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Abstract
Background/Objectives: The approximation using radial basis function (RBF) is an extremely powerful method to 
solve partial differential equations (PDEs). This paper presents different types of RBF methods to solve PDEs. Methods/
Statistical Analysis: Due to their meshfree nature, ease of implementation and independence of dimension, RBF meth-
ods are popular to solve PDEs. In this paper we examine different generalized RBF methods, including Kansa method, 
Hermite symmetric approach, localized and hybrid methods. We also discussed the preference of using meshfree meth-
ods like RBF over the mesh based methods. Findings: This paper presents a state-of-the-art review of the RBF methods. 
Some recent development of RBF approximation in solving PDEs is also discussed. The mathematical formulation of 
different RBF methods are discussed for better understanding. RBF methods have been actively developed over the 
years from global to local approximation and then to hybrid methods. Hybrid RBF methods help in reduction of com-
putational cost and become very effective in solving large scale problems. Application/Improvements: RBF methods 
have been applied to various diverse fields like image processing, geo-modeling, pricing option and neural network etc. 

*Author for correspondence

1. Introduction
Most of the problems in biological, chemical, mechani-
cal, electrical science can often be represented by partial 
differential equations. Now a days, researchers are using 
numerical techniques for solving different types of 
PDEs when analytically obtaining their exact solution 
is difficult. In all traditional numerical techniques for 
approximating the solution, data must be in predeter-
mined pattern and contained in a simple region. In some 
problems, this condition cannot be met and traditional 
numerical techniques are not applicable on such prob-
lems. To overcome this problem, meshfree methods are 
used. One such method is Radial Basis function (RBF) 
collocation method. 
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The RBF methodology was first introduced by Hardy 
in 1971 in connection with a topological application on 
quadric surfaces1. He introduced the multiquadric (MQ) 
approximation scheme. Richard Franke in 1982, test rect-
angle based blending methods, inverse distance weighted 
methods, finite element based methods, foley’s methods, 
global basis function type methods and modified maude 
methods on scattered data interpolation. He evaluates 
methods based on different parameters like accuracy, stor-
age and time taken by the method and finds multiquadric 
(one of the RBF) among the best ones2. Micchelli in 1986 
progressed further by proving that the multiquadraic sur-
face interpolation is always solvable3. Edward Kansa in 
1990, firstly use the multiquadraic, a globally supported 
interpolant to solve a PDE known as Kansa method4,5. 

Keywords: Differential Quadrature Radial Basis Function, Kansa Collocation Method,  Partition of unity, Partial Differential 
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However applied to various applications, Kansa method 
has some disadvantage like unsymmetrical nature of 
interpolation matrix which leads to ill conditioned matrix 
for large number of nodes. In 1996, Fasshauer proposed 
a hermite based approach as modification of Kansa 
method. The collocation matrices from this approach are 
symmetric in nature and generally have smaller condi-
tion number6. However, the symmetric RBF collocation 
approach has its own limitations. Symmetric Collocation 
approach is difficult to implement as compared to 
unsymmetric approach. The comparison between sym-
metric and unsymmetric approach was done by Power 
and Barraco7 and Larsson and Fornberg8. Several other 
procedures have been proposed to address the above dif-
ficulties like preconditioning the interpolation matrix9, 
domain decomposition method10,11 etc. Using these tech-
niques, the ill conditioning of the matrix can be reduced 
to some extent. Other very promising approach to deal 
with these kinds of difficulties in the Kansa method is the 
local approach. In this approach, instead of using all the 
nodes in the whole domain, only the local approxima-
tion is to be considered for collocation. In 2004, diffusion 
problem has been solved by Chantasiriwan using local 
RBF12. In the continuation localised RBF methods are 
used by researchers to solve different PDEs13-21. 

Mostly RBFs are associated with a parameter which 
decide the shape of the RBF known as shape parameter 
discussed in section (2.3). Some of the RBFs give best 
accuracy with small value of shape parameter which leads 
to ill conditioning of the matrix. Fornberg and Wright in 
2004 proposed an algorithm for stable computation of 
the RBF for all values of the shape parameter22. Fornberg 
and Piret in 2007 further improved the approach to a new 
approach RBF-QR which entirely eliminates ill-condi-
tioning of the matrix in case of near flat basis function23. 
Further the method is developed by combining RBF with 
other known methods to get the best out of the RBFs. 
Shu in 2003 gave an approach to combine the meshfree 
nature of RBF and the high accuracy and simplicity of 
Differential Quadrature (DQ) method by proposing a 
hybrid method known as RBF-DQ method24. This tech-
nique has been used by researchers to solve PDEs in fluids 
(such as Navier-stokes, Shallow water problems). Tolstykh 
in 2003 used local set of nodes to generate the radial basis 

finite difference approach25, this hybrid method termed 
as RBF-FD. For more literature on RBF-FD reader can 
refer26-30. Another promising approach is the RBF-PUM 
to solve PDEs which combines the partition of unity 
method with RBF31. The idea of RBF-PUM method is to 
partition the domain into overlapping subdomains. The 
local approximation is done on the subdomains and com-
bines to get the global approximation. RBF-PUM reduces 
the computational cost while maintaining high accuracy.

This paper presents a review of the RBF methods. In 
section 2, the basic definition and concepts are presented. 
In section 3, a review of the development of the methods is 
presented. Last section represents the concluding part of 
the paper. We tried to give the mathematical formulation 
of the methods wherever possible. In authors’ knowledge, 
there is no such survey available in which all the methods 
related to RBF are presented. A chronological summary 
of various methods along with their associated researcher 
is presented by Table 1 and Figure 1 shows a summary of 
development of RBF methods.

2. Radial Basis Function

2.1 Definition 

A function  is called radial if there exists a 

one variable function  such that 

  , where  is the Euclidean norm.

2.2 Definition 
A radial basis function  is a univariate continuous 
real valued function which depends on the distance from 
the origin (or any other fixed centre point).

2.3 Some Important Commonly Used RBF 
RBFs are mostly identified on the basis of smoothness. 
Some functions are infinitely smooth and some are piece-
wise smooth. Gaussian Function (GS), Multiquadric 
(MQ), Inverse Multiquadric (IMQ) and Inverse quadric 
(IQ) are some example of infinitely smooth RBFs where 
as Thin Plate Spline (TPS) and Linear radial function 
(LR) are piecewise smooth RBFs. For infinitely smooth 
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Year Methods Associated Researcher Reference

1990 Radial Basis Function Kansa Method Edward Kansa [4,5]

1997 Hermite Symmetric RBF-Collocation Method Greg Fasshauer [6]

2001 Modified Kansa Method (MKM) W.Chen [32]

2002 Radial Basis Function Differential Quadrature Method (RBF-DQ) Shu Chang [42]

2002 Radial Basis Function Partition Of Unity Method(RBF-PUM) H.Wendland [31]

2006 Local Radial Basis Function Collocation Method(LRBFCM) B.Šarler and R.Vertnik [13]

2007 Radial Basis Function-QR Method(RBF-QR) B.Fornberg and [23]

2011 Radial Basis Function-Finite Difference Method(RBF-FD) G.Wright A.R. Tolstykh [9]

Table 1. A chronological scheme of RBF methods

Name of the RBF  Equation ( )

Gaussian Function (GS)  

Linear radial function (LR)  

Multiquadric (MQ)  

Inverse quadric (IQ)
 

Polyharmonic Spline(PHS)
 

Thin Plate Spline (TPS)  

Inverse Multiquadric (IMQ)
 

Table 2. Some commonly used RBFs
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RBFs, there exists a free parameter called the 
shape parameter which controls the shape of RBF. The 
RBF become flat if shape parameter is closer to 0. Table 2, 
represents some RBFs which are commonly used.

2.4 Formation of Interpolation Problem 
The interpolation problem is to find a smooth function 

 S (   (1)
for the given data

.
A RBF interpolant takes the form

 

We can obtain  by imposing the interpolation con-
dition equation (1) which leads to 

 . 
where

 

The matrix A is called the interpolation matrix

3.  Important RBF Methods For 
Solving PDEs

3.1 Kansa Method
Kansa method or RBF collocation method is one of 
the meshless methods. Meshless methods have great 

Figure 1. A Summary of Development of RBF-Methods.
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advantage over the mesh methods. It requires neither 
domain nor surface discretization hence they are cost 
effective. Kansa4-5 in 1990, proposed an asymmetric 
method to solve PDEs using RBFs known as Kansa 
method. For mathematical formulation, let us consider 
the elliptic partial differential equation with Ω ⊂  

[ ( )] ( ),L u x f x x= ∈ Ω     (2)

with boundary condition ( ) ( ),u x g x x= ∈∂Ω  (3)

Let  , j = 1,2,..., be the points in the whole 

domain Ω and  , j =  be the points on 

the boundary . This method assume to represent the 

solution  by a linear combination of RBFs at 
predefined nodes 

  (4)

where  are unknown coefficients to be determined 
and N is the total number of nodes.  is the radial basis 
function such as MQ, IMQ, IQ etc as mentioned in Table 
2. Substituting equation (4) in equation (2) and equation 
(3) gives the linear system of equations 

       (5)
Where

and 

This approach has been widely successful in solving 
various problems. Chen at el. solved convection diffu-
sion problems32, Using this approach, Stefan problem is 
solved by Šarler33, Zhou solved shallow water modelling 
problem34, Chantasiriwan solved time dependent heat 
conduction problems35, Duan at el. used Kansa method 

to solve electrostatic problems36, Chen solved fractional 
diffusion equation by Kansa method37. Although used 
to solve various PDEs, the Kansa methods have certain 
disadvantages also. One of the biggest problem in this 
method is that it produces unsymmetric interpolation 
matrix and hence the computational cost of the method 
becomes very high. In a region adjacent to the boundary, 
the accuracy of the method is lower. The easiest way to 
increase the accuracy is to increase the number of inter-
polation points which results in high condition number 
of the matrix. Thus the method is not useful for large 
scale problems where the interpolation points are large. 
When we take the collocation points in the whole physi-
cal domain, the resultant matrix become dense and thus 
ill conditioned. Further, it is still a difficult task to find the 
best shape parameter of various RBFs.

The Kansa method is further upgraded to a method 
known as Symmetric collocation method. Fasshauer6 in 
1997 proposed this method which is based on Hermite 
interpolation. The RBF expansion for approximating the 
function as proposed by Fasshauer is given by: 

where the number of interior nodes of Ω is , 
 are the points known as centres 

of RBFand  is the differential operator in equation (2). 
After applying the governing equations i.e collocation 
conditions, we will have an N X N symmetric collocation 
matrix. For appropriate value of  the matrix is non-sin-
gular. The above discussed symmetric and unsymmetric 
approach has been implemented for many different appli-
cations. Power and Barraco7 compared these methods and 
find that the symmetric approach is slightly better than 
the unsymmertic (Kansa) approach. The computational 
cost is less in case of symmetric approach but the Kansa 
method is easy to implement. Leitao38 used the symmet-
ric approach to solve 2D elastostatic problems. Rocca et 
al.39-42 solved some time dependent PDEs and Naffa43 used 
it to solve non-linear plate problems. Chen44 proposed a 
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method known as Modified Collocation Method (MCM) 
which is based upon Green second identity. As the MCM 
is the modified form of symmetric collocation method, so 
the interpolation matrix is also symmetric. 

While using the Kansa collocation method for solv-
ing the PDEs, ill conditioning of the interpolation matrix 
is the serious issue. Several remedies were proposed to 
solve this like preconditioning, Domain Decomposition 
Method (DDM) and compactly supported RBF. 
Preconditioning means transforming a system of linear 

equation  into another system, which is more 
favourable for iterative solution. A matrix that pro-
duces such a transformation is known as preconditioner. 
Preconditioning helps in improving the convergence of 
the methods and also takes care high value of condition 
number. Whereas, the Domain Decomposition method is 
to subdivide a problem with large number of points into 
subdomains either overlapping or non-overlapping. The 
method is very useful in avoiding the ill-conditioning by 
solving small subdomain problems instead of one large 
domain problem.

Kansa and Ling9 in 2005 developed an effective pre-
conditioning scheme based on least square construction 
of the approximate cardinal basis function (ACBF). 
Ideally ACBF is equivalent to a delta function i.e one at its 
centre and zero elsewhere. They proposed the scheme for 
asymmetric collocation RBF methods. The least square 
construction of the preconditioner, makes the method 
simple and inexpensive. Brown et al.45 further review 
the ACBF preconditioning technique for interpolation 
problem and compared the technique by applying it to 
study state problems. He concluded that this technique 
is a good choice for ill-conditioned problems. Kansa and 
Ling10 combined the ACBF preconditioning technique 
with DDM. They use the classic alternating Schwarz algo-
rithm approach for DDM. The rank of each subdomain 
matrix is reduced using DDM and the preconditioning 
becomes more effective. This method reduces the overall 
computational cost and become more effective in solv-
ing RBF. Li and Hon11 tried the DDM to solve stationary 
PDEs. On matching and non matching grid points, they 
developed both overlapping and non overlapping DDMs. 
With the help of numerical examples, they show that the 

non matching grid and matching grid achieve the same 
accuracy with the same iteration steps. 

Apart from these methods there is another approach 
to avoid the dense nature of the interpolation matrix. The 
approach is based on local approximation and known 
as Local Radial Basis Function Collocation Method 
(LRBFCM). The method is described by Chen46. For 
mathematical formulation, consider the PDE given by 

equation (2) and (3). Let  is the local approxima-

tion of the solution  and  then

 
   (6)

where  is the collocation point, is the number of 

neighbouring points  surrounding the point  

including itself,  is an RBF and } coefficients to 
be determined. If all the collocations points are distinct 
then the matrix

 
will be non-singular if be strictly positive definite 
function46. Here the unknown coefficients are determined 
with the help of the equation (6)

The above equation can be rewritten as 

  
where

  and

 

Now the approximate solution  can be rewrit-
ten in terms of given nodal values  at its n nearest 
neighbouring points 
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 (7)

where . Rewriting the equa-
tion (7) in terms of approximate solution gives

    (8)

where  is sparse matrix of order N having N x n 
non zero elements. Substituting the value from equation 
(8) in equation (2) gives the linear system of equations 
which are sparse. We will get the approximate solution  
at all collocation points by solving the linear system of 
equations. 

arler and Vertnik13 inspired from the concept of 
local collocation used in19,25 proposed the above discussed 
LRBFCM and applied this to find the solution of diffu-
sion equations. The collocation is made locally on the 
overlapping domains of influence and hence reduces 
the collocation matrix size. Many authors followed this 
approach and applied this method to solve large scale 
complex problems such as convective-diffusive solid liq-
uid phase change problems14, fluid flow and heat transfer 
problems15, Transport Phenomena16 and Darcy flow17 etc. 
This method is further improved by Siraj-Ul-Islam et al.47 
for the numerical solution of hyperbolic partial differen-
tial equation. In the improved approach, MQ is used as 
an RBF along with uniform nodal arrangement for bet-
ter accuracy. The first order finite difference formula is 
used for approximating time derivative. Numerical prob-
lems shows that the method is more stable as compared 
to Kansa collocation method. The stability is established 
with the help of adaptive upwind technique. Mavric and 
Šarler48 developed the LRBFCM for thermo elasticity 
problems and its error behaviour. The authors discussed 
the linear thermo-elastic problems. They considered 
the condition number of the collocation matrix as free 
parameter and shape parameter is used to achieve the 
desired condition number. This helps in improving the 
performance of even the non uniform node arrangement. 
Hon et al.49 applied LRBFCM for solving coupled heat 
transfer and fluid flow problems with a free surface. The 
authors numerically solved the coupled mass, momentum 
and energy equations. Dehghan et al.50 applied LRBFCM 
to solve keller-segel model for chemotaxis. Chemotaxis 

is the movement of cells or organisms in response to 
chemical gradients. The authors considered the keller-
segel model that is represented by two non-linear PDEs, 
one for the cell density and other for chemoattractant 
concentration. First Crank-Nicolson scheme is used for 
time discretization then local RBF collocation method 
is used to approximate the spatial derivative. Finally LU 
decomposition method is used to solve equations after 
collocation. In this method, the interpolation matrix 
becomes sparse and cost effective. 

One of the advantages of using RBF approximation 
for solving PDEs is the exponential convergence. As the 
shape parameter of the basis function become flat, the 
resultant interpolation matrix become ill conditioned 
and exponential convergence may not be possible. As 
discussed in section 2.3, various types of RBFs associated 
with a shape parameter and the limit  leads 
to ill conditioned interpolation matrix. Fornberg and 
Wright22 proposed an algorithm which gives firm and 
accurate values of RBF for small values of shape parame-
ter. This was the first step towards the stable computations 
for small  and known as Contour-Pade algorithm. The 
key part of the algorithm is considering the values of the 
shape parameter as complex numbers i.e  
and in a large area around , the RBF interpolant is 
a measomorphic function with singularities as poles only. 
The algorithm is based on Cauchy Integral formula and 
Pade approximation. The limitation of the above algo-
rithm is that it can only work with the small number of 
nodes and its been tricky to find the poles.

Fornberg and Piret23 introduced the concept of 
RBF-QR method and applied the method when the 
nodes scattered over the surface of a sphere. This was 
the second algorithm that gave stable computation when

. Some RBFs gives best result when shape 
parameters is small. As discussed earlier, when RBF 
shape parameter become small, the interpolation matrix 
become ill conditioned. The RBF-QR method eliminates 
the ill conditioning and can be applicable to large num-
ber of nodes. The main logic in the RBF-QR method is to 
use a good basis that can span the same space instead of 
using the bad basis (ill conditioned). Fornberg51 extends 
the concept of RBF-QR formulation for the nodes in one 
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dimensional, two dimensional and even to three dimen-
sional with Gaussian RBF. This algorithm is also stable 
for the small shape parameter up to . The authors 
use the chebyshev polynomial as basis for improving the 
conditioning. The RBF-QR method gives new direction 
to all local based RBF approximation as with the help of 
the discussed approach; one can find the optimal shape 
parameter for even very small value. 

As per the application of RBF-QR is concerned, Piret 
and Hanert52 used the method to solve fractional diffusion 
equations. They discretized the space fractional diffusion 
equation of one dimension with RBF-QR method. The 
author uses RBF-QR technique to remove the ill con-
ditioning. Further in the same direction, Dehghan and 
Ilati53 solved one and two dimensional time dependent 
coupled Sine-Gordon equations. The authors use Crank-
Nicolson technique for time discretization the coupled 
Sine-Gordon equations. The stability issues related to 
small value of the shape parameter is discussed with the 
help of RBF-QR method.

Dehghan et al.54 developed a way to use Kansa method 
to solve anomalous fractional sub diffusion equations. 
Fractional differential equations have applications in 
various fields of science and engineering. The authors 
used the Riemann-Liouville type of fractional deriva-
tive of equations. They first discretize the time fractional 
derivatives and then approximate the spatial derivative 
by Kansa collocation method. Energy method (which is 
based on choosing the solution itself as the test function) 
is used to prove the stability and convergence of time 
discreitized scheme. Further Dehghan et al.55 showed 
that the approach is even suitable for the non-linear 
time fractional PDEs. The authors solved Sine-Gordon 
and Klein-Gordon equation which appears in relativis-
tic field theory. They obtained a time discrete scheme by 
transforming the equation into low order system of equa-
tions. For checking the convergence and stability of the 
scheme, energy method is used. Numerically one and two 
dimensional Sine Gordon and Kelin-Gordon equations 
are solved on irregular domains. As collocation is done by 
Kansa method, LU decomposition is used to avoid the ill 
conditioning of the coefficient matrix. 

Chen et al.56 numerically solved boundary value 
problem elliptic in nature using Kansa RBF method. As 

discussed, global RBF methods leads to ill conditioning 
of the resultant matrix which leads to stability problem 
and high computational cost. They used Kansa method 
to discretize the problem which leads to a system where 
matrix possesses block circulant structure. In their study, 
they used Fast Fourier transform as a matrix decomposi-
tion algorithm to solve the block circulant structure. They 
used the leave-one-out cross validation (LOOCV) tech-
nique for finding a good shape parameter.

3.2 RBF-DQ Method
3.2.1 Diffenertial Quadrature (DQ) Method
Bellman et al.57 in 1970 proposed the concept of DQ in 
which the derivative of the function is approximated 
instead of the function. Following the idea of integral 
quadrature, in this method the partial derivative of a 
smooth function is approximated as a linear combina-
tion of weights and its functional values in the whole 
domain. The derivative value of  with respect to  
at a point  is the linear combination of all values of its 
function in the global domain by 

where  are weight coefficients. There are many 
approaches to find the weight coefficients such as Lagrange 
interpolation polynomials58, Fourier series expansion58, 
Moving least square59.

3.2.2  Radial Basis Function-Differential 
Quadrature (RBF-DQ) Approach

Shu60 in 2002 uses radial basis function in place of 
Lagrange’s interpolation in conventional DQ method 
and termed it as RBF-DQ method. In RBF-DQ method, 
radial basis functions are used as base function and 
also for the computation of weighting coefficients. This 
method is also suitable for non-linear problems Shu24,61 
gives two versions of the RBF-DQ method: Global and 
Local. Global approach uses all the nodes in the domain 
to expand the derivative at a specified node. When large 
nodes are used, the ill conditioning problem arises and 
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the computational cost becomes high. However, in local 
approach which is known as Local Radial Basis Function 
Differential Quadrature (LRBFDQ) method, only those 
nodes are used, which are in the neighbourhood of the 
node under consideration. These nodes are called sup-
porting nodes as shown in Figure 2.

In this method, the derivatives are written as a lin-
ear sum of the values of the function at points in the 
domain under consideration. The order derivative of 
a function with respect to  at a certain node 

is 

  (9)

where N is the number of nodes in the support-
ing domain and are the weight coefficients at node

 .To determine the weight coefficients, equation 
(9) must satisfied by the radial basis function  as

  
      (10)

Figure 2. Supporting Nodes.

There are several kinds of RBFs as shown in Table 
1. One can use any RBF which is infinitely smooth such 

as Multiquadric (MQ)  , Inverse 

Multi quadraic (IQ)  , Gaussian (GA) 

 etc. According to equation (10) at each 

point , we have linear system of equations as
 

     (11)
where 

 

 

 and 

Therefore  can be written as

     (12)
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According to the equation (9), the  order deriva-
tive of function  with respect to  at node  can 
be expressed as

 =  

 where  and  is the value of 
 at node 

Shu24 solved two-dimensional incompressible Navier-
Stokes equations using LRBFDQ method and further 
applied the method to compressible flows62. Shen63 applied 
the method for the boundary layer problems. Soleimani 
et al.64 solved two dimensional transient heat conduction 
problems. Shu65 used indirect radial basis function net-
work with differential quadrature and proposed method 
related to RBF-DQ named as iRBF-DQ method. He suc-
cessively solved one dimensional burger’s equation with 
the proposed method. Hashemi and Hatam66 did seep-
age analysis using the method. The study of seepage is 
an important step in designing hydraulic structure. They 
proved that being its mesh independence property it 
works fine with irregular domains. 

Dehghan67 solved the boundary value problems using 
LRBFDQ of second order. He used Multiquadric (MQ) 
as basis function. As the shape parameter plays a very 
important role in RBF, Dehghan applied two different 
techniques to determine the optimal shape parameter 
OCSP technique and OVSP method. 

Homayoon et al.68 applied RBFDQ for simulation of 
long waves and shallow water equations. In this leave-
one-out cross validation (LOOCV) technique is used to 
obtain the optimal shape parameter. Fantuzzi et al.69 in 
2015 proposed the application of RBFDQ method with 
domain decomposition technique and studied arbitrary 
shaped plates when composite materials are considered. 
Dehghan et al.70 recently used this method to solve Cahn-
Hilliard equations. He used Mutiquadric (MQ) as radial 
function with constant shape parameter and compared 
the method with global radial basis function (GRBF) 
method. He showed that the use of RBF-DQ reduces the 

ill conditioning problem upto certain extent in GRBF 
method. 

Parand and Hashemi71 solved non-linear Lane-Emden 
type differential equations which are used in the areas of 
astrophysics. In their work, they tried Gaussian function 
(GS) as a radial basis function and compare their result 
with other methods like HFC, Linearization and HPM 
method. They proved that RBF-DQ method gives better 
result as compare to other methods.

3.3 RBF-FD Method
3.3.1 Finite Difference (FD) Method
The finite difference method is a new advancement in 
numerical analysis. FD method is one of the most useful 
and well known techniques for solving PDEs by approxi-
mating derivation of a function with difference equations. 
In 1911, Richardson72  proposed the FD approxima-
tions for numerically solving PDEs. In this method, the 
derivatives are approximated by combining neighbour-
ing values of the function with the help of weights. FD 
method requires a structural grid and weights can be 
obtained by using local polynomial approximations but 
lacks geometric flexibility.

3.3.2  Radial Basis Function-Finite Difference 
(RBF-FD) Method

RBF-FD is one of the hybrid method formed by combin-
ing the characteristics of RBF and easy to implement 
nature of finite difference. The high computational cost of 
global RBF is the main factor behind the development of 
RBF-FD method. The accuracy level of the RBF-FD is at 
par with the global RBF methods. Consider the elliptic 
partial differential equation discussed in section 3.1. In 
RBF-FD method, the operator { ( )}L u x  at a point 

 is approximated by a linear combination of the 
function  at n neighbouring points surrounding  
which constitute its stencil.

1
{ ( )} ( )

n

i ij j
j

L u x xua
=

≈ ∑     (13)
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 where ija are the weighting coefficients and are deter-

mined using interpolation with RBFs unlike FD 
approximation where we use polynomial. Thus 

1 1
( ) ( ) ( )

n n

j j j j
j j

u x r x xel j l j
= =

= = −∑ ∑
 

      (14)
where  is the shape parameter and ( )jrj  is some 

radial function. The weighting function can be obtained 
by solving the linear system of equations. Substituting 
equation (14) in equation (13) as

1
{ ( )} ( )

n

k i ij k j
j

L x rj a j
=

= ∑ , k=1, 2, 3....n (15)

The obtained interpolation matrix becomes sparse 
which shows very high computational speed and easy to 
applicable on large scale problems.

Tolstykh73 first refers RBF-FD approximation in a 
conference representation. It was then introduced inde-
pendently by Shu, Ding and Yeo24 and Liu, Wang74. 
Wright75 also mentioned RBF-FD in his Ph.D the-
sis. Tolstykh and Shirobokov9 construct local support 
approximation for derivatives in the same context as that 
of finite difference method. They applied their technique 
for various types of elasticity equations and find that their 
results are quite accurate. They considered MQ as RBF for 
solving the numerical examples. 

Chandhini and Sanyasiraju76 applied RBF-FD to solve 
convection-diffusion steady type equations. They showed 
in their work that by changing the shape parameter in 
MQ-RBF, solution can be highly improved.

Chinchapatnam at el.77 used the RBF-FD method for 
incompressible Navier-Stokes equations in stream func-
tion. The stencils become one-sided, near boundaries. 
In order to remove this, a novel ghost node strategy was 
used i.e. outside the domain, a sheet of nodes is placed 
which is known as ghost nodes. This strategy is used to 
overcome the no slip boundary condition.

Wright and Fornberg78 conceptually improved the 
method by proposing a compact FD method as RBF-HFD. 

In scattered FD formulas, symmetries are not available so 
the accuracy of the formulas cannot be increased. They 
generalize the concept of compact FD formula and pro-
pose this method. They also showed that the RBF-FD and 
RBF-HFD behave exactly as standard FD and compact 

HD formulas in the  limit (near flat shape param-
eter), when the stencil nodes are arranged properly. 

The stability of RBF-FD method for purely convective 
PDEs is discussed by Fornberg and Lehto in their work79. 
With the help of traditional hyperviscosity, they develop 
a filter approach. They also proposed a filter approach 
for global RBF. The technique also permits the use of 
larger RBF-FD stencils and therefore much more accu-
rate. Earlier to this, stencils can be around n = 15 nodes 
whereas with the help of this technique n-values up to 
100 were used for higher accuracies. Now we have two 
main hyperviscosity approaches that is best for global and 
RBF-FD approximations, one is  method for global 
RBF and other is powers of Laplacian for RBF-FD as dis-
cussed in their paper.

The accuracy and computational efficiency for geo-
sciences large scale modelling problems is established by 
Flyer et al.80 using RBF-FD. The authors used RBF-FD 
method for non-linear system of convective PDEs on the 
sphere and compared to Galerkin model and a spherical 
harmonic transform model which are already used for 
these types of equations. They concluded that RBF-FD 
method require hyperviscosity to stabilize the wide range 
of time and spatial scales.

Shankar et al.81 in 2014 developed an RBF-FD to solve 
diffusion and reaction-diffusion equations on general 
1D surfaces embedded in 2D domains. In their study, 
they simulate the reaction-diffusion equations on sta-
tionary platelets that are suspended in blood. The study 
modified the earlier known method Augmented Forcing 
Method (AFM) with the help of symmetric RBF Hermite 
interpolation and eliminated the drawback of AFM like 
separation constraints on platelets.

Wright et al.82 improved the above proposed method81 
by designing a numerical method which is more stable. 
The study shows that their shape parameter optimization 
approach stabilizes the RBF-FD without hyperviscos-
ity. They also discussed the convergence of their method 

for diffusion equation , where 
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 is the diffusion coefficient and  is the 
forcing term on some standard surfaces. They tried two 
different strategies, one with increasing condition num-
ber as the points on the surface increases and other with 
fixed condition number. 

Avazzadeh et al.83 implement the RBF-FD method 
for solving a time fractional telegraph equation defined 

by caputo sense for . They first discretize 
the problem in the time direction using finite difference 
scheme and then approximate the solution using RBF. 
Numerical solution of examples shows that the method 
can be applied to solve different types of fraction PDEs. 

Recently Flyer et al.84 used polyharmonic spline (PHS) 
as RBF and construct a modified RBF-FD method. They 
gained high accuracy with good conditioning of inter-
polation matrix with the help of their method. They also 
demonstrate that with the help of polynomials with poly-
harmonic spline one can eliminate the saturation errors. 

Alpesh et al.85 applied RBF-FD method to solve PDE 
in finance. In their work, the Asian option equation is dis-
cretized on time interval by Crank-Nicolson Scheme and 
option price by RBF based scheme. In the same direction, 
they solve the one dimensional wave equation with inte-
gral condition86. As discussed, shape parameter effects the 
accuracy of the RBF methods so they choose the optimal 
value of the shape parameter with the help of error and 
trail basis. The authors effectively compare their result 
with literature. 

3.4 RBF-PU Method
3.4.1 Partition of Unity Method (PUM)
The partition of unity finite element method is proposed 
by Babuska and Melenk87 in 1997 and applied the method 
to solve PDEs. This method partition the region  into 
M gently overlapping subdomains  in such a way 
that 

This approach require to choose a family of compactly 
supported, continuous function  such that at every 

point in   

where  is supported on  . For every subdomain

, let  be a local approximation. Then a function  
is approximated on each subdomain to form the global 
approximation for the data on entire domain  

3.4.2  Radial Basis Function Partition of Unity 
Method (RBF-PUM):

In RBF-PUM, local interpolants are constructed on 
subdomains also called as patches and then combine to 
form a global approximation using weight functions that 
form a partition of unity. In this method, RBF is used 
for local approximation. In 2001, Wendland31 combines 
the PUM with the RBF to solve large scale problems for 
the first time. For mathematical formulation, consider 
the partial differential equation (2). As discussed the 

local approximation  on overlapping subdomains 

 combine with weight func-

tion  , to form the global 
approximation  as 

 
The weight functions are from the family of compactly 

supported continuous function that form the partition of 
unity. The PDE (2) is discretized with collocation method 
as 



Gurpreet Singh Bhatia and Geeta Arora

Indian Journal of Science and Technology 13Vol 9 (45) | December 2016 | www.indjst.org

As the local approximation  are RBF approxi-
mations

    (16)

where  are the number of nodes that lies in , 
 are the unknown and )

are the radial basis functions. Local matrix can be 
formed with the help of the equation (16) using 

local nodes

. Finally the global 
matrix L can be formed by assembling the local matrices 
which results in a system of equation to be solved. The 
interested reader can refer87 for further reading. The RBF-
PUM provides a way to reduce the computational cost 
while maintaining high accuracy. The main advantage of 
the RBF-PUM method is to retain the geometrical flex-
ibility in high dimensional problems, to facilitate adaptive 
approximation and to overcome computation cost.

Cavoretto and DeRossi88 proposed algorithm for 
spherical interpolation for large scale problem using 
zonal basis function and further proposed the technique 
using partition of unity method. The authors used spheri-
cal radial basis function for local approximation. The 
method is parallelizable i.e. number of operations can be 
performed in parallel. Caroretto89 further extended his 
work and proposed a partition of unity algorithm which 
partitions the domain in cells using crossed strips. It is 
basically a cell based searching procedure. The author 
extended the above discussed 2D algorithm to 3D using 
cube partition searching procedure. 

Larsson et al.90 investigated the application of RBF-
PUM for the solution of parabolic time dependent PDEs. 
The authors considered two dimensional convection–dif-
fusion equations arising in financial applications. In this 
paper, RBF-PUM is compared with already known finite 
difference and pseudospectral methods and the authors 
found that RBF-PUM is either more than or as accurate 
as that of pseudospectral method. The method is in local 
adaptive nature that can be applied to irregularly shaped 
domains. The authors proved the stability of the method 
with the help of theoretical and experimental techniques. 
Heryudono91 further improved the RBF-PUM by defining 
certain preconditioning strategies. The author used gen-
eralized minimal residual method to take benefit of the 
sparsity induced by local approximation and use it as an 
iterative solver. The matrix generated by RBF-PUM is non 
symmetric, ill conditioned but sparse so there is a need 
of effective preconditioner. The authors discussed and 
compared different preconditioning techniques based on 
LU factorization and recommend no fill incomplete fac-
torization preconditioner. When shape parameter value is 
small, RBF-QR method is used to avoid ill conditioning. 

4. Concluding Remarks
Over the years, the numerical methods based on RBF 
grow rapidly due to their meshfree nature. This review 
presents a insight on the methods which are based on 
radial basis function formulation. We try to highlight 
some of the developments that have been taken place in 
recent years. The methods are presented with mathemati-
cal formulation to make the method understandable to the 
readers. It is hoped that this article familiarizes the reader 
with the RBF methods. The Kansa collocation method 
is the simplest meshfree method to solve partial differ-
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ential equations. Through the years, the RBF collocation 
method developed a lot. As the RBF collocation methods 
results in fully populated matrices which increase the 
computational cost and fail to perform for large problems 
so there is always a need to find alternatives to overcome 
the difficulties. Among all these alternatives, the local col-
location RBF methods are popular till date due to their 
local adaptivity. The local approximation helps to avoid 
the ill conditioning of the matrices that arises in global 
approximation. Various hybrid methods were introduced 
to overcome the difficulties arises in Kansa collocation 
method. In hybrid methods, the key strength of the RBFs 
combines with traditional techniques like FD to get the 
best out of RBFs. These methods help in reduction of 
computational cost and become very effective in solving 
large scale problems. For smooth RBFs, the small value of 
the shape parameter leads to high accuracy but the near 
flat radial basis ( ) results in the ill conditioning of 
the interpolation matrices. Several algorithms that allows 
stable algorithm for all values of shape parameter were 
introduced to address this issue. The stable algorithm like 
RBF-QR works for all values of shape parameter even the 
values nearest to zero and provides significant improve-
ment in accuracy. The described methods can further be 
extended by improving the reliability of the RBF methods 
and by exploring the effect of scaling and node refinement 
on the accuracy and stability of RBF approximations. 
Effectiveness and scalability of the RBF methods to solve 
high dimensional PDEs is still under consideration.
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