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1.  Introduction

The exact delineation of coronary arteries is a vital step 
towards the computer aided analysis for Coronary Artery 
Disease (CAD). In developed countries, the majority of 
deaths are caused by Cardio Vascular Diseases (CVDs)1. 
In order to diagnose CVDs, coronary angiography is 
considered as an essential tool. The proper and exact 
segmentation of coronaries from the complex 2D 
angiogram images is required for a detailed visualization 
that may help the clinicians to assess the situation in a 
better way. However, in a complex background, the 
segmentation of vessels from spines and soft tissues in the 
X-ray angiograms is difficult due to intensity variation, 
low contrast or various shapes of vessels2. Other factors 
such as background noise and overlapped organs also 
contribute to the difficulties for delineating coronary 
arteries from X-ray angiograms. To cope with these 
situations vessel enhancement is highly needed as a pre-
processing step which may lead to accurate segmentation 

of vessels along with the extraction of their centerlines.
The segmentation process is one of the pre-processing 

procedures extensively employed in the imaging field to 
extract the key features from the given data3. Segmentation 
methods based on thresholding normally do not perform 
well for delineating vessels from angiograms due to in 
homogeneity, background noise, low contrast and other 
factors. Therefore, it is a quite difficult task to trace 
the vessels efficiently in such a complex environment 
using threshold-based techniques. Hence vesselness 
measurement may be used as a guidance map for 
segmentation. The term vesselness actually measures the 
probability for a pixel to be on a vessel. Normally, the 
enhancement of vessels on the basis of Hessian matrix 
is considered as an important preprocessing step. The 
famous methods of examining an image in scale space 
have been reported in the literature4–6. These methods 
are considered to be a robust algorithm for enhancing 
tube-like components in medical images for a subsequent 
delineation. Generally, in a normalized Gaussian scale 

Abstract
Objectives: In this paper, we aim to compare four different vesselness filters and propose a framework 
for segmenting coronary arteries from 2D angiograms with the aim of extracting accurate centerlines.  
Methods/Statistical analysis: Performance measures including noise suppression, edge smoothness, branch disconnection 
and centerline smoothness are used for comparing the performance of vesselness functions. Moreover, we have performed 
the segmentation of coronary arteries from the obtained vesselness measure using globalized region based active contour 
followed by median filtering to remove the artifacts such as unsmoothed edges. Findings: The study reveals that Frangi’s 
vesselness performs well in suppressing the background noise, whereas, the other vesselness measures perform better at 
enhancing vessels throughout crossings and bifurcations. Except Frangi’s vesselness, edges obtained by all the compared 
vesselness measure are prone to uneven and rough edges that will eventually lead to the extraction of wrong centerlines. 
Application/Improvements: Based on the findings, we have presented a segmentation method that produces more 
enhanced and smooth edges of coronary arteries and leads to the extraction of the smooth centerlines.

Keywords: Angiograms, Active Contour, Coronary Arteries, Segmentation, Vesselness Measure 

Performance Comparison of Vesselness Measures  
for Segmentation of Coronary Arteries 

in 2D Angiograms
Muhammad Ahsan Ansari, Sammer Zai and Young Shik Moon*

Department of Computer Science and Engineering, Hanyang University, South Korea; 
ansari05cs04@hanyang.ac.kr, sammerzai09@hanyang.ac.kr, ysmoon@hanyang.ac.kr



Vol 9 (48) | December 2016 | www.indjst.org Indian Journal of Science and Technology2

Performance Comparison of Vesselness Measures for Segmentation of Coronary Arteries in 2D Angiograms

space the eigenvalues of the famous Hessian matrix 
are computed for different scales and the scale with the 
maximum response is selected to generate the optimal 
response. Among the most extensively used vesselness 
measures is the one presented by Frangi and his co-
workers6 in which they examine the Hessian matrix and 
its values geometrically to define the presence of vessels. 
The Frangi’s vesselness6 is a renowned filter function 
which can be thought as state of the art and therefore is 
used by many authors as the basis for more development.

Several vesselness functions for enhancement of 
coronary arteries have been reported in the literature 
which is based on conventional multi-scale Hessian based 
filter6. In7 authors defined a transformed function based 
on the gray values and scale for efficient segmentation 
of coronary arteries in 2D angiograms. In8 the authors 
presented an approach for vesselness measure by extracting 
feature map based on the relationship between the vessel 
morphology and the eigenvalues of Hessian matrix. 
Another vesselness measure for coronary angiograms is 
presented by in9 where the authors have used a simple and 
easy function to obtain the vessel structures which finds 
out the probability whether the point belongs to the vessel 
or non-vessel components.

In this paper, we give performance comparison 
of four different vesselness measures described in6–9 
by performing different experiments and various 
performance measures. All the mentioned vesselness 
filters are developed by examining the eigenvalues 
of Hessian matrix. The vesselness filter in6 is selected 
for the reason because it is most extensively used and 
recognized filter function and can be regarded as state 
of the art. Whereas, the other three vesselness measures 
are the further developments responsible for enhancing 
the coronary arteries by exploring the concept of Hessian 
matrix and its eigenvalues. In this work, the behaviors 
of the mentioned filter functions are examined for the 
purpose of enhancing coronary arteries in 2D angiograms 
to achieve the accurate segmentation and skeleton of 
coronary arteries.

The remaining paper is described in the order as 
follows: Section 2 concisely explains the idea of multi 
scale Hessian-based filtering for vessel enhancement. The 
experimental results on real 2D angiograms are presented 
in Section 3 and finally Section 4 makes the conclusion of 
this study.

2.  Materials and Methods

The objective of enhancing vessels is to suppress the 
background containing the non-vessel components 
by highlighting the vessel structures. It is to be noted 
that the diameter of the vessels and the points located 
on the centerlines must be preserved after carrying 
out the operations. Generally, the coronary arteries in 
angiograms regarded as tubular objects each comprising 
of different widths. The examination of local partial 
derivatives is done to recover the geometric structure and 
also differential operators are built on the basis of sign 
and values of eigenvalues. It is required that the answer 
of operator is built for different scales due to the different 
widths of the vessels.

From the concept of differential geometry it is familiar 
that the second derivatives of an image are analyzed in a 
geometric fashion by exploring their eigenvalues at each 
point. The concept lies in analyzing the eigenvalues is to 
find out the directions in which second order structure 
of the image can be decomposed. Let the eigenvalues of 
Hessian matrix H be 1λ  and 2λ and let 1v and 2v be their 
normalized eigen vectors, respectively. The eigenvalues 
are analyzed and used for defining the vesselness measure 
by sorting them as 1 2λ λ<  where 1 2 0λ λ= <  for an 
ideal vessel structure. The values of Hessian matrix at 
each point in an image are defined by (1).
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Information regarding relationship of eigenvalues and 
shapes of objects can be exploited to build a vesselness 
measure that can be further used for differentiating 
background and the vessel components. In this paper we 
make a comparison among the vesselness filters presented 
in6–9 which are used for enhancing the coronary arteries 
in angiograms. They are explained in the following sub 
sections.

The information near a small local region of each 
point is contained in Hessian matrix. To detect the 
tubular objects comprising of larger diameters, scale 
space theory is utilized. Therefore, vesselness response is 
computed at various scales. All the vessel enhancement 



Muhammad Ahsan Ansari, Sammer Zai and Young-Shik Moon

Vol 9 (48) | December 2016 | www.indjst.org Indian Journal of Science and Technology 3

filters6–9 derives structural information from the Hessian 
eigenvalues 1 2λ λ≤ . The Hessian H is calculated using 
Gaussian derivatives at a scale σ. For obtaining the image 
representation using scale space, the image is convolved 
with various standard deviations for each scale. The 
Gaussian second order derivative of image I at scale σ and 
point (x, y) is defined by (2).

2

2
( , ; ) ( )* ( , ),xxI x y G I x y

x
σ σ∂

=
∂

		        (2)

Where ( )G σ is a Guassian distribution function with 
scale σ and * denotes a convolution operator. Finally for 
a given image, calculating second order scale space (1) 
and (2) can be combined. Hence, the Hessian matrix at a 
given scaleσ is computed using (4).
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The factor λσ is the normalization factor that 
normalizes the intensities across scale space and is 
required to compare the outputs of vesselness at various 
scales. Lindeberg10 introduced the factor λ for defining a 
series of normalized derivatives. The vessel filter function 
is computed for each scale σ after computation of 
eigenvalues of H to find out the final vesselness response

( , ; )V x y σ . All the filters discussed here can work in 
multi-scale environment by using the following equation 
(4).

min max( , ) max( ( , ; )),      V x y V x y σ σ σ σ= ≤ ≤ 	       (4)

2.1 Vesselness Function 
In6 Frangi and his co-workers explored the concept 
of eigenvalues and presented a model to differentiate 
the shapes including plate-like, blob-like and tubular 
structures on the basis of eigenvalues of Hessian matrix. 
Specifically, to capture the knowledge of the image 
geometrically, they built a measure of unlikeness that 
includes a geometric ratio. Moreover, they also added 
the concept of Frobenius matrix norm to decrease the 
uncertain filter responses for non-vessel components. 
The blobness measure is defined by the following ration 
defined by (5).
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The final vesselness filter function is given by (6),
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where β and γ are the sensitivity control parameters 
of the filter and S defines the Hessian’s norm. The vesselness 
value is achieved in between [0 1] for the curvilinear 
structure, where the 1 specifies a perfect agreement. 

2.2 Vesselness Function by Ying et al
Ying and his co-workers obtained the vesselness structure 
in7 by defining a transformed function based on the gray 
values and scale for efficient segmentation of coronary 
arteries in 2D angiograms. In their work, vessel detection 
is based on the analysis of eigenvalues of multi-scale 
Hessian matrix. They have used 2λ as vessel feature 
because the dark vessel structure in a bright background 
usually has a large positive eigenvalue 2λ . They have 
defined an adaptive transform function which comprises 
of gray value and the scale to improve the vesselness 
outcome because it is quite possible that eigenvalues may 
be very similar for vessel and non-vessel components and 
in such case it is hard to discriminate vessel and non-
vessel components.

In order to distinguish the vessel and the non-vessel 
points in a better way, the eigenvalues at each point of an 
image are adjusted by using the enhanced gray level as a 
refinement factor. Therefore, instead of using the original 
image intensity, they have first applied the enhancement 
function given in the following equation (7) to enhance 
the contrast of the original image by lessening the gray 
level of vessels. 
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where I(x,y) corresponds to the value of pixel and 
 is some global threshold that finds out whether the 

pixel belongs to vessel or not. The value of  is set by 
examining the vesselness outcomes for various values. 
Normalization between 0 and 1 is performed for the 
intensities generated by using equation (7).
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The obtained transformed intensities using above 
equation (7) are normalized between 0 and 1. The 
converted intensities  and scale factor σ are 
combined in adaptive feature transformation function 
which is defined by (8),
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= 			         (8)

The final vesselness function is obtained by using the 
following equation (9).
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Where c is a constant that determines the effect of the 

contrast enhancement and 2λ is eigenvalue of the original 
image. The final measure of the vesselness is obtained by 
using the vesselness function ( , ; )V x y σ which gives a 
value in between 0 and 1. To deal with different widths of 
the vessels, the vesselness response function is computed 
along various scales to obtain accurate segmentation 
and finally the highest vesselness output is chosen as the 
optimal one using (10).

min max( , ) max( ( , ; )),      V x y V x y σ σ σ σ= ≤ ≤ 	    (10)
whereσmin and σmax are the minimum and maximum 

scales, respectively.

2.3 Vesselness Function by Yanli et al
An approach is presented by the author’s in8 for finding 
out the feature map for the vesselness of coronary arteries. 
The authors in their study have utilized the association 
between vessel morphology and eigenvalues of Hessian 
matrix. In their work Hessian matrix with a large positive 
eigenvalue 2λ and a small eigenvalue ( )1 2 1λ λ λ is 
considered for a 2D angiogram image where vessels are 
represented by dark curvilinear structures. For extracting 
the vesselness map they threshold the eigenvalue map 
using the following thresholding function.
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where op represents pixel value in 2D image and σ
represents the scale at which vesselness is computed. The 
function will take the large positive eigenvalue 2λ  if the 
given condition, 2

2 ,
4

σλ >  is satisfied. The final vessel 

feature map ( )of p is defined by the following expression.

min max( ) max( ( , ) / exp 2 ),     o of p f p σ σ σ σ σ= ≤ ≤ 	

						         (12)
where min max and  σ σ describe the scales according 

to the size of smallest and largest vessel width, respectively.

2.4 Vesselness Function by Wang et al
Another feature map for vesselness of coronary arteries 
is described in9 where the authors have exploited the 
information that the eigenvector with large absolute 
eigenvalue specifies the direction at that specific point and 
the eigenvector with smaller absolute eigenvalue specifies 
the direction of minimal curvature. They have obtained 
the vessel structures by applying the following function 
defined in (13) to each pixel of a 2D angiogram image. 
The function, 1( , , )Z x y λ , will find out the vesselness by 
assigning the value according to the given condition to 
those pixels which belong to the vascular structures.
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To enhance the coronary vessels of multiple widths, 
the vesselness is computed at multiple scales and the 
highest response is selected as the optimal one using the 
condition given below.

1 1 2( , ) max( ( , , ( ))),     , ,..., nE x y Z x y λ σ σ σ σ σ= = 	   (14)
In their work, the range of scale value is from 1 to 9.

3.  Results and Discussion

To assess the performance of different vesselness 
functions for enhancement, we have used real datasets 
for 2D angiograms. Various experiments are performed 
to compare the performance of the four vesselness 
function6–9 and the results are shown in Figure 1, Figure 
2 and Figure 3. 
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In all these figures, the original 2D angiogram 
image is shown by Figures 1(a), Figure 2(a) and Figure 
3(a). The first row of Figures 1, Figure 2 and Figure 3 
show the results of applying all four filters described 
in6–9, respectively. Whereas, the second row exhibits their 
respective segmentation results as a largest connected 
component.

It is observed in Figure 1 that the vesselness measure 
in7,9 shown in Figure 1(c) and Figure 1(e), respectively, 
have produced quite comparable results. Moreover, it is 
noticed that the vesselness function presented in 6shown 
in Figure 1(b) has problem of branch disconnection in 
the area of the junction marked by the white box. On the 
other hand, the vesselness defined in8 has produced some 
discontinuities in the vesselness as depicted by white box 
in Figure 1(d).

Figure 1.    Vesselness measures and segmentation of 
Angiogram-1.

A 2D angiogram for right coronary artery is shown in 
Figure 2 which shows the obtained results after applying 
all the four filters for finding out the vesselness measure. 
As can be observed, Frangi’s filter6 shown in Figure 2(b) 
has over smoothed the portion marked by white box. 
Whereas, the remaining three filters give almost same 
performance but with increased background noise and 
unsmooth edges as shown in Figures 2(c), 2(d), and 2(e).

Figure 2.    Vesselness measures and segmentation of 
Angiogram-2.

Another 2D angiogram image containing left coronary 
artery is shown in Figure 3. The results of Figure 3 reveal 
that the response of the filter functions in7–9 shown in 
Figures 3(c), Figure 3(d) and Figure 3(e), respectively are 
quite comparable in our experiments. Moreover, they do 
not produce disconnect branches as produced by Frangi 
filter6 whose vesselness response is shown in Figure 3(b). 
The vesselness functions described in8,9 produce more 
background noise as compared to the ones described 
in6,7. The Frangi’s function6 shows better performance 
in suppressing background noise. Although vesselness 
functions in 7gives better performance in reducing the 
background noise as compared to the functions in9,8, 
however it suffers from non-smooth edges.

Figure 3.    Vesselness measures and segmentation of 
Angiogram-3.

As an application, centerlines of coronary arteries are 
used for measurement of vessel diameters, and also for 
calculation of lesion symmetry. Therefore, in this paper, we 
have also compared the centerlines extracted for all four 
methods6-9 by using simple morphological operations. The 
extracted centerlines for an angiogram shown in Figure 
1(a) are presented in Figure 4. The skeletons obtained 
for the vesselness function in6–9 are shown in Figure 4(a), 
Figure 4(b), Figure 4(c) and Figure 4(d), respectively. As 
far as centerlines are considered, a significant difference 
can be observed. It can be seen clearly that the centerlines 
shown in Figure 4 are not smooth and contains many 
spurs. However, skeleton obtained for the vesselness 
described in7 as shown in Figure 4(b) is better as compared 
to other vesselness functions but not promising. A clear 
view of the portions specified by the white boxes in Figure 
4(a), Figure 4(b), Figure 4(c) and Figure 4(d) are shown 
in the second row by Figure 4(e), Figure 4(f), Figure 4(g) 
and Figure 4(h), respectively.
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Figure 4.    Extracted centerlines of Angiogram-1.

Another example for centerlines comparison is 
shown in Figure 5 which is the skeleton obtained for 
an image shown in Figure 3(a). A similar behavior 
is observed in Figure 5. In this case also almost all the 
centerlines obtained for all four vesselness function6–9 

are not smoothed as shown in Figure 5(a), Figure 5(b), 
Figure 5(c), and Figure 5(d), respectively. As a result these 
centerlines cannot be used directly for further analysis of 
lesions and other applications. A clear view of the area 
enclosed by the white boxes in first row is shown in Figure 
5(e), Figure 5(f), Figure 5(g) and Figure 5(h), respectively.

Figure 5.    Extracted centerlines of Angiogram-2.

By looking at Figure 1, Figure 2 and Figure 3, it can be 
analyzed that the obtained segmentations are not accurate 
which leads to erroneous skeleton of coronary arteries as 
shown in Figure 4 and Figure 5. Therefore in order to 
obtain the accurate segmentation of coronary vessels, 
after extracting the largest connected component from 
the vesselness measure, we have applied simple region 
growing method to achieve refined segmentation of 
coronary arteries. Vessel segmentation based on the good 
feature map may lead to accurate centerline extraction. 
The region growing algorithm that we have used in our 
paper is the one proposed by11 global region based active 
contour. The vesselness measure is applied as an input 
to the region growing process. The algorithm requires 

an initial mask from where it starts to grow in nearby 
regions. For a fair comparison we have kept the position 
of initial masks same for every filtered image obtained 
from the four different filters6–9. Further, median filtering 
is applied on the resultant images obtained after region 
growing process to make the edges smoother. The result 
for the segmentation of the left coronary artery is shown 
in Figure 6, where input to the region growing algorithm 
is the filtered image produced by using vesselness filter 
function in7 followed by median filtering.

Figure 6.    The results of Appling region growing and median 
filtering on Ying’s vesselness.

The original 2D angiogram image is shown in Figure 
6(a). The segmentation is carried out by using vesselness 
feature map of vesselness function in7 as the guidance for 
the region growing algorithm. It can be seen in Figure 
6(b), the edges of coronary artery are not smooth and 
uneven as shown in Figure 4(b), which may produce 
unsmoothed centerline. For a more clear understanding a 
closed view of image in Figure 6(b) is shown in Figure 6(d). 
These unsmoothed edges can be corrected by providing 
vesselness map as guidance to region growing algorithm 
which is a forceful and adjustable method for segmenting 
medical images. Segmentation of medical images would 
be difficult using conventional segmentation methods i.e. 
thresholding or gradient based approaches. Therefore we 
have adopted an active contour model which is basically 
an energy minimization problem and can be embedded 
in the level set formulation, leading to an easier way to 
resolve the problem of topological changes. The result of 
applying region growing algorithm followed by median 
filtering is shown in Figure 6(c) which shows quite smooth 
edges as compared to the original vesselness defined in 7as 
shown in Figure 6(b). The magnified view of the portion 
enclosed by white box in Figure 6(c) is shown in Figure 
6(e).
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The active contour model followed by median filtering 
has produced more satisfactory results. It can be observed 
in Figure 6(f), the centerline obtained after applying 
energy model is quite smooth with less or no spurs and 
hence can be used for further processing such as for 
measuring the diameters and finding out the lesions.

The same energy model is applied on the remaining 
vesselness functions with the initial mask given on the 
same position as initialized for obtaining Figure 6(c). 
The segmentation results for the remaining vesselness 
measure presented in6,8–9 are shown in Figure 7. 
However, it can be seen in Figure 7, the segmentation 
of the left coronary artery is incomplete. This is due to 
the complex background and also because of the reason 
that globalized region based active contour does not 
favor these vesselness6,8–9 and hence unable to detect the 
whole vessels in complex environments that exhibits non-
uniform distribution of intensities.

Figure 7.    The results of appling region growing and median 
filtering on Frangi’s, Yanli’s and Wang’s vesselness.

In case of vesselness defined in7, the energy model 
exhibits good performance comparatively in extracting 
the complete left coronary artery and suppressing noise 
because their vesselness function can distinguish between 
vessel and the non-vessel points correctly.

Table 1 summarizes all the discussed vesselness filters 
with respect to performance measures including noise 
suppression, edge smoothness, branch disconnection and 
centerline smoothness. The average execution time taken 
by all four vesselness measure is shown in Table 2. The 
minimum time is taken by vesselness measure described 
in 9whereas the rest of others require almost similar time.

Table 2.    Average execution time
S.No. Vesselness Measure Average Time (Sec)
1 6 3.04
2 5 3.18
3 8 3.28
4 9 1.85

4.  Conclusion

The presented work has made a performance comparison 
of four different vesselness measures6–9 by keeping in mind 
the segmentation and centerline extraction of coronary 
arteries. Surprisingly, the approaches in8,9 behave quite 
similar in our experiments. Whereas the Frangi’s function 
in6 has its strong point in eliminating the background 
noise and separation of neighboring vessels, however, 
vessels are likely to get cut off at bifurcations or junctions. 
It is more beneficial to have continued and connected 
branches, which can be obtained by using either of the 
vesselness filter defined in7–9. We have also performed 
segmentation of the filtered outputs using globalized 
region based active contour followed by median filtering 
to improve the artifacts such as unsmoothed edges. Use 
of this approach eventually leads to the extraction of a 
smooth centerline that can be used for the applications 
including detection of lesions and other CADs. Future 
work comprises of the expansion of our experiments to 
add more vesselness functions for three-dimensional (3D) 
Coronary Computed Tomography Angiography (CCTA). 

Table 1.    Summary of vesselness measures
Vesselness 
Measure

Noise 
Suppression

Edge 
Smoothness

Branch 
Disconnection

Centerline 
Smoothness

6 Yes Over-smooth yes Lots of spurs
5 Yes Less-Smooth No Less spurs
9 No No No Lots of spurs
8 No No Yes Lots of spurs
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