
Abstract 
Objectives: The objective of this research work is to discuss the various techniques which can be used for mining of big 
data viz. sampling, incremental learning, and distributed learning. Methods: For this study, literature survey was done to 
­identify the various techniques employed by different authors to handle large (and streaming) data sets. For each ­technique, 
one or more algorithm was chosen and applied on large data sets. The platform for each technique was standardized (R 
libraries were used for each algorithm). The algorithms were compared on accuracy and time-consumed. Findings: The 
findings of this research work which conform to the existing literature is that the distributed learning is the best approach 
in terms of accuracy and time-complexity, for large data sets. However, if the data sets are streaming data sets and we want 
to perform real-time analysis then sampling or incremental approach are better than distributed approach. Incremental 
approach provides better accuracy, whereas sampling reduces time-complexity. Novelty: This study is important in the 
sense that it brings all the three techniques together on a single platform, which hasn’t been done earlier.

Big Data Mining Techniques
Adeel Shiraz Hashmi* and Tanvir Ahmad

Department of Computer Engineering, Jamia Millia Islamia, Delhi, India; ashashmi10@gmail.com

Keywords: Big Data, Data Mining, Distributed Learning, Incremental Learning, Sampling

1.  Introduction
The first research paper on ‘Big Data’ appeared in 20001, 
but the term became widespread as recently as in 2011, 
after explosion in the amount of data that is being 
generated daily by sites like Facebook, Twitter, YouTube, 
etc. along with an increase in networked devices (Internet 
of Things) like sensors, mobiles, etc. Although ‘size’ is the 
first, and most of the times, the only dimension that leaps 
out at the mention of big data, the term “Big Data” refers 
to any collection of data which is difficult to handle using 
traditional database management systems and data pro-
cessing tools due to its size, complexity or speed at which 
it is generated. Big Data is characterized by 3 V’s: Volume, 
Velocity, and Variety2, but other dimensions like Veracity, 
Value, have also been mentioned.

What should be the volume of a data set to qualify being 
big data? Microsoft Excel 2007 can’t perform analysis on 
more than 1 million rows, so any data set larger than 1 
million instances is “big” data for MS Excel 2007; whereas 
for other tools like R, the size of RAM is the constraint. So, 
any data set which is larger than the available processing 
capabilities needs a big data solution. The data generated 
by sensors, e-commerce sites, social networking sites etc. 

has a very high velocity and there may be a need to process 
this data in real-time, which may be beyond the available 
processing capabilities, making it “big” not in terms of 
volume but in terms of velocity. The data may be obtained 
from various sources, and unlike the traditional data ware-
house which deals with only structured data, the data here 
may be structured, semi-structured, as well as unstruc-
tured. This is the third dimension of “Variety” which 
makes the data too complicated to be handled by tradi-
tional data warehousing systems. Applications of big data 
are found in diverse fields like analyzing and visualizing 
web-server logs3, handling illegal parking4, etc.

2.  Big Data Tools
Message Passing Interface5 is a standard used for 
developing and running parallel applications on a 
peer-to-peer network. MPI is available for many 
programming languages. The major drawback of MPI 
is fault intolerance, and a single node failure can cause 
the entire system to shut down. Apache Hadoop, devel-
oped by Doug Cutting and Mike Cafarella in 2005, is 
an open source fault-tolerant framework for distributed 
processing on cluster of commodity hardware. Hadoop 
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provides HDFS distributed file system6 and MapReduce7 
programming model for writing parallel jobs. Apache 
Pig8 and Apache Hive9 are Map-Reduce wrappers which 
simplify writing of Map-Reduce jobs. Apache Spark10 is 
a cluster computing framework, which provides perfor-
mance up to 100 times faster than Map-Reduce through 
data caching.

Apache Storm11 and Apache S412 are distributed 
real-time computation frame work for processing fast, 
large streams of data. Apache Spark can also handle 
data streams through Spark Streaming library. General 
Purpose computing on Graphics Processing Units 
(GPGPU) takes advantage of large number of cores 
(typically around 2500+) and high-throughput DDR5 
memory present in Graphics Processing Units (GPUs) 
to speed up the processing multiple times compared to 
CPUs. Compute Unified Device Architecture (CUDA) is 
a GPGPU framework for parallel computing on NVIDIA 
GPUs. The major drawback of GPGPU is the limited size 
of memory (maximum of 12GB as of now). 

So if one desires high performance (like in case of 
processing high velocity data streams) then he should go 
for Apache Storm or GPGPU, whereas if data scalability 
and fault-tolerance is desired then Hadoop or Spark 
cluster should be setup.

3.  Big Data Mining
Traditional data mining algorithms like k-means 
clustering14 Naïve Bayes classifier15, etc. can only handle 
static data which fits into the memory. These algorithms 
need to be modified16 to be able to handle data streams 
(velocity) or memory limitations (volume). The data 
streams in which the classification boundary keeps chang-
ing as new examples are received are called data streams 
with concept-drift17. There may be situations, where 
only recent examples are required for building the con-
cept rather than complete data streams. To handle such 
data streams, we can use the concept of sliding window 
or weighting policy. In sliding window, we only consider 
only a specific amount of recent data, and completely dis-
card the old data. In weighted policy, we assign weights to 
data elements such that older element have lower weight 
and newest element has highest weight e.g. simply assign 
weights 1,2,3,4…, and so on. 

A simple technique to handle large data sets or data 
streams is sampling, where we do not consider the whole 
data set, rather we take sufficient number of samples from 

the database which can give us approximate statistical 
measures of the complete data. Reservoir sampling and 
Hoeffding bounds are the two most popular sampling 
methods for large data sets.

A technique which can be applied to mine high-velocity 
data streams as well as massive data sets is incremental 
learning. Incremental learning processes one instance at a 
time when generating the model. An instance can be read 
from the stream or input file, the model can be updated, 
the next instance can be read, and so on – without ever 
holding more than one training instance in main mem-
ory. Naive Bayes is naturally an incremental algorithm 
and multi-layer neural networks with stochastic back 
propagation are also incremental.

Incremental learning tends to be slow, so to speed 
up the process we can use parallelization, where we split 
the data set or data stream, process each using a separate 
processor, and combine the results together using voting 
or averaging to give a final result. Decision tree learners 
can be parallelized by letting each processor build a sub-
tree of the complete tree. Bagging and stacking (although 
not boosting) are naturally parallel algorithms; whereas 
other popular algorithms can be modified to handle data 
incrementally.

Which tools we should use for big data mining? Weka 
and R are the two most popular tools for data mining, 
but can they handle big data? Massive Online Analysis 
(MOA) is a Weka-like tool with all the state-of-the-art 
algorithms for mining of data streams, which can also 
be used for incremental learning on data streams. R can 
use package “Rmpi” to handle large data sets or “stream” 
to handle data streams as well, where Rmpi provides 
Message-Passing Interface (MPI) for R language and 
stream package provides data stream mining algorithms. 
Apache Spark has a machine learning library Spark MLlib 
which supports many popular machine algorithms. H2O 
is an open source parallel processing engine for machine 
learning, and provides support to R and python, along 
with support for Hadoop, Spark, and Storm. 

4.  Sampling
A simple straight-forward method for handling large data 
sets is sampling (dimensionality reduction may also help 
if there are large number of features). But what should be 
the size of the sample so as to obtain good results? 

Reservoir sampling18 is sampling without replacement 
(i.e. an example can’t be selected more than once). The 
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where, P(C) and P(E|C) are priori probabilities obtained 
from training set, and P(C) = total examples belonging 
to class C / total examples, whereas P(E|C) = count of 
attribute value E associated with class C / total examples 
belonging to class C. In incremental learning, as new 
examples are received we recalculate P(C) as well as 
P(E|C) and update the model. 

The idea behind back-propagation neural network28 
is to adjust the weights of the network to minimize some 
measure of error on training set. The measure of error is 
given by the equation:

where, y is desired output, g is the activation function, xiis 
the ith input, and wi is the weight associated with xi.

The method used to minimize the squared error is 
gradient descent, which takes all the training examples in 
each of the iteration to minimize the error,

Where, α is the learning rate, and w is the weight to be 
adjusted. 

For incremental learning, stochastic gradient 
descent can be used, which instead of taking all of the 
instances in each of the iteration considers each instance 
one-by-one.

6.  Parallel Learning
Some of the machine learning algorithms like Random 
Forest work on multiple copies of same data set and can 
easily be parallelized, whereas algorithms like k-means14, 
kNN29, Naïve Bayes15, back-propagation neural net-
works28, Support Vector Machines (SVM)30, etc. must be 
modified for distributed processing.

k-means algorithm can be parallelized by splitting 
the data into subgroups and clustering samples in each 
subgroup separately. Nearest-neighbor methods can be 
easily distributed among several processors by splitting 
the data into parts and letting each processor find the 
nearest neighbor in its part of the training set. In Naïve 
Bayes, we have to estimate P(E|C) from the training data, 

idea is to use a reservoir of size s, and initially filling it 
with first s examples; when more examples are received, 
ith instance in the input stream is placed in the reservoir at 
a random location with probability s/i. 

Very Fast Machine Learning19 toolkit uses 
hoeffding-bound for mining data streams and large data 
sets. Hoeffding bound states with probability 1-δ, that the 
true mean of a random variable of range R will not differ 
from the estimated mean after n observations by more 
than ε, 

	 ε= � (1)

The Very Fast Machine Learning (VFML) toolkit 
consists of algorithms like Very Fast K-Means (VFKM), 
hoeffding trees, etc. The VFKM algorithm performs clus-
tering on a sample whose size (n) can be decided by: (1), 
with confidence 1-δ (δ=5% by default) within error ε. 

Hoeffding trees are based on the concept that if the 
difference in information gains b/w the best two attributes 
is less than ε then it is not safe to split. However, ε will 
decrease as n is increased, so it is just a matter of get-
ting adequate number of samples. The random variable 
being estimated is the difference in information gain b/w 
the best two attributes, R is the base 2 logarithm of the 
number of possible class labels (i.e. R=1 for a two-class 
problem), and δ is taken to be very small ~10-7.

5.  Incremental Learning
Incremental learning20 is different from traditional machine 
learning in the sense that it does not assume the availabil-
ity of complete data set before learning process, but the 
learning takes place whenever new instances emerge and 
adjusts to what has been learned from these instances. 

Incremental k-means21, Incremental Density Based 
Spatial Clustering of Applications with Noise (DBSCAN)22 
are variants of popular k-means14 and DBSCAN23 clus-
tering algorithms, respectively, which work on dynamic 
and large databases. There are various other incremen-
tal clustering algorithms also in the literature for mining 
of data streams like CobWeb24, BIRCH25, CluStream26, 
DenStream27, etc. 

Naïve Bayes(15) needs no major modification to handle 
data incrementally. In Naïve Bayes, the probability of an 
example E belonging to a class C can be calculated as 
follows: 
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so we can parallelize it by computation of P(E=k|C=0) 
and P(E=k|C=1) for each k in parallel. Neural Networks 
and SVM can be parallelized by performing partial batch 
gradient descent on subgroups of data samples.

Random forest31 is a collection of decision trees on 
bagged data sets, but in random forests, each time a split 
in a tree is considered, a random sample of m predictors 
is chosen as split candidate from the full set of p predic-
tors. A fresh sample of m predictors is taken at each split, 
and typically we choose m~√p. Random forest provides 
an improvement over bagged trees. As in bagged trees, 
we use full set of predictors to make the split, therefore 
each tree may use the strongest predictor in the top split, 
and as a result all trees may look quite similar to each 
other. Random forests overcome this problem by forcing 
each split to consider only a subset of predictors, there-
fore strongest predictor will not be even considered for 
few cases, and so other predictors will have more of a 
chance.

7. � Experimental Setup and 
Results

We want to compare these three learning techniques on 
large data sets. For this we select representative algorithms 
for each learning technique; the algorithms selected are 
hoeffding trees, incremental Naïve Bayes, distributive 
random forest, and distributive deep learning neural net-
works. The primary data set used is HIGGS data set of 
size 8GB, other two data sets being popular kddcup99 and 
Modified National Institute of Standards and Technology 
(MNIST) data sets. The summary of experimental setup 
is given in Table 1.

The time required for building the classifiers from 
the training sets are listed in Table 2, and the classifica-
tion errors for each data set by each classifier are listed in 
Table 3. For hoeffding trees and incremental algorithms, 
the files were read in chunks of 100000 instances (i.e. 
chunk size = 100000). MNIST data set is multi-class 
data set with 10 labels, kddcup99 is a medium-sized 
data set with binary labels, whereas HIGGS data set is 
“big” data set with binary labels. The classifiers were 
trained with the data sets, and then the test data sets 
of kddcup99 as well as MNIST were used for predic-
tion, and the classification error was calculated. For 
HIGGS data set with 11 million instances, the last 1 
million instances were reserved as test set, whereas the 
rest were used for training. 

Table 1.  Experimental setup

Processor Core i5 @ 3.00GHz (64–bit) with 4 cores
RAM 2GB

OS Ubuntu 15.04 (64–bit)
Cluster 

OS H2O 3.0

Cluster 
size

6 for HIGGS data set, 1 for kddcup99 and 
MNIST data sets

Data sets

HIGGS (8GB, with 11 million instances of 29 
features) 

kddcup99 (4 million instances of 42 features) 
MNIST (42000 instances of 785 features)

Language R
Packages RMOA, h2o

Table 2.  Training time

Algorithm MNIST kddcup99 HIGGS
Hoeffding-tree  
(single-node)

6.77 
min 18.41 min 2.74 hrs

Incremental Bayes  
(single-node)

6.59 
min 18.26 min 2.91 hrs

Distributed Random Forest 
(20 trees)

1.33 
min 7.47 sec 47.24 

min
Distributed Deep Learning 
(200X200 hidden-neurons, 

10 epochs )

11.95 
min 21.82 min 7.10 

min

Table 3.  Classification error

Algorithm MNIST kddcup99 HIGGS
Hoeffding-tree 7.69% 0.31% 6.72%

Incremental Bayes 6.53% 1.50% 6.54%
Distributed Random 

Forest
3.35% 0.18% 3.08%

Distributed Deep Learning 2.09% 0.09% 3.02%

8.  Conclusion
From the results obtained, we conclude that the performance 
of sampling and incremental approach is nearly same, both 
in terms of training time taken and prediction accuracy. 
However, compared to distribute learning, both sampling 
and incremental learning techniques are not only much 
slower, but also have higher classification error. The results 
of the experiments conducted were not a surprise and were 
expected. However, the sampling or incremental approach 
would be better for streaming data.
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