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Abstract
Background/Objectives: Determining the effect of high demand of whelk meat, overexploitation and indiscriminate 
fishing on the genetic diversity in two economically important whelk species viz., Babylonia spirata and Babylonia 
zeylanica from southeast coast of India. Methods/Statistical analysis: The genetic diversity and population structure of 
two whelk species namely, B. spirata (62) and B. zeylanica (57) involving total 119 individuals were studied using standard 
diversity parameters. Both species were genotyped at 12 microsatellite loci to support conservation and improvement 
strategies. Findings: The results show that levels of genetic diversity in natural populations of specific genetic group are 
moderate to low. All the loci under study were observed to be highly polymorphic and a total of 139 alleles for all 12 
markers were identified. The two genetic groups of the whelk species presented HWE deviations for majority of the loci. 
The range of alleles was found to be 3.5 to 7.5 with a global mean of 5.792. The overall mean of observed and expected 
heterozygosity were 0.489 and 0.787 respectively. Within population, inbreeding estimate (FIS = 0.381) indicated shortfall 
of heterozygosity in the population. Microsatellite analysis revealed less genetic diversity in both the species. The Analysis 
of Molecular Variance (AMOVA) showed 23% of total variation between both the species. Applications/Improvements: 
With the actual genetic diversity and the population structure of these two whelk genetic groups evaluated, it was possible 
to clarify their importance as well as to propose some management strategies to avoid further loss of genetic diversity in 
these whelk species. 

1.  Introduction
In India, gastropod beds are abundantly present along the 
south east coast and coral reef ecosystem in Andaman 

and Nicobar Islands. Whelks, like other important edible 
gastropods of Indian coasts are under extensive fishing 
pressure along the east and west coasts of India1. In many 
cases, this has led to collapse or permanent closure of 
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the fishery2. The production of whelks in India increased 
considerably from 30,499 t in 1950 to 1,21,657 t in 2011.

Among the genus Babylonia the two whelk species 
(Figure 1) i.e., Babylonia spirata and B. zeylanica are 
recognized as an important component of molluscan 
diversity of southeast and southwest coasts of India and 
also the important mariculture gastropod species. The B. 
spirata is distributed in the Indian Ocean up to 150 meters 
and B. zeylanica is distributed allover in the Indian and 
Sri Lankan waters. These are the two species of whelks, 
which form higher proportion as by-catch of shrimp 
trawlers along the southwest coast and the southeast coast 
of India.

Figure 1.  Typical whelks (A) Babylonia spirata and (B) 
Babylonia Zeylanica.

The high demand for whelk meat in China, Singapore, 
Thailand and Europe and the high economic value for 
its opercula, due to its aphrodisiac qualities which is 
exporting to Gulf countries under the trade name “Fish 
nail’’ has led to overexploitation which includes the 
major proportion of undersized whelks from southeast 
and southwest coasts of India. This scenario is directly 
affecting of renewal of the population which may result 
the reduction of heterogeneity in the natural stocks. In 
several parts of the world, due to high economic value 
many marine gastropods have shown serious problem 
of overexploitation3–6. Moreover, recently, due to over 
exploitation, some of the mollusc species have been listed 
under the endangered species category7. 

Moreover, literatures on population genetics of marine 
molluscs in their natural breeding tracts are very scanty8. 
The current exploitation rates of gastropods indicate the 
need to have scientific data of selected gastropods on their 
genetic diversity in their natural habitats for planning their 
conservation and management. Information on genetic 
diversity of a particular species under natural conditions 

will provide inputs for their domestication also9–12. DNA 
markers have been used to study the genetic variation 
in mariculture11,13, and major livestock i.e. cattle14, 
pigs15–21 and goats22–26. Genetic variations between 
species can be well determined with the help of genetic 
markers and the obtained genetic distance subsequently 
help in determining the relationships among species. 
Several studies have suggested microsatellite markers as 
a good tool to analyze the genetic variation27. Population 
genetic studies of commercially important marine 
molluscs based on microsatellite markers are useful for 
the analysis of population structure and relationships 
as demonstrated by various studies28,29. However, the 
genetic diversity of natural stocks of B. spirata and B. 
zeylanica by covering wide numbers and different avid 
fishing zones of India has not been assessed yet using 
microsatellite markers.

Therefore, in the current study, we have examined 
twelve well-characterized polymorphic microsatellite 
loci on widely separated natural populations of B. 
spirata and B. zeylanica from southeast coast of India 
in order to understand their genetic diversity and 
population structure in the natural breeding tract and 
to establish a microsatellite profile. As knowledge about 
genetic diversity levels and population differentiation 
through microsatellite analysis in native breeding tract 
will be useful for formulating management strategies 
for sustainable exploitation. The results obtained were 
compared with the genetic diversity in representative 
commercial stocks in India and from overseas for better 
understanding of intra and inter-population diversity. 

2.  Materials and Methods

2.1  Ethical Statement
No specific permissions were required in the field studies, 
they were obtained from the catch as these species form a 
part of important commercial fishery in South-east coast 
of India and it did not involve endangered or protected 
species.

2.2  Genetic stocks
A total of 119 whelks representing 2 species from family 
Buccinidae were sampled from major fish landing centers 
of southeast coast of India. Summary of whelks sampled 
from different localities are described in Table 1.

Sample collection and DNA isolation
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About 5g of foot tissue was collected from each 
individual using TNES-urea buffer as a preservative30 
and stored at 4°C until DNA isolation. The geographical 
information of sampling sites and number of samples from 
respective site are furnished in Table 1. DNA extraction 
from tissue was performed as described earlier31. 

Table 1.  Summary of sampling locations and number 
of whelks sampled

S. No. Species Sampling 
sites

Latitude and 
longitude

Number  
of samples

A B. spirata Cuddalore 11°43’45.74” N 
79°47’31.51” E

14

Nagapattinam 10°45’37.94” N 
79°50’57.82” E

16

Toothukudi 8°44’24.62’’N 
78°10’58.50’’ E

18

Kanyakumari 8°05’48.80” N 
77°33’42.32” E

14

Total of A 62
B B. zeylanica Mudasal Odai 11°29’07.74” N 

79°46’28.10” E
09

Nagapattinam 10°45’37.94” N 
79°50’57.82” E

11

Rameshwaram 9°16’49.46” N 
79°19’02.44” E

07

Punnaikayal 8°38’15.20” N 
78°07’13.63” E

13

Arogyapuram 8°07’10.76” N 
77°33’32.25” E

12

Colachel 8°10’20.67” N 
77°14’56.42” E

05

Total of B 57
Total of A+B 119

2.3  Microsatellite Markers
The markers were selected from the available genetic 
maps for marine gastropods32 such that different 
chromosomes were included for proper evaluation of 
the level of polymorphism and reliability of allele calling. 
Thus, to characterize two whelk species, a total of twelve 
microsatellite markers were included in the current study 
(Table 2). Forward primers of each marker were modified 
for labeling purpose. Extracted DNA samples were 
analyzed with 12 microsatellite markers. Each 10µl PCR 
reaction mixture consisted of 10ng of template DNA, 1X 
buffer, 200µM dNTPs, 2.5mM MgCl2, 1U of AmpliTaq 
Gold and 10pM primer. PCR amplification conditions for 

each reaction were as follows: Initial denaturation at 95°C 
for 5 min, and 30 cycles with 95°C for 30 sec, respective 
annealing temperatures as shown in Table 2 and 30 sec at 
72°C, followed by final extension of 72°C for 5 min.  

2.4  Genotyping and Statistical Analysis
Genotyping was performed on automated DNA 
Sequencer (ABI HITACHI 3500) and the output was 
analyzed to generate genotype calls per locus using Gene 
Mapper v. 4.0 (Applied Biosystems) by considering GS 
500 (- 250) LIZ as size standard.

Genetic diversity was determined in the form of various 
indices including allele frequencies, effective number 
of alleles (Ne), Hardy-Weinberg Equilibrium (HWE), 
observed heterozygosity (Ho), expected heterozygosity 
(He) and Shannon Information Index (I) using the software 
PopGene v. 1.3133 while the Polymorphic information 
content (PIC) was computed using Excel Microsatellite 
Toolkit 3.1 software34. Nei’s (1972) standard genetic 
distance was calculated using the Dispan program35. 
FSTAT v. 2.9.336 was used for estimating Wrights F 
statistics (FST, FIS and FIT)37 per locus within population. 

Principal Component Analysis (PCA) was computed 
using GenAlex v. 6.538 which forms a representation of 
populations as cloud points in the metric space. Comparison 
between the inertia of each marker enables comparison of 
their typological value. The genetic divergence between 
groups was determined by computing the Analysis of 
molecular variance (AMOVA) through FST estimations37 
using Arlequin v. 3.11 software39, and were tested with 
105iterations of Markov Chains and 105 permutations. 

Population structure for estimating the most probable 
number (K) in the samples from the generated data was 
performed using a Bayesian approach with Structure 
v. 2.3.340.  K value from 2 to 5 was estimated, with 
five simulations, tested with 105 repetitions and 5 × 
105iterations of Markov chain Monte Carlo Simulation 
(MCMC).  From the data probability logarithms (P Ln 
(D)) obtained, the best K was estimated with an ad hoc 
statistic Delta K41. The visual graphics of the output were 
computed using Distruct42. 

3.  Results

3.1  Within Species Diversity
A total of 139 alleles from 12 microsatellite loci were 
identified in the 119 evaluated samples of Whelks. 
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TNA per locus (Table 3) was 5.792, ranging from 3.500 
(HNI_A5) to 7.500 (HNI_B120). The amplitude of all 
markers in allele sizes was observed to be exceeding the 
expected amplitude range, indicating the presence of new 
alleles in the analyzed population. However, the effective 
number of alleles (Table 3) varied from 3.367 (HNI_A5) 
to 6.297 (HNI_B120), with over all mean of 5.013±0.958. 
The observed heterozygosity (Ho) ranged from 0.243 
(HNI_A10) to 0.693 (HNI_A117), with a mean 
value of 0.489±0.159, which was lower than expected 
heterozygosity (He) (mean value 0.787±0.046) (Table 
3). The B. spirata and B. zeylanica species represented 
the highest values of FIS Index (Table 3) and were not 
within the expectations of Hardy-Weinberg Equilibrium, 
revealing an amount of homozygous individuals beyond 
expected. The Shannon’s Information Index (I) describing 
the level of diversity was sufficiently high with a mean of 
1.639±0.216 (Table 3). The PIC value revealed that all the 

studied loci were highly polymorphic in nature with a 
global mean of 0.885 (Table 3).

The within-species analysis (Table 4) showed that 
two populations of whelks had least genetic diversity 
(MNA, Na, Ne, Ho and He). Between two whelk species, 
B. zeylanica, had smallest level of genetic diversity (Ho = 
0.457), while B. spirata had largest level of genetic diversity 
(Ho = 0.520). The chi-square (χ2) test for HWE revealed 
that all the investigated loci deviated from equilibrium in 
B. zeylanica and 11 out of 12 loci in B. spirata (Table 4).

The species differentiation measured by Wright’s 
F-statistics revealed the divergence between expected 
and observed heterozygosity as measured by the FIT 
statistic, that had a global mean of 0.454 for all the studied 
markers, with values ranging between 0.228 and 0.729 
(Table 3). While the within-species excess heterozygosity 
(FIS statistic) had a global mean of 0.381, and ranged from 
0.129 to 0.694. And the genetic differentiation among the 

Table 2.  Details of microsatellite markers used in present study

Locus name Primer sequences (5’-- 3’) Repeat motif Labeled 
dye

Ta (°C) Allele size 
range (bp)

HNI_A3 F:CCATTGCTGAGAGACTGAAGAA
R: ACATTTGCGCTTAGTTTGACTG

(CA)22 6 FAM 58 238–268

HNI_A12 F:AGTAGGCGGCATTTCACTTC
R:CACGAAACTCTGCAAAGACG

(CA)37 ROX 58 136–216

HNI_A5 F: CTGTGCAACATCTCTCATTGTT
R:ATTTTGCGCTATACCAAGAATG

(TAA)7 Tamra 57 164–182

HNI_A120 F:CTAGCCCCAGTGTATGGTC
R:GGTGTCAGTCCTCATTTGG

(CA)21 HEX 57 202–282

HNI_A10 F:GAATCCATCCTATGTTTTCAAG
R:AAAGAGAGAGGGGAAGAATAAG

(CA)31 6 FAM 56 133–237

HNI_B9 F:GGGGTCTACAACACGGTG
R:GATGGGAATGGATGGTTG

(CATC)19 Tamra 56 121–161

HNI_B120 F:GCAAACACACTCACACACTTT
R:CATCCAAGTAAGCAGGAAGAC

(CTAC)26 ROX 57 240–286

HNI_A117 F:GGCAGAACGGCATTAACTATG
R:CAGGGATCGACAGAGAATCAG

(TCTG)8 6 FAM 57 120–138

HNI_C12 F:TGTCGAATACGATGGAGAGTG
R:GGTCTGCTTTACCATTGGAAG

(TACA)23 HEX 58 229–301

HNI_B12 F:CACGCACACGTTATACATACAC
R:CTTATTCTTCCCCTCTCTCTTT

(CA)51 Tamra 58 267–329

HNI_B104 F:ATCGAAGAAGTGGGCATATTG
R:ACTGGTAAGATGGGGTTGTTG

(CATC)14 HEX 57 153–215

HNI_C102 F:TGAGGCTTCGTGTTGAAG
R:CGTCATAAATGCAAACATAGTG

(TACA)21 6 FAM 57 109–189

Ta, annealing temperature; bp, base pair.
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species (FST statistic) had a global mean of 0.120, ranging 
between 0.087 to 0.180. Overall, the results indicated that 
88 % of the genetic variability was due to the differences 
among individuals within species and 12 % was caused by 
the differentiation among species.  

3.2  Between Species Divergence
A large genetic distance (0.3655) between the two studied 
whelk species was revealed by Nei’s (1972) standard 
genetic distance measurement. Further, an AMOVA 
analysis performed to analyze the variation within 
and between species revealed 23% variation among 
populations and 77% variation within populations. For 
all the studied loci, the observed variance components 
among population were highly significant (Table 5), 

demonstrating significant geographical structuring in 
whelk species.

Table 5.  AMOVA analysis of B. spirata and B. Zeylanica 
based on microsatellite DNA variation

Source of 
variation

Degree 
of 

freedom

Sum of 
squares

Variance 
component

Percentage 
of variation

Among 
Pops

1 185.425 4.286 23

Within 
Pops

78 1091.150 13.989 77

Total 79 1276.575 18.275 100

Principal component analysis was performed using all 
the 139 alleles frequencies for the 12 markers. The first 

Table 3.  Estimates of genetic variability indexes per locus based on 119 whelks

Locus Mean
TNA Ne Ho He I PIC FIS FIT FST

HNI_A3 6.000 4.846 0.475 0.788 1.642 0.885 0.398 0.469 0.118
HNI_A12 7.000 6.182 0.375 0.827 1.843 0.907 0.546 0.589 0.095
HNI_A5 3.500 3.367 0.288 0.695 1.220 0.828 0.586 0.660 0.180
HNI_A120 4.500 4.432 0.250 0.772 1.491 0.875 0.676 0.718 0.129
HNI_A10 6.500 5.604 0.243 0.794 1.712 0.891 0.694 0.729 0.115
HNI_B9 7.000 5.886 0.639 0.829 1.852 0.908 0.230 0.302 0.093
HNI_B120 7.500 6.297 0.588 0.840 1.912 0.915 0.301 0.362 0.087
HNI_A117 6.000 4.904 0.693 0.796 1.676 0.889 0.129 0.228 0.114
HNI_C12 6.500 5.535 0.575 0.819 1.778 0.902 0.298 0.368 0.099
HNI_B12 6.000 5.244 0.592 0.804 1.700 0.894 0.263 0.344 0.109
HNI_B104 5.000 4.471 0.572 0.776 1.555 0.878 0.264 0.357 0.126
HNI_C102 4.000 3.507 0.575 0.703 1.294 0.834 0.182 0.325 0.174
Global mean 5.792±

1.269
5.013±
0.958

0.489±
0.159

0.787±
0.046

1.639±
0.216

0.885±
0.027

0.381±
0.057

0.454±
0.050

0.120±
0.009

TNA, Total number of alleles; Ne, Effective or Corrected number of alleles; Ho, Observed heterozygosity; He, Expected heterozygosity; I, Shannon’s information index; 
PIC, Polymorphic Information Content; FIS, Inbreeding coefficient within population; FIT, Inbreeding coefficient related to the whole population; FST, genetic differen-
tiation index.

Table 4.  Estimates of genetic variability indexes per population using with 12 microsatellite loci

Genetic group TNA/ 
population

Alleles/locus 
(MNA)

Corrected 
Alleles/locus (Ne)

Heterozygosity HWE 
deviation

FIS

Observed 
(Ho)

Expected 
(He)

B. spirata 64 5.333 4.664     0.520 0.767 11 loci 0.323*
B. Zeylanica 75   6.250   5.382 0.457   0.807 12 loci 0.434*

*(P<0.05), TNA, Total number of alleles; MNA, mean number of alleles; HWE,  Hardy-Weinberg Equilibrium;  FIS, Inbreeding coefficient within each population
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two principal components explained 52.47% of the total 
variation, and its global principal component analysis is 
presented in Figure 2. The first and second axis contributed 
about 36.88% and 15.59% of the inertia, respectively 
and distinguished the two whelk populations from each 
other into separated clusters containing B. spirata and B. 
zeylanica.  As a result, these two axis revealed a pattern of 
association that supported a partition of populations into 
two discrete groups.

Figure 2.  Global principal component analysis (First two 
principal components).

To supplement FST analysis, genetic structure analysis 
using a Bayesian approach by Structure software 
was performed with increasing number of inferred 
populations. The probability of K = 1 to 5, averaged 
over 10 runs for each value of K.  A continued gradual 
increase in Pr (X/K) values was observed for increased 
values of K, with highest probability of K being 2. This 
interpretation was based on the combination of the 
highest –LnPr value and a low SD. The assignment of 
individuals to each cluster based on K = 2, from 500,000 
MCMC iterations, is 99.9 per cent. The proportion of 
membership to each cluster for K = 2 to K = 5 is presented 
in Figure 3.

4.  Discussion
In our study, the set of microsatellite markers (Table 2) 
developed for Hexaplex nigritus32 were used for analyzing 
the genetic diversity of two whelk populations collected 
from different geographical locations of Southeast coast 
of India (Table 1) and the relationships among and within 
the populations.

The B. spirata and B. zeylanica species, based on 
estimates of effective number alleles and observed 
heterozygosity, can be considered the populations with 
lowest genetic variability. The global mean number of 
alleles observed (5.792) in the study is less than the mean 
number reported for B. areolata (13.125) (Wang et al. 
2011) and H. nigritus (19.385)32. However, the global 
mean number of effective alleles (5.013) was lower than 
the observed number of alleles which might be due 
to very low frequency of majority alleles at each locus 
and fewer alleles may be contributing major part of the 
allelic frequency. The mean Ho and He of B. spirata and 
B. zeylanica (0.520 and 0.767; 0.457 and 0.807) was lower 
than the mean number of Ho and He (0.700 and 0.854) in 
B. areolata43. Moreover, the present findings of observed 
and expected heterozygosity was also lower than the 
reported32 value in H. nigritus populations viz., Punta 
Chueca (PCH) (0.608 and 0.742); El Borrascoso (EBO) 
(0.632 and 0.747); Isla San Jorge (ISJ) (0.679 and 0.775); 
San Luis Gonzaga (SLG) (0.7 and 0.762). 

All of the loci possessed high PIC values (above 0.50) 
signifying that these markers are highly informative for 
characterizing whelk populations (Table 3). The deviation 
of most of the loci from HWE (Table 4) may be due to 
consequences of population size. The specimens of these 
two genetic groups might be sampled from wild where 
mating was not controlled. The selection of non-related 
animals in populations with these characteristics generally 

Figure 3.  Distribution of the genetic structure of the two 
whelk species studied with the software Structure/Distruct 
for K = 2 to K = 5.
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is not easy, and also influences the results in relation to the 
HWE. Moreover, several other factors, such as non-random 
mating, Walhund effect; sampling errors and less proportion 
of male individuals, may cause deviation from HWE. 

The global mean within population inbreeding 
estimate (FIS) was 0.381. The deficiency of heterozygotes 
(38.1%) in both the studied genetic groups supports 
the random mating. The positive FIS for all loci in the 
populations may reflect the division of general population 
into subpopulations due to accumulated inbreeding in 
smaller populations and deviations from the HWE.

The variability within genetic groups estimated by 
the inbreeding coefficient (FIS) (Table 4) showed that 
the higher value was obtained for both the populations 
(B. spirata, 0.323 and B. zeylanica, 0.434; P<0.05). Due 
to lack of organized selection programs in the natural 
populations, it can be inferred that positive FIS observed 
values are a result from the inbreeding effect, which may 
contribute to the observed heterozygote deficits resulting 
from mating between related individuals. 

The FST had a global mean of 0.120, showing that 
12% of the genetic variation was on account of the 
differences between populations. The mean FIT value for 
all loci was 0.454, revealing difference of 45.4% between 
the observed and expected heterozygosity. In addition, 
AMOVA indicated 23% of the total genetic variation 
between studied whelk species, confirming moderately 
higher within population diversity in the investigated 
genetic groups. Further, the Principal Component 
Analysis (PCA) supported the grouping of animals and 
the distance between species was significant. 

Results from the assignment test suggested a true 
genetic structure with significant differentiation among 
studied populations. This result from the Bayesian-
based assignment test therefore supports the trend from 
frequency-based FST values, which showed significant 
differentiation among the populations. Two genetic 
groups displayed a pattern of strong distinctiveness, 
more than 98% of individual assigned to a single cluster 
in each case. Overall, the results from the assignment 
test support the hypothesis of high homogeneity within 
natural populations sampled. In the absence of historical 
data, the exact comparison with nearest genetic groups 
cannot be determined. 

5.  Conclusions
In the present study, the markers used were highly 
informative for characterization of diversity in whelk 

species as indicated by the PIC values observed. The 
results show that levels of genetic diversity in natural 
populations of both the species are moderate to low. 
With the actual genetic integrity of these two important 
mariculture gastropod species evaluated, it is possible 
to propose some management strategies to preserve the 
genetic integrity and also to avoid further loss of genetic 
diversity. 
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