
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/87787, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Robust Digital Text Watermarking Algorithm
based on Unicode Extended Characters

Nasr addin Ahmed Salem Al-maweri*, Wan Azizun Wan Adnan, Abdul Rahman Ramli,
Khairulmizam Samsudin and Sharifah Mumtazah Syed Ahmad Abdul Rahman

Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra
Malaysia, 43400, Malaysia; senassr_maweri@yahoo.com, wawa@upm.edu.my, arr@upm.edu.my,

khairulmizam@upm.edu.my, s_mumtazah@upm.edu.my

Abstra ct
Objectives: A new text watermarking algorithm is proposed in this paper to protect documents from malicious attacks.
Methods: In this paper, a novel digital text watermarking algorithm is developed based on Unicode extended characters.
The algorithm is implemented to encompass watermark generation, embedding and extraction components. Predefined
encoding tables are constructed to achieve the embedding while scrambling mechanism is proposed in generation and
extraction to secure the watermarks. Findings: To evaluate the algorithm, it was tested, using ten different text samples,
under various attacks such as conversion, reformatting, copying, insertions and deletions. The proposed algorithm
has attained high level of imperceptibility with PSNR between 63.15 and 70.88 and SIM between 99.93% and 99.97%.
Evaluating the robustness of the algorithm proved that it resists most of the attacks with high detection accuracy reached
100% in most cases. It has also achieved improved capacity with 2 bits/word and increased security level compared to the
previous works. Application/Improvements: The proposed algorithm has added a new value to the information security
field and can be used for documents protection from various malicious aspects.

1. Introduction

Information security in the digital world has become
an important issue in the last few years due to the
large volume of information exchanged over the world
wide network. Information exchanged can be in a
variety of forms such as audio, video, images and text.
Threats, malicious attacks, illegal usage and viola-
tions being introduced to the exchanged information
have brought a big challenge to the information secu-
rity research area. Usually, the text remains the most

transmitted media compared to the other forms.
Because of that, it is the most threatened dominant to
such illegal acts. For example, text documents can be
illegally copied, tampered, redistributed, reproduced,
leaked, or exposed to copyright and authentication
violations. The daily illegal acts on text documents
have put a new research direction for information
security specialists.

Digital watermarking is one of the commonly used
technologies to provide a protection to text document
from such violations. In digital watermarking, additional

Keywords: Extended Characters, Robustness, Scrambling, Text Watermarking, Unicode

mailto:wawa@upm.edu.my
mailto:arr@upm.edu.my
mailto:khairulmizam@upm.edu.my
mailto:s_mumtazah@upm.edu.my

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 2

Robust Digital Text Watermarking Algorithm based on Unicode Extended Characters

information is inserted to the original content of the
text. This information will be accompanying the text in
a visible or an invisible way to be used as a proof of the
originality of the document. The embedded informa-
tion is known as watermark. In general, watermarking
algorithms are designed to have three stages namely,
watermark generation, watermark embedding and
watermark extraction.

In the last few years, researchers have increasingly
paid more attention to find new robust watermarking
techniques for the text documents. However, the avail-
able techniques are still lacking the required robustness
as well as there is still a need for a technique that
enhances or attains some trade-off between imper-
ceptibility, robustness and capacity. That is due to the
difficulty of designing watermarking algorithms for
text, since text has limited features compared to other
media such as images and videos. Consequently, a new
imperceptible, reliable, robust and secure as well as
text watermarking algorithm which provides effective
capacity is needed to solve the current text documents
protection issues.

This paper is organized as follows: Section 2 reviews
the recent watermarking algorithms for text documents.
The 3rd Section defines the Unicode extended characters
which has been utilized in the proposed work. The 4th
Section presents in details the proposed text watermark-
ing algorithm.

The 5th Section describes the results obtained from
validating and evaluating the proposed algorithm. Finally,
the 6th Section concludes the paper.

Research in digital text watermarking has taken
various directions according to the applications types’
requirement such as copyright protection, tampering
protection, distribution control, and authentication and
broadcast monitoring. According to this, the researchers
have come up with different text watermarking tech-
niques in trying to fulfill the emerged requirements.

Generally, the available digital text watermark-
ing algorithms insert the watermarks to the text based
on modifying the text to make it in a different status
compared to the original text. The watermarks can be
detected according to the modifications from the water-
marked text. The available text watermarking algorithms
can be categorized according to the method used during
embedding. The following paragraphs will elaborated the
available works according to this criterion.

 Some algorithms use the format and structure prop-
erties of the text document such as line shifting1, word
shifting2 or text features3. On the other hand, natural lan-
guage watermarking modifies the text either in a semantic
or syntactic way4. Some other techniques deal with the
text document as an image and use image watermarking
technique either by watermarking the text image in the
spatial domain or in the wavelet domain. Other algo-
rithms proposed using the text features and properties to
generate a watermark key and register it with a trusted
third party5.

Recently, a new approach implemented in
Microsoft Word document was proposed by3. For the
purpose of embedding the watermark, two properties
of the text were employed, Langauge ID and No proof-
ing. By changing the values of one or both properties,
0 or 1 is considered embedded in the text. This algo-
rithm has shown a high imperceptibility. However
payload capacity was 0.5 bit/char. Moreover, chang-
ing the used properties into default values in word
document will destroy the watermark data. Author
in6 introduced another approach to watermark text on
web pages. In this method, the watermark insertion to
the text was executed by using the tags in the web page
source after converting it the watermark to hexadeci-
mal form. In this algorithm a high imperceptibility is
achieved. But, the watermarks are easy to lose if the
source code was modified. Furthermore, watermark
data security was neglected in this method. Author
in7 developed an algorithm to watermark web pages
text as well. This algorithm extracts the features of
the text by applying natural language syntactic and
semantic analysis. Then the watermark is generated
from the resulted analysis. The generated watermark
is hashed then inserted to the text by adding white
spaces between words. The watermark might be more
robust in web pages by using white spaces. Using this
algorithm in text documents will lack good robust-
ness. In addition, the disadvantage of text abnormality
with additional spaces will affect the imperceptibly.
Another data hiding method called UniSpaCh that
utilized inter-word spaces was earlier proposed2. This
method was developed for Microsoft word docu-
ments. They used a combination of Unicode spaces
and normal spaces such as six-per-em, hair space,
thin space and punctuation to hide two bits from the
watermark bit stream. This approach increases the

Nasr addin Ahmed Salem Al-maweri, Wan Azizun Wan Adnan, Abdul Rahman Ramli, Khairulmizam Samsudin and Sharifah
Mumtazah Syed Ahmad Abdul Rahman

Indian Journal of Science and Technology 3Vol 9 (48) | December 2016 | www.indjst.org

spaces between characters and paragraphs which will
defiantly affect the imperceptibility level. It achieves
a good capacity of 2 bits/word. But, modifications
to the text easily affect the watermark detection
accuracy.

Author in8 developed a text watermarking algo-
rithm which used the natural language perspective
again. In this algorithm, the watermark key was gen-
erated by using the grammatical rules. The author’s
ID, modal verbs, pronouns and the count of conjunc-
tions were combined together to create the watermark
key. This watermark is registered with a Certifying
authority for later usage. This method has good
imperceptibility compared to other natural language
watermarking algorithms, but lower robustness.
Another natural language watermarking algorithm
was proposed by9. In their proposed work, the algo-
rithm was developed to watermark German text. For
the purpose of embedding the watermark, syntactic
transformation, conjunctions modulation, negations
of words and lexical transformation (modifying
words that have repeated letters) were utilized. The
main merit of this method was its adaptability to dif-
ferent languages such as English, Spanish or French.
But, this approach has the same disadvantages of nat-
ural language watermarking such as semantic drops
and low robustness to content modifications. Author
in10 implemented a reversible watermarking method
where the text can be recovered to the original state
upon extraction for Chinese text. They suggested
using synonyms substitution to embed the watermark
information. Context collation degree of sentences
and words were calculated and used for the purpose
of decreasing the ambiguity and drops of content
semantics. The main advantage of this method is
reversing the watermarked text into its original status
before extraction. Another work that was previously
enhanced the avoidance of semantic drops was pro-
posed by11. This method was implemented using some
morpho-syntactic tools to build the syntax tree. The
embedding of the watermark was achieved by alter-
ing the adverbs places and verbs replacement. This
method has a low capacity where it was only able
to hide 0.5 to 1 bit/sentence and limited to Turkish
language. Natural language watermarking was first
proposed by12. After generating a syntax tree from the
text, the embedding was executed. Before that a secret

key was constructed from the text then inserted to
syntax tree by modifying transformations in the gen-
erated tree.

A new text watermarking perspective was intro-
duced recently to avoid direct amendments to the
text itself resulting in high imperceptible algorithms.
These techniques are known as zero watermarking.
Author in13 used Term Frequency–Inverse Document
Frequency (TF-IDF) tool in their method to analyze
the text features, particularly frequency of words. The
watermark key was generated from the features then
hashed using MD5. The hashed watermark then was
registered in a certifying authority. A zero watermark-
ing algorithm was proposed by14. In this algorithm,
the embedding of the watermark was implemented by
generating watermark key as in the other zero water-
marking algorithms. The count of letters in two words
before and after a predefined keyword was used. The
resulted numbers through the whole text were con-
catenated in one string to construct the watermark
to register it with a certifying authority. Author in15
implemented another zero watermarking method.
This time the embedding of the watermark was imple-
mented by choosing the words that had more than
four characters. The first character in each of the cho-
sen word was appended to the generated watermark
key. The resulted string was registered with certifying
authority. Author in16 proposed a method that utilizes
the occurrences of letters in each word by choosing
the first letter from the word that has this letter more
than once. A pattern was generated from those let-
ters to build the watermark key and register it with a
trusted third party. Quite recently author in17 devel-
oped a zero watermarking method based on Markov
model. Text was analyzed using the Markov model
of order three to generate a pattern from each three
unique consecutive letters. The output from Markov
model will be in a form of sequence numbers. This
sequence is hashed using MD5 and then registered
with a third party for the extraction purpose. Author
in18 proposed another algorithm based on zero water-
marking idea. They used double letters list combined
with a predefined image-plus-text watermark to
generate the key watermark. The image-plus-text
watermark was mapped to a text before mixing it with
the double letters list. The combination key was then
registered with certifying authority.

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 4

Robust Digital Text Watermarking Algorithm based on Unicode Extended Characters

The above zero watermarking algorithms have
introduced some improvement in imperceptibil-
ity since the watermark is logically embedded.
However, it remains limited to only a few applica-
tions. Amendments in the text affect the features and
consequently the robustness and leads to the incor-
rect watermark detection.

The previous discussed algorithms deal with
text as text. At the same time, some algorithms have
been proposed to treat text as binary images. Based
on that, known image watermarking techniques can
be applied to text binary images as well. Author in19
developed an algorithm that utilized the four bits of
RGB color in every letter benefiting from the inability
of the human visual system to detect slight changes
in the colors. The watermark data were embedded
in a binary form by changing the four bits values
according to the watermark input bits. Author in20
reported the development of a method that used the
spatial domain to watermark text documents. In their
method, the insignificant pixels in the background of
the text were utilized to embed the watermark data.
Another method was proposed in21 that used the
known word-shift technique. By shifting the word,
inter-word spaces was amended after constructing
a sin wave watermark from the original inter-word
space. Author in22 proposed a method of watermark-
ing travelling text documents over internet. The
text document was represented in a spread spec-
trum signal. The watermark was generated from the
text features and added to Pseudo Random Number
Generator (PRNG), then spread it over the original
signal. The watermarked text signal was used in the
receiver side to extract the watermark by subtracting
Pseudo Random Number (PRN) from the text signal.

Treating the text documents as images has its draw-
back of degrading the text quality as well as the low
resistance to image manipulations.

Previous works in text watermarking algorithms
are lacking in satisfying robustness and impercepti-
bility requirement which is considered as a hard task.
Dealing with plain text makes finding a technique to
hide the watermark data in text difficult since text
properties are limited. Besides, adding or modifying
text for the purpose of hiding other information on the
text will definitely affect the original text and would
lead to a weak performance. Most algorithms discussed

in the previous section, suffer from low imperceptibil-
ity, robustness and capacity.

2. Unicode Extended Characters

In this work, a new technique is proposed for text
watermarking. The proposed technique employs
Unicode Extended Characters as the object used to
hide the watermark information in the plain text.
Microsoft word processor and most of the text edi-
tors support Unicode extended characters. The usual
typed text in any text editor utilizes basic Latin charac-
ters, or commonly called ASCII characters with 8 bits
code. Furthermore, most operating systems include the
Unicode standard23.

The idea of utilizing Unicode extended characters as
the basis of the developed text watermarking embedding
operation is because Microsoft Word supports these
characteristics. In addition, the presence of same alpha-
betical letter in different code numbers was the courage
for inventing the idea of employing the extended char-
acters to hide the watermark bits. For example, letter
‘A’ has ASCII code of ‘65’ and Unicode of ‘1040’. Simple
coding tables are designed to choose the suitable ASCII
and Unicode extended characters to be utilized by the
embedding operation. Unicode extended characters
has provided a robust, high imperceptible and enough
capacity metrics to the developed text watermarking
algorithm.

3. Proposed Algorithm

3.1 Architecture
The proposed text watermarking algorithm is
designed to achieve the purpose of inserting the
watermark bits stream into the Word document
text. The text watermarking algorithm components
are described in Figure 1. Text watermarking algo-
rithm consists of three main components, namely,
watermark generation, watermark embedding and
watermark extraction. Watermark Generation compo-
nent is responsible for generating the array elements
of the watermark data received from the author of
the document. The generation component will con-
vert the watermark into stream of binary bits then
encode or scramble the watermark using a 5 digits key

Nasr addin Ahmed Salem Al-maweri, Wan Azizun Wan Adnan, Abdul Rahman Ramli, Khairulmizam Samsudin and Sharifah
Mumtazah Syed Ahmad Abdul Rahman

Indian Journal of Science and Technology 5Vol 9 (48) | December 2016 | www.indjst.org

inserted by the user. The scrambling mechanism will
be explained in section B.

Figure 1. Proposed text watermarking algorithm
architecture.

Currently, the watermark length is fixed to 80 bits;
however the algorithm is designed to be flexible to lon-
ger or shorter length. The output from the watermark
generation will be reconstructed as array elements and
then will be used by the embedding component. The
embedding component is designed to insert the binary
watermark elements into the original text document. This
component runs by executing the following operations
which include: Text indexing, index filtering, choosing
embedding locations, Unicode characters matching and
injecting watermark bits. The output from the embed-
ding component will be the watermarked document that
contains a hidden stream of bits. The third component is
called watermark extraction. This component is designed
to detect and retrieve the watermark bits from the water-
marked document. The extraction is achieved by running
two operations, text indexing and bits stream detection
and retrieval. The output from these operations is in a
form of bits stream. Then the watermark bits stream is
decoded by using the same scrambling mechanism and
same key used during the embedding to recover the origi-
nal embedded watermark.

3.2 Watermark Generation and Scrambling
As a pre-processing for the embedding phase, the first
component to run the proposed algorithm is watermark
generation. First, the received watermark data from the
user are converted to binary bits which are later stored as
array elements. As mentioned previously, the watermark

length in the developed algorithm was tested under 80 bits
long. For protecting the watermark information, securing
the watermark data requires using a key that contains five
numerical digits. A method is proposed to scramble the
watermark data using the generated key. Figure 2 depicts
the text watermarking generation process.

Start

End

Split bits into 80 arrya Elements

Read 5 digits key

Generate 80 elements Key-Array

Key-Array XOR W elements

Convert W to Binary Bits

Read Watermark W

Generated
watermark

Figure 2. Watermark generation.

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 6

Robust Digital Text Watermarking Algorithm based on Unicode Extended Characters

 The generation of the key stream and the scrambled
watermark take the following steps:

• Read the key.
• Convert the key from integer to binary form.
• Expand the resulted binary bit stream to cover the

whole 80 elements of watermark Array.
• XOR the generated 80 elements of the key with the

watermark array.
• Send the encoded watermark array after the XOR

operation to the embedding function.

3.3 Watermark Embedding
Watermark embedding process shows the method of
inserting the watermark bits into the text document to be
protected. The main purpose of the embedding compo-
nent in the proposed algorithm is to embed the watermark
elements generated in the previous step to the text docu-
ment. The embedding process detailed implementation is
explained in the following sections. Figure 3 describes the
embedding process.

Figure 3. Watermark embedding process.

3.3.1 Encoding Tables
In the proposed algorithm, binary numbers are consid-
ered to represent the watermark information needed to
be inserted in the text document. According to this, the
watermark unit will be either 0 or 1. To achieve embed-
ding 0 or 1 in the plain text, available similar Unicode
characters are chosen to represent either 0 or 1. Two
encoding tables are constructed to separate the avail-
able characters into two groups. First group means 0’s are
embedded and the second group means 1’s are embed-
ded. These tables are named Zero-Encoding Table and
One-Encoding Table respectively. Each table contains list
of ASCII characters and their codes. This list is associated
with their similar Unicode extended characters and their
codes which are used for the embedding purpose. Tables

1 and 2 show how those tables are constructed. The tables
show the chosen ASCII characters to carry the watermark
bits including (small and capital letters). The associated
ASCII codes and Unicode characters watermarking code
are listed in column 2 and 3 from each table where Table
1 is constructed for Zero-Encoding and Table 2 is con-
structed for One-Encoding.

Table 1. Zero-encoding table
Character ASCII Code

(Decimal)
Watermarking-Code

(Decimal)
a 97 1072
c 99 1089
e 101 1077
h 104 1211
i 105 1110
A 65 1040
B 66 914
C 67 1057
E 69 917
H 72 919
I 73 921
J 74 1302
K 75 922
M 77 924

Table 2. One-encoding table
Character ASCII Code

(Decimal)
Watermarking-Code

(Decimal)
j 106 1112
o 111 1086
p 112 1088
s 115 1109
x 120 1093
y 121 1091
N 78 925
O 79 927
P 80 929
S 83 1029
T 84 932
X 88 935
Y 89 933
Z 90 918

Nasr addin Ahmed Salem Al-maweri, Wan Azizun Wan Adnan, Abdul Rahman Ramli, Khairulmizam Samsudin and Sharifah
Mumtazah Syed Ahmad Abdul Rahman

Indian Journal of Science and Technology 7Vol 9 (48) | December 2016 | www.indjst.org

3.3.2 Text Indexing
During the implementation of the algorithm, process-
ing the text document (Word document) directly from
the hard-disk has shown a large delay on executing the
watermarking process. Currently, many search engines
use the indexing technique for the purpose of retrieving
information from the internet. Using such technique will
enhance the performance and speed up the process of get-
ting the search result. In indexing, instead of searching for
the keyword directly in the documents, a prior processing
for these documents is executed to index the documents
text in a specific way which facilitates the search later. The
keyword is then searched against the indexes, instead of
dealing with the keyword. String matching is considered
one of the most trivial topics in information retrieval.
Indexing the string itself has taken the same way used
in searching by index. This technique is utilized in the
proposed text watermarking algorithm to enhance the
embedding computation time by indexing the document
text as a prior processing before really dealing with the
watermark embedding process. This is achieved by assign-
ing each character in the document a number that refers
that refers to its index. The index values and characters
are stored in arrays to simplify the access. Those index-
ing arrays are used during the embedding and extraction
instead of the text document itself. Figure 4 depicts the
processes of how indexing technique was implemented in
the embedding operation.

3.3.3 Index Filtering
As a result from the indexing process execution, two index-
ing arrays are created with the same size of the general
indexing array, one for zero-allowed indexes and the other
for one-allowed indexes. After filling both arrays, some ele-
ments will be having no values. As described in the encoding
tables, these unknown values are obtained because that there
are some characters, in the text document, not considered
to allow neither 0 nor 1. To enhance the performance of
the algorithm and to avoid missing up with indexes, a fil-
tering process is followed to purify the indexing arrays to
have only the embeddable indexes values in both arrays.
Figure 4 shows in the second part how the filtering process
is implemented. Simply, new arrays called filtered-indexes-
zero and filtered-indexes-one are created to store the values
of indexes above than zero where zero refers to unknown
index in the previous created arrays. To filter the indexing
arrays, the marked character index is read, if it is marked as

zero-allowed and the index is greater than 0, append the
value in filtered-indexes-zero. Otherwise, check if it is
marked as one-allowed and the index is greater than zero
append the index to filtered-indexes-one.

Start

Count the total number of
characters in the document

Create an indexing
array

Populate the indexing array with the
characters

Read Character

 Character belongs to Zero
encoding table

Mark the index as Zero bit
allowed

Mark the Index as One bit
allowed

 Character belongs to One
encoding table

Character index == total
Characters Number

TrueFalse

True

False

Read Marked Character
Index

Index marked with Zero > 0

Save the index value in new
Zeros indexing array

Save the index value in new Ones
indexing array

 Index marked with One > 0

Character index == total
Characters Number

TrueFalse

True

False

Indexing

Filtering

To Injecting the watermark
Process

Figure 4. Text indexing and filtering.

3.3.4 Watermark Bits Injecting
After indexing the text characters and executing the filter-
ing process, filtered-indexes-zero and filtered-indexes-one
are used to during bits injection at the main text. Figure 5
shows the steps of how the watermark bits injecting oper-
ation was implemented. To implement the bits injecting
process which is considered as the most important part
in the embedding operation, a pointer to the character
index is created to move through the text characters and
inject the bits one by one. The pointer points to nothing
in the beginning. To activate the pointer, the first bit in
the watermark array is checked, if it is 0, the pointer is
moved to point at the first character index marked as
zero-allowed in the associated indexing array. Otherwise
it is moved to point to the first character index marked as
one-allowed in the associated indexing array.

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 8

Robust Digital Text Watermarking Algorithm based on Unicode Extended Characters

Create Index Pointer

Index Pointer Points to the first
character marked as Zero Allowed

First bit in Watermark
Vector==0

Index Pointer Points to the first
character marked as One Allowed

TrueFalse

Read Watermark bit

Watermark Bit ==0
TrueFalse

Find the extended character code that match
the pointed character in 0_Encoding Table

Replace the pointed character with the new
0_Encoding extending character

Move Index Pointer to new suitable index

Find the extended character code that match
the pointed character in 1_Encoding Table

Replace the pointed character with the
new 1_Encoding extending character

Move Index Pointer to new suitable index

 Watermark Bit ==1

True

Watermark vector index
 == length -1

False

Injecting
the

Watermark
bits

End

Figure 5. Watermark bits injection.

The details of each step involved in bits injecting is as
follows:

 Step 1: The bit value in the pointed index is read and
checked. If the bit value is 0, the process of Character
Matching (refer to Section 6) is run on zero-encoding
table to return the code of the extended Unicode charac-
ter that matches the ASCII indexed character.

Step 2: The ASCII character is replaced in the text
with the returned extended Unicode character using the
returned code.

Step 3: Find the next suitable position according to
the value of the next bit and move the pointer to that loca-
tion. This is achieved by ‘find embedding location’ process
which will be discussed in Section 5.

Step 4: Otherwise, if the bit to be inserted is 1; pre-
vious steps are repeated but now with considering the
value 1 and one-encoding table instead. The process of
Character Matching is run on one-encoding table to
return the code of the extended Unicode character that

matches the ASCII indexed character. After that, the
ASCII character is replaced in the text with the returned
extended Unicode character using the returned code.

Step 5: Find the next suitable character position
according to the value of the next bit and move the pointer
to that location. This is achieved as well by ‘find embed-
ding location’ process.

 The above steps are repeated until it achieves 80 bits
injection in the text characters.

3.3.5 Finding Embedding Locations
During the injection of the watermark bits, there is a need
for preparing the next embeddable and suitable character
for injecting the next bit. This preparation is according to
the value of the next bit that will be injected. Suppose that
the pointer is in the current bit which is for example 0,
and the next bit to be injected is 1. In this case, the injec-
tion process needs to know where to inject the coming
1 bit, due to the probability of the presence of 0 embed-
dable characters follow the current replaced character.
According to this some characters need to be skipped and
the pointer must move to the first character index that
allows injecting a bit of value 1. Figure 6 explains how the
next index is prepared.

Start

Create Next_index pointer to
move the embedding locations

Check if the next bit to be
embedded is Zero

if the tested index is the first value
 greater than the last injected index

Read indexing array for values
marked as zero_allowed

Next_index points to tested index
to be the next suitable embedding

location.

Counter == indexing array
length -1

True

True

False
if the tested index is the first value

 greater than the last injected index

Read indexing array for values
marked as one_allowed

Next_index points to tested index
to be the next suitable embedding

location.

Counter == indexing array
length -1

True

False

False

End

Return
Next_Index

Figure 6. Finding embedding location.

Nasr addin Ahmed Salem Al-maweri, Wan Azizun Wan Adnan, Abdul Rahman Ramli, Khairulmizam Samsudin and Sharifah
Mumtazah Syed Ahmad Abdul Rahman

Indian Journal of Science and Technology 9Vol 9 (48) | December 2016 | www.indjst.org

3.3.6 Character Matching
In the embedding operation, before replacing the
ASCII characters in the main text, the injecting pro-
cess needs to know which character matches the
character to be replaced in the encoding tables. This
matching is executed after deciding whether the bit
to be injected is 0 or 1. The function of character
matching returns the code of the Unicode extended
character that matches the ASCII character from the
encoding tables according to the value of the current
bit needed to be inserted.

3.4 Watermark Extraction
The extraction component in the developed algo-
rithm aims to extract the watermark data from the
watermarked text document. The following sections
will explain in details how the extraction component
is implemented. Figure 7 describes the watermark
extraction.

Start

Create Indexing Array
 Array_string

Populate the indexing array with the
characters

Read Character

if Character is being injected and belongs to
0_encoding table

Extract bit value =‘0’Extract bit value =‘1’

if Character is being injected and belongs to
1_encoding table

Character index == total
Characters Number

TrueFalse

True

False

80 elements

Append ‘0’ to
Array_string

Append ‘1’
 to Array_string

Split the watermark bits to Array

End

80 bits

Indexing

Decode the watermark

Import the plain text from pdf

Check Document Type
Pdf Word Doc

Detection &
retrieval

Return Extracted
Watermark

Read The Watermarked
Document

Figure 7. Watermark extraction.

3.4.1 Text Indexing
As text indexing is used in the embedding operation, it
will be used again in the extraction operation to enhance
the computation time and to speed up the process of
extracting the watermark from the text document. That is
because dealing with text from the document in a direct
way and looping over it definitely showed much more
consumption time. Figure 7 shows how the indexing pro-
cess is integrated to the extraction component.

After the document is loaded, the extraction function
will start with recognizing if the document is a word docu-
ment or pdf document. The same indexing process will be
followed in both situations. The only difference is in the
case of pdf document, before indexing the text, the text
itself is imported from the pdf using a free library called
pdf box. This library has a function called PDF Stripper
which retrieves the content of a pdf file as it is. After the text
is imported from the pdf, the indexing process can begin.

In the text extraction function the indexing process is
made simple by just creating one indexing array, reading
the text character and populating the indexing array to be
used during the bits detection and retrieval.

3.4.2 Watermark Bits Detection and Retrieval
After the watermarked text is being indexed in an index-
ing array, the time has come to detect and retrieve the
watermark bits from the text. Figure 7 shows how the
detection of the injected characters and retrieval of the bits
from these characters work.

The detailed explanation of the steps involve in bits
retrieval is as follows:

Step 1: the extraction function iterates over the
indexed characters one by one. Each time, the character is
checked if it has a Unicode extended character code. This
is to detect that the character is carrying a watermark bit
or not.

Step 2: retrieve either 1 or 0 to construct the water-
mark Array-string variable. To do that, the code of the
character is read, and then checked. If the code belongs
to Zero-encoding table, retrieve 0. Otherwise, check if the
character code belongs to one-encoding table, retrieve 1.

Step 3: go to the next character until the 80 embedded
bits have been extracted.

Figure 8 presents a sample of watermarked text and its
associated watermark. The characters which highlighted
are the chosen characters for inserting the bits according
to the encoding tables.

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 10

Robust Digital Text Watermarking Algorithm based on Unicode Extended Characters

3.4.3 Watermark Decoding
To recover the correct original watermarks the same
key used by the algorithm to generate the scrambled
watermark must be used again to decode the extracted
watermark. Retrieving the decoded watermark involves
repeating the steps in the generation process.

Figure 8. Sample of watermarked text.

4. Experimental Results and
Discussion

To validate the performance of the proposed algo-
rithm, ten text document samples from different
websites such as Reuters, Official Governmental
documents, News Papers, and Articles are utilized.
These ten samples are input to the algorithm one by
one. The algorithm then is run to embed ten different
watermarks, each in one text document sample. The
watermarked text document samples with the original
associated watermarks are saved for the next evalua-
tion process. Each original text document sample will
have its own watermarked version. These two ver-
sions are later used to evaluate the imperceptibility
as well as the capacity metrics using both PSNR (Peak
Signal to Noise Ratio) and SIM (Similarity) according
to the following steps.

In the first step the root mean squared error (RMSE)
is calculated which is given by the following formula.

1 1
2

0 0

1 [(,) (,)]
m n

doc doc
i j

RMSE O i j W i j
mxn

- -

= =

= -åå
 (1)

Where mxn is the size of the image, (i,j) is the pixel
location,

docO is the original document image and
docW is

the watermarked image document. In the second step,
according to the value resulted from the previous equa-
tion the PSNR is defined as

10
()

20log docMAX O
PSNR

RMSE
= (2)

Where)(docOMAX is the maximum pixel value in
the document image. In this case it is equal to 255
since the text document was transformed into 8 bits
image.

Then, the similarity percentage is found as follows:

%100
)(

1

−= x

OMAX
RMSESIM

doc

 (3)

The watermarked version of each text document
sample is attacked (Conversion, copying, reformatting,
insertion or deletion) then utilized as input to the extrac-
tion component after applying the attack.

In conversion attack, the watermarked Word doc-
uments are converted to four different extensions
such as pdf, html, rtf and odt, and then these files
are used to extract the watermarks. In, copy attack,
the text in the watermarked document, is exposed
to copying to different editing environment such as
Web, OpenOffice, Wordpad and NotePad, saved, and
then the copied text is used in extraction. In refor-
matting attack, the layout, font, and text alignment
are modified randomly. In insertion attack, differ-
ent percentage of additional text was added to the
watermarked text either in one place (localized) or
in multiple places (dispersed). In deletion attack, the
watermarked text is exposed to characters, words and
phrases deletions either from one place (localized) or
from multiple places (dispersed).

The extracted watermarks are then compared
with the original watermarks in order to measure the
robustness of the algorithm by computing the detec-
tion accuracy using hamming distance function.
Hamming Distance (HD) measures the number of
locations that differs between two bit streams. In other
words, it defines the error rate between two bit strings.
For Example

Nasr addin Ahmed Salem Al-maweri, Wan Azizun Wan Adnan, Abdul Rahman Ramli, Khairulmizam Samsudin and Sharifah
Mumtazah Syed Ahmad Abdul Rahman

Indian Journal of Science and Technology 11Vol 9 (48) | December 2016 | www.indjst.org

B1 = 01110101101
B2 = 11110110101
Hamming Distance (B1, B2) = 3

The resulted hamming distance value was then used
to compute the Detection Accuracy Percentage which is
given by:

%100

 −
= x

N
HDNAccuracyDetection

bits

bits

 (4)

Where bitsN the number of watermark is bits and
is the hamming distance.

 The results obtain from evaluating the proposed algo-
rithm is discussed in the next sub sections.

4.1 Imperceptibility
Peak Signal to Noise Ratio (PSNR) and Similarity
Percentage (SIM) are used to ensure that a good per-
ceptual quality and high similarity percentage have
been achieved in the proposed text watermarking algo-
rithm. PSNR acceptable value should be above 3024
and it shows that the proposed algorithm has achieved
high PSNR and SIM values as shown in Figure 9 and
Figure 10. In the proposed algorithm, the obtained
PSNR value is between 63.15 and 70.88 and the simi-
larity is between 99.93% and 99.97% in all the samples.
Whereas, UniSpaCh introduced too much deterioration
to the original document quality and PSNR values are
below 30 and similarity percentage between 88.96% to
maximum 93.13%.

Figure 9. PSNR of proposed algorithm vs UniSpaCh.

Figure 10. Similarity percentage of proposed algorithm vs
UniSpaCh.

4.2 Robustness and Security
The robustness of the proposed algorithm is tested
by utilizing 80 bits watermark and compared with
UniSpaCh algorithm by exposing both algorithms
to the same attacks. The detection accuracy is com-
puted in each text sample. The experimental result
shows that the proposed algorithm resists copying,
conversion, reformatting attacks where the detection
accuracy under these attacks is 100% as can be seen
in Figures 11, 12 and 13. UniSpaCh attained similar
results under these attacks; however it showed less
robustness when the word document is converted
to pdf file. In addition, the proposed algorithm is
also tested for insertion and deletion attacks and
shows a high level of detection accuracy compared
to UniSpaCh algorithm as can be seen in Figures
14, 15, 16 and 17. The proposed algorithm survived
both dispersed and localized insertion attacks, while
UniSpaCh failed in most cases. The proposed algo-
rithm has also showed better robustness in both kinds
of deletion attack compared to UniSpaCh.

Speaking about watermarking security, one should
differentiate between security and robustness. Where
robustness refers to how the watermark resists attacks
to persist in the watermarked text; while a secured
watermark refers to how the watermark information are
being unrevealed even if the watermark was extracted
maliciously25. Therefore, it can be said, the proposed
algorithm has considered the security part since the
watermark embedding is executed using two keys, each
one has five digits. Without the keys it is impossible to
retrieve the right information for the watermark.

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 12

Robust Digital Text Watermarking Algorithm based on Unicode Extended Characters

Figure 11. Robustness under copy attack of proposed
algorithm vs UniSpaCh.

Figure 12. Robustness under conversion attack of
proposed algorithm vs UniSpaCh.

Figure 13. Robustness under reformat attack of proposed
algorithm vs UniSpaCh.

Figure 14. Robustness under localized insertion attack of
proposed algorithm vs UniSpaCh.

Figure 15. Robustness under dispersed insertion attack of
proposed algorithm vs UniSpaCh.

Figure 16. Robustness under localized deletion attack of
proposed algorithm vs UniSpaCh.

Figure 17. Robustness under dispersed deletion attack of
proposed algorithm vs UniSpaCh.

4.3 Capacity
Evaluating the capacity of the proposed algorithm was
reported in three factors payload capacity, granularity and
file size. The algorithm has achieved a payload capacity

Nasr addin Ahmed Salem Al-maweri, Wan Azizun Wan Adnan, Abdul Rahman Ramli, Khairulmizam Samsudin and Sharifah
Mumtazah Syed Ahmad Abdul Rahman

Indian Journal of Science and Technology 13Vol 9 (48) | December 2016 | www.indjst.org

of about 2 bits/word where UniSpaCh attained the same
value. The granularity has shown that the proposed algo-
rithm is able to embed the watermark bits in reasonable
number of character. Figure 18 shows the granularity of
the proposed algorithm in comparison with UniSpaCh.
Table 3 shows that the algorithm has introduced a
low impact on the file size after watermarking the text
documents.

Figure 18. Granularity of the proposed algorithm of
proposed algorithm vs UniSpaCh.

Table 3. File size impact of proposed algorithm vs
UniSpaCh

Text
Sample

Proposed Algorithm
Size Increase%

UniSpaCh
Size Increase%

1 4.07 4.62
2 3.04 3.37
3 2.83 3.72
4 3.11 11.47
5 3.77 3.70
6 5.13 3.21
7 5.23 2.86
8 3.20 4.83
9 9.50 9.65
10 3.18 3.13
Average 4.31% 5.06%

5. Conclusion

In this paper a novel and robust text watermarking
algorithm has been proposed. The algorithm has been

implemented using the Unicode extended characters as
the object of hiding the watermark data. Zero-encoding
table and One-encoding table are designed to achieve
the embedding purpose. The proposed algorithm per-
formance has been verified and compared with similar
methods to ensure its imperceptibility, robustness and
capacity. The developed algorithm provides a high imper-
ceptible watermarking technique where it attains about
99.9% of similarity factor keeping the perceptual quality
of the watermarked documents to have a high PSNR value
above 63. Robustness evaluation proves that the proposed
algorithm tolerates most of the possible attacks and able
to extract the watermark with high accuracy. Capacity
factors evaluation shows that the proposed algorithm
has an acceptable watermarking capacity with a payload
capacity of about 2 bits/word. Improving the proposed
algorithm to recover re-ordering attack and investigating
other Unicode properties are considered as interesting
future research directions.

6. Acknowledgement

This research was supported by the Ministry of Higher
Education Malaysia and Universiti Putra Malaysia under
Exploratory Research Grant (ERGS).

7. References
1. Patel MM. Analytical study of line-shift text watermarking

technique. International Journal of Computer Applications
and Information Technology. 2012 Nov; 1(3):84–7.

2. Por LY, Wong KS, Chee KO. UniSpaCh: A text-based data
hiding method using Unicode space characters. The Journal
of Systems and Software. 2012; 85(5):1075–82.

3. Ruia X, Jinqiaob CXJS. A multiple watermarking algorithm
for texts mixed Chinese and English. Procedia Computer
Science. 2013; 17:844–51.

4. Singh P, Chadha RS. A survey of digital watermarking
techniques, applications and attacks. International Journal
of Engineering and Innovative Technology (IJEIT). 2013
Mar; 2(9):165–75.

5. Kaur H, Kaur ES. Text watermarking using techniques
dct and dwt: A review. International Journal of Computer
Application and Technology. 2014 Apr; 1(1):1–6.

6. Jaiswal RJ, Patil NN. Implementation of a new technique
for web document protection using Unicode. IEEE 2013
International Conference on Information Communication
and Embedded Systems (ICICES); 2013 Feb. p. 69–72.

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 14

Robust Digital Text Watermarking Algorithm based on Unicode Extended Characters

7. Mir N. Copyright for web content using invis-
ible text watermarking. Computers in Human Behaviour.
2014; 30:648–53.

8. Mali ML, Patil NN, Patil JB. Implementation of text water-
marking technique using natural language watermarks.
IEEE 2013 International Conference on Communication
Systems and Network Technologies; Chennai. 2013 Feb
21–22.

9. Halvani O, Steinebach M, Wolf P, Zimmermann R. Natural
language watermarking for German texts. IH&MMSec ’13
Proceedings of the first ACM workshop on Information
hiding and multimedia security. 2013 Jun. p. 193–202.

10. Fei W, Tang X. Reversible text watermarking algorithm
using prediction-error expansion method. International
Conference on Computer, Networks and Communication
Engineering (ICCNCE 2013); Atlantis Press. 2013 May.

11. Meral HM, Sankur B, Sumru A, Tunga, Sevinc E. Natural
language watermarking via morphosyntactic alterations.
Computer Speech and Language. 2009 Jan; 23:107–25.

12. Atallah MJ, Raskin V, Crogan M, Hempelmann C,
Kerschbaum F, Mohamed D, Naik S. Natural language
watermarking: Design, analysis, and a proof-of-concept
implementation. Proceedings of the 4th International
Workshop on Information Hiding; Springer-Verlag. 2001.
p. 185–99.

13. Kuang Q, Xu X. A new zero-watermarking scheme based
on features extraction for authentication of text. Journal of
Convergence Information Technology (JCIT). 2011Nov;
6(11):155–65.

14. Jalil Z, Mrirza AM, Sabir M. Content based zero-water-
marking algorithm for authentication of text documents.
International Journal of Computer Science and Information
security. 2010 Feb; 7(2):212–7.

15. Jalil Z, Mrirza A, Jabeen H. Word length based zero-water-
marking algorithm for tamper detection in text documents.
IEEE 2010 2nd International Conference on Computer
Engineering and Technology; Chengdu. 2010 Apr 16–18.

16. Kaur S, babbar G. A zero-watermarking algorithm on
multiple occurrences of letters for text tampering detec-
tion. International Journal on Computer Science and
Engineering (IJCSE). 2013; 5:294–301.

17. Ba-Alwi FM, Ghilan MM, Al-Wesabi FN. Content authenti-
cation of English text via internet using zero watermarking
technique and Markov model. International Journal of
Applied Information Systems (IJAIS). 2014; 7(1):25–36.

18. Rameshbabu P, Prasannakumar, Balachandrudu KE. Text
watermarking using combined image and text. IJERT. 2013
Dec; 2(12):3812–8.

19. Du M, Zhao Q. Text watermarking algorithm based on
human visual redundancy. Advanced in Information
Sciences and Service Sciences. 2011; 3(5):1–7.

20. Puhan NB, Ho ATS, Sattar F. Erasable authentication
watermarking in binary document images. IEEE Second
International Conference on Innovative Computing,
Information and Control; Kumamoto. 2007 Sep 5-7.
p. 1–288.

21. Huang D, Yan H. Inter-word distance changes repre-
sented by sine waves for watermarking text images. IEEE
Transactions on Circuits and Systems for Video Technology.
2001 Dec; 11(12):1237–45.

22. Qadir MA, Ahmad I. Digital text watermarking: Secure
content delivery and data hiding in digital documents. E
systems Magazine. 2006 Dec; 21(11):18–21.

23. Unicode Tutorials and Overviews, Unicode Std. Available
from: http://www.unicode.org/standard/tutorial-info.html#
TUS

24. Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in
image, video quality assessment. IEEE Electronics Letters.
2008 Jun 19; 44(13):800–1.

25. Sujatha P, Devi R. An overview of digital watermarking
with a performance analysis of wavelet families for image
compression. Indian Journal of Science and Technology.
2015; 8(29):1–5.

