
CHCG algorithm to increase the independence and uni-
formity of the CHCG algorithm. This applies a controller 
for proper scattering of generating random numbers. In 
order to show the improvements, we performed statisti-
cal tests on CHCG and MCHCG and the results corned 
the improvements. The statistical tests and histograms 
showed to enhance statistical properties of proposed 
modified generator clearly. The proposed MCHCG is 
targeted stream crypto systems which are context based. 
The CHCG algorithm is secure algorithm that attracted 
researchers in the field of cryptography, but it still can be 
improved for deferent purposes. As an example, it can 
speed up for efficient implementation.

Table 4.  Run test results

N CHCG MCHCG
215-1 0.39453 0.60957
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