Comparison of Numerical Solution of 1D Hyperbolic Telegraph Equation using B-Spline and Trigonometric B-Spline by Differential Quadrature Method

Geeta Arora and Varun Joshi*
Department of Mathematics, Lovely Professional University, Punjab – 144411, India; geetadma@gmail.com, varunjoshi20@yahoo.com

Abstract

Objectives: This paper aims to compute the approximate solution of one dimensional (1D) hyperbolic telegraph equation with appropriate primary and limiting conditions. Methods/Statistical Analysis: To find the approximate solution, two different modified spline basis function are used with the differential quadrature method and splines are used to compute the weighting coefficients and thus the equation is transformed to a set of first order conventional differential equations which is further solved by the SSP-RK43 method. Three test problems of this equation are simulated to establish the precision and usefulness of the proposed scheme. Findings: The obtained numerical results are found to be good in terms of accuracy, efficiency and simplicity. To validate the computed results using proposed scheme, various comparisons at different time levels has been done in the form of L_2 and L_{∞} errors. These errors are compared and enlisted in the form of tables with computed errors enlisted in literature. Application/Improvements: Being an important equation of nuclear material science, one dimensional (1D) hyperbolic telegraphs equation needs to take care in the sense of better numerical solution. In this context, a successful effort has been done in this research article by proposing a hybrid numerical scheme.

Keywords: 35K57, Differential Quadrature Method, Hyperbolic Telegraphs Equation, Mathematics Subject Classification (2010): 65M06, Modified Cubic B-Spline, Modified Trigonometric B-Spline, SSP-RK43

1. Introduction

The telegraph equation is utilized to outline the reaction diffusion in numerous branches of emerging sciences. This mathematical equation premised for crucial equations of nuclear material science. It is used to demonstrate the vibrations of structures, e.g. structures, shafts, and machines. It likewise emerges in the investigation of throb blood stream in supply routes, in the 1D irregular movement of bugs along a hedge1,2 and also play a significant part in demonstrating of numerous appropriate problems like signal investigation3, wave propagation4, random walk theory5 etc. This mathematical equation is regularly utilized as a part of signal investigation for transmission and proliferation of electrical signs6 furthermore has applications in different fields7. This equation is given as:

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} + 2a \frac{\partial u}{\partial t} + \beta u &= f(x,t) + g(x,t), & x \in [a,b], & t \geq 0 \\
\end{align*}
\]

With initial or starting conditions (ICs)

\[
\begin{align*}
\left\{ u(x,t_0) = g_1(x), \ u_t(x,t_0) = g_2(x), \ x \in [a,b], \right. & \ \ \\
\end{align*}
\]

and with limiting conditions (BCs)

\[
\begin{align*}
\left\{ u(a,t) = \psi_0, \ u(b,t) = \psi_1, \ t > 0 \right. & \ \ \\
\end{align*}
\]

where f, g_1, g_2, ψ_1, ψ_2 are known functions

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2}, \frac{\partial u}{\partial t}, u_{xx} &= \frac{\partial^2 u}{\partial x^2}.
\end{align*}
\]
Eq. (1) with the coefficients $\beta = 0, \alpha > 0$ stand for a partial differential equation which is actually a damped wave equation and correspond to the telegraph mathematical equation if $\alpha > 0, \beta > 0$. The telegraph equation is likewise adverted to show the combination of dissemination and wave proliferation by the properties of constrained velocity to standard warmth or mass transport condition1.

In past few years, many numerical schemes to solve telegraph equation have been developed by many researchers. The existence of its double periodic solution was investigated in8. The unconditionally stable schemes for telegraph Eq. (1) was used in911, etc. Further, different conditionally stable finite difference schemes were implemented to solve the telegraph equation1214. In15 finite difference for approximation of spatial derivatives and the time derivative handled by collocation scheme is used. Chebyshev cardinal functions were used for numerical simulation of the equation in16. Various other numerical schemes were also developed or implemented to solve the telegraph equation, Some of them are: method using interpolating scaling functions17, Chebyshev Tau method18, Rothe-wavelet method1, semi-discretion methods14, explicit difference methods14, DRBIE method20, collocation scheme along thin plate splines radial basis function (RBFCM)21, Polynomial Differential Quadrature Method (PDQM)22, Cubic B-spline Quasi-interpolation (CBQ)23, cubic B-spline collocation method (CBCM)24, Quartic B-spline Collocation Method (QBCM)25, and Collocation Method based on Modified Cubic B-spline (CMMCB)26, etc.

This article is anxious with an approximate solution of 1D hyperbolic PDE with suitable starting and limiting conditions acquired by utilizin g altered cubic B-spline and trigonometric B-spline with Differential Quadrature Method (DQM) is given. Sections 3, discusses the procedure to utilize the proposed scheme. Three numerical test problems are given in to fabricate the significance and precision of the proposed technique in Section 4. In last section 5, summery of the paper is given in form of conclusion.

2. Description of the Method

The DQM was initially proposed by29. This strategy has been effectively connected to understand different one and two dimensional differential equations by utilizing various basis functions3033.

In DQM the derivatives of some function which are present in the given PDE are replaced with their approximate values at desired different points. Because of the dependence on weight coefficients to domain grid points, we consider N equidistance nodal points on the real axis, that is $\alpha = x_1 < x_2 < \cdots < x_{N-1} < x_N = b$ with $x_{i+1} - x_i = \Delta$. The solution $u(x,t)$ at knot x_i is denoted by $u(x_i,t)$for $i = 1, 2, 3, \ldots, N$. The approximate values of spatial derivatives are given as:

$$u_t(x_i,t) = \sum_{j=1}^{N} a_{i,j} u(x_j,t), \quad u_{xx}(x_i,t) = \sum_{j=1}^{N} b_{i,j} u(x_j,t), \quad i = 1, 2, \ldots, N$$

(4)

2.1 Differential Quadrature Method uses B-Spline

As B-spline have the certain nice properties like smoothness and competence to handle indigenous singularities, as B-spline basis functions are easy to implement so many researchers used cubic B-spline basis function to compute the approximate solution of physical models3032 defined as follows:

$$\varphi_{i,j}(x) = 1/h^3 \begin{cases} ((x - x_i(j-2))^3, & x \in [x_i(j-2), x_{i+1}(j-2)] \\ ((x - x_i(j-1))^3 - 4(x - x_i(j-1))^3, & x \in [x_i(j-1), x_i(j)] \end{cases}$$

(5)
where \(\{ \varphi_0, \varphi_1, \ldots, \varphi_N, \varphi_{N+1} \} \) generate the basis on \([a, b]\).

Lemma 1: The numerical values of \(\varphi_i \) and its derivatives \(\varphi'_i, \varphi''_i \) at \(i \) th nodal point are evaluated as

\[
\varphi_i(x_j) = \begin{cases}
4, & \text{if } i - j = 0 \\
1, & \text{if } i - j = \pm 1 \\
0, & \text{else}
\end{cases}, \quad i = 1, 2, \ldots, N
\]

and

\[
\varphi'_i(x_j) = \begin{cases}
-\frac{12}{h^2}, & \text{if } i - j = 0 \\
6, & \text{if } i - j = \pm 1 \\
0, & \text{else}
\end{cases}, \quad i = 1, 2, \ldots, N
\]

The first order derivative approximation at the grid point \(x_i \), \(i = 1, 2, \ldots, N \) is given by

\[
\varphi'_i(x_j) = \sum_{j=1}^{N} a_{ij} \varphi_i(x_j), \quad k = 1, 2, \ldots, N.
\]

By Lemma 1 and modified basis function mentioned in section 2.2, Eq. (6) is reduced to linear equations as

\[
A \bar{d}[i] = \bar{H}[i], \quad \text{for } i = 1, 2, \ldots, N.
\]

and \(A \) represented as:

\[
A = \begin{bmatrix}
6 & 1 & 0 & 0 \\
0 & 4 & 1 & 0 \\
1 & 4 & 1 & 0 \\
& \ddots & \ddots & \ddots \\
& 1 & 4 & 1 \\
& & 1 & 4 & 0 \\
& & & 1 & 6
\end{bmatrix}
\]

weighting coefficient vector with respect to the points \(x_i \), are represented as \(\bar{a}[i] \), that is

\[
\bar{a}[i] = [a_{i1}, a_{i2}, a_{i3}, \ldots, a_{iN}]^T
\]

and the coefficient vector \(\bar{h}[i] = [h_{i1}, h_{i2}, h_{i3}, \ldots, h_{iN}]^T \)

with respect to \(x_i \), \(i = 1, 2, \ldots, N \) are evaluated as:

\[
\bar{h}[1] = \begin{bmatrix}
-\frac{12}{h^2} \\
6 \\
0 \\
\frac{6}{h^2}
\end{bmatrix}, \quad \bar{h}[2] = \begin{bmatrix}
\frac{6}{h^2} \\
6 \\
0 \\
\frac{6}{h^2}
\end{bmatrix}, \ldots, \bar{h}[N-1] = \begin{bmatrix}
\frac{6}{h^2} \\
6 \\
0 \\
\frac{6}{h^2}
\end{bmatrix}, \quad \bar{h}[N] = \begin{bmatrix}
\frac{6}{h^2} \\
6 \\
0 \\
\frac{6}{h^2}
\end{bmatrix}
\]

2.2 Differential Quadrature Method using Trigonometric B-Spline

The cubic trigonometric B-spline basis function \(TB_m(x) \) for \(m = -1, 0, 1, \ldots, N+1 \) is characterized as:

\[
p(x_m) = \frac{\sin((x - x_m) \frac{\pi}{2})}{x_m - x_{m+1}}, \quad q(x_m) = \frac{\sin((x_m - x) \frac{\pi}{2})}{x_m - x_{m+1}}, \quad w = \sin \left(\frac{h}{2} \right) \sin \left(\frac{3h}{2} \right)
\]

and \(TB_m(x) \) is cubic trigonometric B-spline basis function with some geometric properties like

- \(C^\infty \) Continuity, non-negativity and partition of unity.

The values of \(TB_m(x) \), \(TB'_m(x) \) and \(TB''_m(x) \) are given by Table 1, where:

\[
\alpha_4 = -\frac{3 \cos^2 \left(\frac{h}{2} \right)}{\sin^2 \left(\frac{h}{2} \right) \left(2 + 4 \cos(h) \right)}
\]

Both above defined basis functions can be improved so that the resulting matrix becomes diagonally dominant. The modification of these functions can be done as follows:

\[
B_1(x) = B_1(x) + 2B_0(x),
B_2(x) = B_2(x) - B_0(x),
B_j(x) = B_j(x) \quad \text{for } j = 3, 4, \ldots, N - 2
B_N(x) = B_N(x) + 2B_{N-1}(x),
B_{N-1}(x) = B_{N-1}(x) - B_{N-2}(x),
\]

where \(\{B_1, B_2, \ldots, B_N\} \) form a basis on \([a, b]\)

For trigonometric B-spline the system becomes

\[
A \bar{d}[i] = \bar{R}[i], \quad \text{for } i = 1, 2, \ldots, N.
\]

where \(A \) represented as:

\[
\begin{bmatrix}
\begin{array}{cccc}
a_2 + 2a_1 & a_1 & 0 & 0 \\
0 & a_2 & a_1 & 0 \\
0 & a_1 & a_2 & a_1 \\
0 & 0 & a_2 & a_1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_1 \\
0 & 0 & 0 & 2a_1
\end{array}
\end{bmatrix}
\]

Weighting coefficient vector with respect to the points \(x_i \), are represented as \(\bar{a}[i] \), that is

\[
\bar{a}[i] = [a_{i1}, a_{i2}, a_{i3}, \ldots, a_{iN}]^T
\]

and the coefficient vector \(\bar{r}[i] = [r_{i1}, r_{i2}, r_{i3}, \ldots, r_{iN}]^T \)
Comparison of Numerical Solution of 1D Hyperbolic Telegraph Equation using B-Spline and Trigonometric B-Spline by Differential Quadrature Method

Table 1. The values of TB_m, TB'_m and TB''_m at different node points

<table>
<thead>
<tr>
<th>TB</th>
<th>x_{m-2}</th>
<th>x_{m-1}</th>
<th>x_m</th>
<th>x_{m+1}</th>
<th>x_{m+2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB_m</td>
<td>0</td>
<td>a_1</td>
<td>a_2</td>
<td>a_1</td>
<td>0</td>
</tr>
<tr>
<td>TB'_m</td>
<td>0</td>
<td>a_3</td>
<td>0</td>
<td>a_4</td>
<td>0</td>
</tr>
<tr>
<td>TB''_m</td>
<td>0</td>
<td>a_5</td>
<td>a_6</td>
<td>a_5</td>
<td>0</td>
</tr>
</tbody>
</table>

with respect to x_i, $i = 1, 2, ..., N$, or can be presented as:

$\bar{R}[1] = [-2a_4, a_3 - a_4, 0, ..., 0]^T$,

$\bar{R}[2] = [a_4, 0, a_3, 0, ..., 0]^T$,

Now we apply the well-known “Thomas Algorithm” to compute the solution of the obtained equations which provides the vector $\bar{d}[1]$, using the coefficient a_{ij}, the weighting coefficients b_{ij}, for $i = 1, 2, 3, ..., N$, $j = 1, 2, 3, ..., N$ are evaluated as follows:

$b_{ij} = 2a_{ij} \left(\frac{1}{x_i - x_j} \right)$, for $i \neq j$, and $b_{ii} = -\sum_{i \neq j} b_{ij}$

3. Implementation of the Method

Using the transformation: $U(x, t) = v(x, t)$ the Eq. (1) is transformed to a set of PDEs as follows:

$u_t(x, t) = v_t(x, t)$

$v_t(x, t) = u_{xx}(x, t) - 2a v(x, t) - \beta^2 u(x, t) + f(x, t)$ (10)

On substituting the values for the second order approximation of the space derivatives, obtained from MCB-DQM and MTCB-DQM, Eq. (10) rewritten as:

$v_t(v_i, t) = \sum_{j=1}^{N} b_{ij} u_j(t) - 2a v_i(t) - \beta^2 u_i(t) + f(v_i, t)$ (11)

for $i = 1, 2, ..., N$.

Hence, Eq. (11) reduces into a coupled system of first-order ODEs in time, that is,

$\frac{du_i}{dt} = v_i$ and \n
$\frac{dv_i}{dt} = L(u_i)$, $i = 1, 2, ..., N$, (12)

where L represents the right hand side of ODEs.

The equation is solved subject to the BCs as defined in (3), and the ICs.

$u(x, 0) = g_1(x), \quad v(x, 0) = g_2(x), \quad i \in \{1, 2, ..., N\}$ (13)

The resulting set of ODEs are solved by using SSP-RK43 scheme given below:

$u^{(1)} = u^m + \frac{\Delta t}{2} L(u^m)$

$u^{(2)} = u^{(1)} + \frac{\Delta t}{2} L\left(u^{(1)}\right)$

$u^{(3)} = \frac{2}{3} u^m + \frac{2}{3} u^{(2)} + \frac{\Delta t}{6} L\left(u^{(2)}\right)$

$u^{m+1} = u^{(3)} + \frac{\Delta t}{2} L\left(u^{(3)}\right)$

and consequently the solutions $u(x, t)$, at the required time level are obtained.

4. Numerical Experiments

For numerical discussion, three test problems are considered to obtain the approximate solutions by MCB-DQM and MTCB-DQM. The L_2 and L_∞ error norms are calculated using the exact solution and formulas to calculate these errors are defined in Eq. (14).

$L_2 = \left(\frac{N}{h} \sum_{j=1}^{N} \left[u_j^{\text{exact}} - u_j^* \right]^2 \right)^{1/2}$

$L_\infty = \max_{j=1}^{N} \left[u_j^{\text{exact}} - u_j^* \right]$, (14)

where u_j^* represent the numerical solution at node j.

Example 1: The telegraph equation over the region $[0, \pi]$ is considered with following conditions

$u(0, t) = 0, \quad u(\pi, t) = 0, \quad t \geq 0$

and the function

$f(x, t) = (2 - 2x + \beta^2)e^{-t} \sin(x)$

The exact solution is given by:

$u(x, t) = e^t \sin(x)$ (15)

The comparison of L_2 and L_∞ errors at different time levels is done for $\alpha = 2, \beta = \sqrt{2}, \alpha = 3, \beta = \sqrt{2}$.
(a) For $\alpha = 2$, $\beta = \sqrt{2}$ the L_2 and L_∞ errors with $h = 0.02$, $\Delta t = 0.01$ are compared with the errors due to the well-known earlier schemes: CMMCB26 and RBFCM21, and are reported in Table 2. It is evident that the errors are decreasing with increment in time, and the numerical results are more accurate than numerical solutions obtained by CMMCB26 and RBFCM21. The physical conduct of solutions obtained by MCB-DQM and MTCB-DQM at various time levels $t \leq 2$ is depicted in Figure 1.

Table 2. Comparison of L_2 and L_∞ errors at $t \leq 2$ with $h = 0.02$ and $\Delta t = 0.01$.

<table>
<thead>
<tr>
<th>t</th>
<th>L_2</th>
<th>L_∞</th>
<th>CMMCB26</th>
<th>RBFCM21</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.4022E-07</td>
<td>2.1570E-07</td>
<td>2.332E-06</td>
<td>7.949E-05</td>
</tr>
<tr>
<td>1.0</td>
<td>1.603E-07</td>
<td>1.791E-07</td>
<td>1.455E-04</td>
<td>1.55E-04</td>
</tr>
<tr>
<td>1.5</td>
<td>2.032E-07</td>
<td>2.284E-07</td>
<td>1.589E-04</td>
<td>1.589E-04</td>
</tr>
<tr>
<td>2.0</td>
<td>2.640E-07</td>
<td>2.640E-07</td>
<td>2.163E-04</td>
<td>2.163E-04</td>
</tr>
</tbody>
</table>

(b) For $\alpha = 3$, $\beta = \sqrt{2}$ the L_2 and L_∞ errors with $h = 0.02$, $\Delta t = 0.0001$ are compared with the errors by RBFCM21, and are reported in Table 3. It is evident that the errors are decreasing as time increases (also, by decreasing the values of h), and computed results are more accurate than the results obtained in21. The physical behaviour of the MCB-DQM and MTCB-DQM solutions for $\Delta t = 0.0001$ are depicted in Figure 2 at various time levels $t \leq 2$.

Table 3. Comparison of L_2 and L_∞ errors at $t \leq 2$ with $h = 0.02$ and $\Delta t = 0.0001$.

<table>
<thead>
<tr>
<th>t</th>
<th>L_2</th>
<th>L_∞</th>
<th>CMMCB26</th>
<th>RBFCM21</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5771E-05</td>
<td>4.15E-05</td>
<td>1.11E-05</td>
<td>2.92E-05</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9757E-06</td>
<td>1.05E-06</td>
<td>2.71E-06</td>
<td>2.71E-06</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0907E-06</td>
<td>1.11E-06</td>
<td>1.56E-06</td>
<td>1.56E-06</td>
</tr>
<tr>
<td>2.0</td>
<td>2.812E-07</td>
<td>2.62E-07</td>
<td>1.11E-06</td>
<td>1.11E-06</td>
</tr>
</tbody>
</table>

Figure 1. At different time levels $t \leq 2$ the performances of exact (Left) and approximate solution of Example 1 with $\alpha = 2$, $\beta = \sqrt{2}$ using trigonometric B-spline (Middle) and B-spline (Right).

Figure 2. At different time levels $t \leq 2$ the performances of exact (Left) and approximate solution of Example 2 with $\alpha = 3$, $\beta = \sqrt{2}$ using trigonometric B-spline (Middle) and B-spline (Right).

Example 2: The telegraph equation is considered over the region $[0, 1]$ for $\alpha = 0.5$, $\beta = 1$ with conditions.

\[
\begin{align*}
&u(x, 0) = 0, \quad u_x(x, 0) = 0, \\
&u(0, t) = 0, \quad u(1, t) = 0, \quad t \geq 0
\end{align*}
\]

and the function
\[
f(x, t) = (2 - 2t + t^2)(x^2 - x)^2e^{-t} + 2t^2e^{-t}
\]

The analytic solution of the equation18,21 is given as:

\[
u(x, t) = (x - x^2)e^t
\]

Figure 3. At different time levels $t \leq 5$ the performances of exact (Left) and approximate solution of Example 2 with $\Delta t = 0.0001$, $h = 0.0125$ using trigonometric B-spline (Middle) and B-spline (Right).
The comparison of the L_2 and L_∞ errors is done at different time levels with $\Delta t = 0.0001$ and $h = 0.0125$ with the errors obtained by the earlier schemes: CMMCB26, RBFCM21 and QBCM25, and are presented in Table 4 and it can be seen that the obtained results are better than the results given in21,25,26. The physical behaviour of the MCB-DQM and MTCB-DQM solutions at various time levels $t \leq 5$ are shown in Figure 4.

Table 4. Comparison of L_2 and L_∞ errors at different time levels ≤ 5 with the errors due to well-known earlier schemes

<table>
<thead>
<tr>
<th></th>
<th>CMMCB26</th>
<th>RBFCM21</th>
<th>MCB-DQM</th>
<th>MTCB-DQM</th>
<th>OBCM25</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = h = 0.0125$</td>
<td>L_2 = 0.546</td>
<td>L_2 = 0.346</td>
<td>L_2 = 0.505</td>
<td>L_2 = 0.715</td>
<td>L_2 = 0.805</td>
</tr>
<tr>
<td>$t = h = 0.01$</td>
<td>L_∞ = 0.756</td>
<td>L_∞ = 0.976</td>
<td>L_∞ = 1.1375</td>
<td>L_∞ = 1.3765</td>
<td>L_∞ = 0.9845</td>
</tr>
</tbody>
</table>

Example 3: The telegraph equation over the region $[0, 2]$ is considered with conditions.

\[
\begin{align*}
 u(0, t) &= \tan \left(\frac{t}{2} \right), \\
 u(2, t) &= \tan \left(\frac{2 + t}{2} \right), \\
 f(x, t) &= \alpha \left(1 + \tan^2 \left(\frac{x + t}{2} \right) \right) + \beta^2 \tan^2 \left(\frac{x + t}{2} \right)
\end{align*}
\]

The analytical solution15

\[
u(x, t) = \left(\frac{x + t}{2} \right)
\]

Numerical solutions are computed for $\alpha = 10$, $\beta = 5$ taking $\Delta t = 0.001$, 0.0001 and $h = 0.025$ at diverse time levels $t \leq 1$. The comparison of L_∞ error is done at different time levels with earlier schemes23,25,26 and are reported in Table 5. It is evident from Table 5 and 6 that obtained results are matched with the analytical solution and also better than the previously obtained results. The behaviour of the MCB-DQM and MTCB-DQM numerical solutions are depicted physically in Figure 4 at different time levels $t \leq 1.0$, taking $\Delta t = 0.0001$ and $h = 0.025, h = 0.025$.

5. Conclusion

Solution of the hyperbolic telegraph equation is obtained numerically in this paper using two different schemes named as, MCB-DQM and MTCB-DQM. These schemes are based on the DQM combined with modified cubic B-spline and modified cubic trigonometric B-spline as basic functions. On implementing the schemes and substituting the derivatives, set of ODEs are attained, which is solved using SSP RK43. The efficiency and precision of the proposed method is revealed by three test problems. The numerical result, L_2 and L_∞ errors are compared with numerical solutions from literature and are found to be in decent agreement with formerly obtained results. The advantage of the developed methods is the ease to implement and reduced data complexity as compared to the present schemes.

6. References

5. Banasiak J, Mika JR. Singularly Perturbed Telegraph Equations with Applications in the Random Walk Theory,
Table 5. Comparison of L_∞ errors in Example 3 at different time levels $t \leq 1$ with the errors in the earlier schemes

<table>
<thead>
<tr>
<th>Schemes</th>
<th>$(h, \Delta t)$</th>
<th>$t = 0.2$</th>
<th>$t = 0.4$</th>
<th>$t = 0.6$</th>
<th>$t = 0.8$</th>
<th>$t = 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCB - DQM</td>
<td>(0.025, 0.0001)</td>
<td>4.85E-05</td>
<td>4.91E-05</td>
<td>2.26E-05</td>
<td>4.33E-04</td>
<td>1.12E-02</td>
</tr>
<tr>
<td>MTCB - DQM</td>
<td>(0.025, 0.0001)</td>
<td>2.42E-04</td>
<td>3.80E-04</td>
<td>6.98E-04</td>
<td>1.73E-03</td>
<td>1.64E-02</td>
</tr>
<tr>
<td>CMMC26B</td>
<td>(0.020, 0.0001)</td>
<td>3.47E-05</td>
<td>5.34E-05</td>
<td>9.47E-05</td>
<td>1.87E-04</td>
<td>5.87E-04</td>
</tr>
<tr>
<td>MCB - DQM</td>
<td>(0.025, 0.0001)</td>
<td>9.62E-04</td>
<td>1.47E-03</td>
<td>2.56E-03</td>
<td>5.61E-03</td>
<td>1.84E-02</td>
</tr>
<tr>
<td>MTCB - DQM</td>
<td>(0.025, 0.0001)</td>
<td>2.42E-03</td>
<td>3.80E-03</td>
<td>6.97E-03</td>
<td>1.72E-02</td>
<td>9.92E-02</td>
</tr>
<tr>
<td>CMMC26B</td>
<td>(0.020, 0.0001)</td>
<td>2.63E-04</td>
<td>6.99E-04</td>
<td>1.48E-03</td>
<td>3.40E-03</td>
<td>1.11E-02</td>
</tr>
<tr>
<td>CBQ23</td>
<td>(0.005, 0.0001)</td>
<td>1.89E-04</td>
<td>3.99E-04</td>
<td>7.97E-04</td>
<td>1.87E-03</td>
<td>8.01E-03</td>
</tr>
<tr>
<td>QBCM25</td>
<td>(0.001, 0.0001)</td>
<td>2.77E-04</td>
<td>7.07E-04</td>
<td>1.38E-03</td>
<td>3.09E-03</td>
<td>1.34E-02</td>
</tr>
</tbody>
</table>

Table 6. Comparison of L_2 errors in Example 3 at different time levels $t \leq 1$ with the errors in the earlier scheme26

<table>
<thead>
<tr>
<th>Schemes</th>
<th>$(h, \Delta t)$</th>
<th>$t = 0.2$</th>
<th>$t = 0.4$</th>
<th>$t = 0.6$</th>
<th>$t = 0.8$</th>
<th>$t = 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCB - DQM</td>
<td>(0.025, 0.0001)</td>
<td>1.31E-05</td>
<td>1.48E-05</td>
<td>1.01E-05</td>
<td>8.56E-05</td>
<td>1.93E-03</td>
</tr>
<tr>
<td>MTCB - DQM</td>
<td>(0.025, 0.0001)</td>
<td>4.85E-05</td>
<td>8.18E-05</td>
<td>1.40E-04</td>
<td>3.30E-04</td>
<td>3.33E-03</td>
</tr>
<tr>
<td>CMMC26B</td>
<td>(0.020, 0.0001)</td>
<td>5.03E-05</td>
<td>9.51E-05</td>
<td>2.20E-04</td>
<td>7.82E-04</td>
<td>7.92E-03</td>
</tr>
<tr>
<td>MCB - DQM</td>
<td>(0.025, 0.0001)</td>
<td>2.41E-04</td>
<td>3.82E-04</td>
<td>6.45E-04</td>
<td>1.31E-03</td>
<td>3.97E-03</td>
</tr>
<tr>
<td>MTCB - DQM</td>
<td>(0.025, 0.0001)</td>
<td>5.82E-04</td>
<td>1.02E-03</td>
<td>1.82E-03</td>
<td>3.95E-03</td>
<td>1.76E-02</td>
</tr>
<tr>
<td>CMMC26B</td>
<td>(0.020, 0.0001)</td>
<td>1.87E-04</td>
<td>4.88E-04</td>
<td>9.48E-04</td>
<td>1.87E-03</td>
<td>5.09E-03</td>
</tr>
</tbody>
</table>

11. Liu HW, Liu LB. An Unconditionally Stable Spline Difference Scheme of $O(k^2 + h^2)$ for Solving the Second
Comparison of Numerical Solution of 1D Hyperbolic Telegraph Equation using B-Spline and Trigonometric B-Spline by Differential Quadrature Method

