
Abstract
Objectives: The objective of this research work is to discuss the various techniques which can be used for mining of big
data viz. sampling, incremental learning, and distributed learning. Methods: For this study, literature survey was done to
­identify the various techniques employed by different authors to handle large (and streaming) data sets. For each ­technique,
one or more algorithm was chosen and applied on large data sets. The platform for each technique was standardized (R
libraries were used for each algorithm). The algorithms were compared on accuracy and time-consumed. Findings: The
findings of this research work which conform to the existing literature is that the distributed learning is the best approach
in terms of accuracy and time-complexity, for large data sets. However, if the data sets are streaming data sets and we want
to perform real-time analysis then sampling or incremental approach are better than distributed approach. Incremental
approach provides better accuracy, whereas sampling reduces time-complexity. Novelty: This study is important in the
sense that it brings all the three techniques together on a single platform, which hasn’t been done earlier.

Big Data Mining Techniques
Adeel Shiraz Hashmi* and Tanvir Ahmad

Department of Computer Engineering, Jamia Millia Islamia, Delhi, India; ashashmi10@gmail.com

Keywords: Big Data, Data Mining, Distributed Learning, Incremental Learning, Sampling

1.  Introduction
The first research paper on ‘Big Data’ appeared in 20001,
but the term became widespread as recently as in 2011,
after explosion in the amount of data that is being
generated daily by sites like Facebook, Twitter, YouTube,
etc. along with an increase in networked devices (Internet
of Things) like sensors, mobiles, etc. Although ‘size’ is the
first, and most of the times, the only dimension that leaps
out at the mention of big data, the term “Big Data” refers
to any collection of data which is difficult to handle using
traditional database management systems and data pro-
cessing tools due to its size, complexity or speed at which
it is generated. Big Data is characterized by 3 V’s: Volume,
Velocity, and Variety2, but other dimensions like Veracity,
Value, have also been mentioned.

What should be the volume of a data set to qualify being
big data? Microsoft Excel 2007 can’t perform analysis on
more than 1 million rows, so any data set larger than 1
million instances is “big” data for MS Excel 2007; whereas
for other tools like R, the size of RAM is the constraint. So,
any data set which is larger than the available processing
capabilities needs a big data solution. The data generated
by sensors, e-commerce sites, social networking sites etc.

has a very high velocity and there may be a need to process
this data in real-time, which may be beyond the available
processing capabilities, making it “big” not in terms of
volume but in terms of velocity. The data may be obtained
from various sources, and unlike the traditional data ware-
house which deals with only structured data, the data here
may be structured, semi-structured, as well as unstruc-
tured. This is the third dimension of “Variety” which
makes the data too complicated to be handled by tradi-
tional data warehousing systems. Applications of big data
are found in diverse fields like analyzing and visualizing
web-server logs3, handling illegal parking4, etc.

2.  Big Data Tools
Message Passing Interface5 is a standard used for
developing and running parallel applications on a
peer-to-peer network. MPI is available for many
programming languages. The major drawback of MPI
is fault intolerance, and a single node failure can cause
the entire system to shut down. Apache Hadoop, devel-
oped by Doug Cutting and Mike Cafarella in 2005, is
an open source fault-tolerant framework for distributed
processing on cluster of commodity hardware. Hadoop

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(37), DOI: 10.17485/ijst/2016/v9i37/85826, October 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Big Data Mining Techniques

Indian Journal of Science and Technology2 Vol 9 (37) | October 2016 | www.indjst.org

provides HDFS distributed file system6 and MapReduce7
programming model for writing parallel jobs. Apache
Pig8 and Apache Hive9 are Map-Reduce wrappers which
simplify writing of Map-Reduce jobs. Apache Spark10 is
a cluster computing framework, which provides perfor-
mance up to 100 times faster than Map-Reduce through
data caching.

Apache Storm11 and Apache S412 are distributed
real-time computation frame work for processing fast,
large streams of data. Apache Spark can also handle
data streams through Spark Streaming library. General
Purpose computing on Graphics Processing Units
(GPGPU) takes advantage of large number of cores
(typically around 2500+) and high-throughput DDR5
memory present in Graphics Processing Units (GPUs)
to speed up the processing multiple times compared to
CPUs. Compute Unified Device Architecture (CUDA) is
a GPGPU framework for parallel computing on NVIDIA
GPUs. The major drawback of GPGPU is the limited size
of memory (maximum of 12GB as of now).

So if one desires high performance (like in case of
processing high velocity data streams) then he should go
for Apache Storm or GPGPU, whereas if data scalability
and fault-tolerance is desired then Hadoop or Spark
cluster should be setup.

3.  Big Data Mining
Traditional data mining algorithms like k-means
clustering14 Naïve Bayes classifier15, etc. can only handle
static data which fits into the memory. These algorithms
need to be modified16 to be able to handle data streams
(velocity) or memory limitations (volume). The data
streams in which the classification boundary keeps chang-
ing as new examples are received are called data streams
with concept-drift17. There may be situations, where
only recent examples are required for building the con-
cept rather than complete data streams. To handle such
data streams, we can use the concept of sliding window
or weighting policy. In sliding window, we only consider
only a specific amount of recent data, and completely dis-
card the old data. In weighted policy, we assign weights to
data elements such that older element have lower weight
and newest element has highest weight e.g. simply assign
weights 1,2,3,4…, and so on.

A simple technique to handle large data sets or data
streams is sampling, where we do not consider the whole
data set, rather we take sufficient number of samples from

the database which can give us approximate statistical
measures of the complete data. Reservoir sampling and
Hoeffding bounds are the two most popular sampling
methods for large data sets.

A technique which can be applied to mine high-velocity
data streams as well as massive data sets is incremental
learning. Incremental learning processes one instance at a
time when generating the model. An instance can be read
from the stream or input file, the model can be updated,
the next instance can be read, and so on – without ever
holding more than one training instance in main mem-
ory. Naive Bayes is naturally an incremental algorithm
and multi-layer neural networks with stochastic back
propagation are also incremental.

Incremental learning tends to be slow, so to speed
up the process we can use parallelization, where we split
the data set or data stream, process each using a separate
processor, and combine the results together using voting
or averaging to give a final result. Decision tree learners
can be parallelized by letting each processor build a sub-
tree of the complete tree. Bagging and stacking (although
not boosting) are naturally parallel algorithms; whereas
other popular algorithms can be modified to handle data
incrementally.

Which tools we should use for big data mining? Weka
and R are the two most popular tools for data mining,
but can they handle big data? Massive Online Analysis
(MOA) is a Weka-like tool with all the state-of-the-art
algorithms for mining of data streams, which can also
be used for incremental learning on data streams. R can
use package “Rmpi” to handle large data sets or “stream”
to handle data streams as well, where Rmpi provides
Message-Passing Interface (MPI) for R language and
stream package provides data stream mining algorithms.
Apache Spark has a machine learning library Spark MLlib
which supports many popular machine algorithms. H2O
is an open source parallel processing engine for machine
learning, and provides support to R and python, along
with support for Hadoop, Spark, and Storm.

4.  Sampling
A simple straight-forward method for handling large data
sets is sampling (dimensionality reduction may also help
if there are large number of features). But what should be
the size of the sample so as to obtain good results?

Reservoir sampling18 is sampling without replacement
(i.e. an example can’t be selected more than once). The

Adeel Shiraz Hashmi and Tanvir Ahmad

Indian Journal of Science and Technology 3Vol 9 (37) | October 2016 | www.indjst.org

where, P(C) and P(E|C) are priori probabilities obtained
from training set, and P(C) = total examples belonging
to class C / total examples, whereas P(E|C) = count of
attribute value E associated with class C / total examples
belonging to class C. In incremental learning, as new
examples are received we recalculate P(C) as well as
P(E|C) and update the model.

The idea behind back-propagation neural network28
is to adjust the weights of the network to minimize some
measure of error on training set. The measure of error is
given by the equation:

where, y is desired output, g is the activation function, xiis
the ith input, and wi is the weight associated with xi.

The method used to minimize the squared error is
gradient descent, which takes all the training examples in
each of the iteration to minimize the error,

Where, α is the learning rate, and w is the weight to be
adjusted.

For incremental learning, stochastic gradient
descent can be used, which instead of taking all of the
instances in each of the iteration considers each instance
one-by-one.

6.  Parallel Learning
Some of the machine learning algorithms like Random
Forest work on multiple copies of same data set and can
easily be parallelized, whereas algorithms like k-means14,
kNN29, Naïve Bayes15, back-propagation neural net-
works28, Support Vector Machines (SVM)30, etc. must be
modified for distributed processing.

k-means algorithm can be parallelized by splitting
the data into subgroups and clustering samples in each
subgroup separately. Nearest-neighbor methods can be
easily distributed among several processors by splitting
the data into parts and letting each processor find the
nearest neighbor in its part of the training set. In Naïve
Bayes, we have to estimate P(E|C) from the training data,

idea is to use a reservoir of size s, and initially filling it
with first s examples; when more examples are received,
ith instance in the input stream is placed in the reservoir at
a random location with probability s/i.

Very Fast Machine Learning19 toolkit uses
hoeffding-bound for mining data streams and large data
sets. Hoeffding bound states with probability 1-δ, that the
true mean of a random variable of range R will not differ
from the estimated mean after n observations by more
than ε,

	 ε= � (1)

The Very Fast Machine Learning (VFML) toolkit
consists of algorithms like Very Fast K-Means (VFKM),
hoeffding trees, etc. The VFKM algorithm performs clus-
tering on a sample whose size (n) can be decided by: (1),
with confidence 1-δ (δ=5% by default) within error ε.

Hoeffding trees are based on the concept that if the
difference in information gains b/w the best two attributes
is less than ε then it is not safe to split. However, ε will
decrease as n is increased, so it is just a matter of get-
ting adequate number of samples. The random variable
being estimated is the difference in information gain b/w
the best two attributes, R is the base 2 logarithm of the
number of possible class labels (i.e. R=1 for a two-class
problem), and δ is taken to be very small ~10-7.

5.  Incremental Learning
Incremental learning20 is different from traditional machine
learning in the sense that it does not assume the availabil-
ity of complete data set before learning process, but the
learning takes place whenever new instances emerge and
adjusts to what has been learned from these instances.

Incremental k-means21, Incremental Density Based
Spatial Clustering of Applications with Noise (DBSCAN)22
are variants of popular k-means14 and DBSCAN23 clus-
tering algorithms, respectively, which work on dynamic
and large databases. There are various other incremen-
tal clustering algorithms also in the literature for mining
of data streams like CobWeb24, BIRCH25, CluStream26,
DenStream27, etc.

Naïve Bayes(15) needs no major modification to handle
data incrementally. In Naïve Bayes, the probability of an
example E belonging to a class C can be calculated as
follows:

Big Data Mining Techniques

Indian Journal of Science and Technology4 Vol 9 (37) | October 2016 | www.indjst.org

so we can parallelize it by computation of P(E=k|C=0)
and P(E=k|C=1) for each k in parallel. Neural Networks
and SVM can be parallelized by performing partial batch
gradient descent on subgroups of data samples.

Random forest31 is a collection of decision trees on
bagged data sets, but in random forests, each time a split
in a tree is considered, a random sample of m predictors
is chosen as split candidate from the full set of p predic-
tors. A fresh sample of m predictors is taken at each split,
and typically we choose m~√p. Random forest provides
an improvement over bagged trees. As in bagged trees,
we use full set of predictors to make the split, therefore
each tree may use the strongest predictor in the top split,
and as a result all trees may look quite similar to each
other. Random forests overcome this problem by forcing
each split to consider only a subset of predictors, there-
fore strongest predictor will not be even considered for
few cases, and so other predictors will have more of a
chance.

7. � Experimental Setup and
Results

We want to compare these three learning techniques on
large data sets. For this we select representative algorithms
for each learning technique; the algorithms selected are
hoeffding trees, incremental Naïve Bayes, distributive
random forest, and distributive deep learning neural net-
works. The primary data set used is HIGGS data set of
size 8GB, other two data sets being popular kddcup99 and
Modified National Institute of Standards and Technology
(MNIST) data sets. The summary of experimental setup
is given in Table 1.

The time required for building the classifiers from
the training sets are listed in Table 2, and the classifica-
tion errors for each data set by each classifier are listed in
Table 3. For hoeffding trees and incremental algorithms,
the files were read in chunks of 100000 instances (i.e.
chunk size = 100000). MNIST data set is multi-class
data set with 10 labels, kddcup99 is a medium-sized
data set with binary labels, whereas HIGGS data set is
“big” data set with binary labels. The classifiers were
trained with the data sets, and then the test data sets
of kddcup99 as well as MNIST were used for predic-
tion, and the classification error was calculated. For
HIGGS data set with 11 million instances, the last 1
million instances were reserved as test set, whereas the
rest were used for training.

Table 1.  Experimental setup

Processor Core i5 @ 3.00GHz (64–bit) with 4 cores
RAM 2GB

OS Ubuntu 15.04 (64–bit)
Cluster

OS H2O 3.0

Cluster
size

6 for HIGGS data set, 1 for kddcup99 and
MNIST data sets

Data sets

HIGGS (8GB, with 11 million instances of 29
features)

kddcup99 (4 million instances of 42 features)
MNIST (42000 instances of 785 features)

Language R
Packages RMOA, h2o

Table 2.  Training time

Algorithm MNIST kddcup99 HIGGS
Hoeffding-tree
(single-node)

6.77
min 18.41 min 2.74 hrs

Incremental Bayes
(single-node)

6.59
min 18.26 min 2.91 hrs

Distributed Random Forest
(20 trees)

1.33
min 7.47 sec 47.24

min
Distributed Deep Learning
(200X200 hidden-neurons,

10 epochs)

11.95
min 21.82 min 7.10

min

Table 3.  Classification error

Algorithm MNIST kddcup99 HIGGS
Hoeffding-tree 7.69% 0.31% 6.72%

Incremental Bayes 6.53% 1.50% 6.54%
Distributed Random

Forest
3.35% 0.18% 3.08%

Distributed Deep Learning 2.09% 0.09% 3.02%

8.  Conclusion
From the results obtained, we conclude that the performance
of sampling and incremental approach is nearly same, both
in terms of training time taken and prediction accuracy.
However, compared to distribute learning, both sampling
and incremental learning techniques are not only much
slower, but also have higher classification error. The results
of the experiments conducted were not a surprise and were
expected. However, the sampling or incremental approach
would be better for streaming data.

Adeel Shiraz Hashmi and Tanvir Ahmad

Indian Journal of Science and Technology 5Vol 9 (37) | October 2016 | www.indjst.org

15.	 Langley P, Thompson K. An analysis of Bayesian classifiers.
Tenth National Conference on Artificial Intelligence. 1992,
p. 223–28.

16.	 Sajana T, Rani CMS, Narayana KV. A Survey on Clustering
Techniques for Big Data Mining. Indian Journal of Science
and Technology, 2016 Jan; 9(3). Doi: 10.17485/ijst/2016/
v9i3/75971

17.	 Widmer G, Kubat M. Learning in the presence of concept-
drift and hidden context. Journal of Machine Learning.
1996; 23(1):69–101.

18.	 Vitter J. Random sampling with a reservoir. ACM
Transactions on Mathematical Software. 1985; 11(1):37–57.

19.	 Hulten G, Domingos P. VFML - A toolkit for mining
high-speed time-changing data stream. http://www.
cs.washington.edu/dm/vfml/. 2003.

20.	 Giraud-Carrier C. A note on the utility of incremental
learning. AI Communications. 2000; 13(4):215–23.

21.	 Shindler M, Wong A, Meyerson A. Fast and Accurate
k-means for Large Data sets. Advances in Neural Information
Processing Systems. 2011, p. 2375–83.

22.	 Ester M, Kreigel H, Sander J, Wimmer M, Xu X. Incremental
Clustering for Mining in a Data Warehousing Environment.
24th International Conference on Very Large Data Bases.
1998, p. 323–33.

23.	 Ester M, Kreigel H, Sander J, Xu X. A density-based
algorithm for discovering clusters in large spatial databases
with noise. Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), Portland, 1996, p.
226–31.

24.	 Fisher D. Knowledge Acquisition via Incremental
Conceptual Clustering. Journal of Machine Learning. 1987;
2(2):139–72.

25.	 Zhang T, Ramakrishnan R, Livn M. BIRCH: A new data
clustering algorithm and its applications. Data Mining and
Knowledge Discovery. 1997; 1(2):141–82.

26.	 Aggarwal C, Han J, Wang J, Yu P. A framework for clustering
evolving data streams. Very Large Databases. 2003, p.
81–92.

27.	 Cao F, Ester M, Qian W, Zhou A, Density-based clustering
over an evolving data stream with noise. SIAM International
Conference on Data Mining, US, 2006, p. 326–37.

28.	 Williams R, Rumelhart D, Hinton G, Learning
representation by back-propagation errors. Nature. 1986
Oct 9; 323:533–36.

29.	 Altman N, An introduction to kernel and nearest-neighbor
nonparametric regression. 1992Aug; 46(3):175–85.

30.	 Platt J, Fast training of support vector machines using
sequential minimal optimization. Advances in Kernel
Methods - Suport Vector Learning, 1999, p. 185–208.

31.	 Breiman L. Random Forests. Machine Learning. 2001;
45(1):5–32.

Hoeffding trees and incremental learning can’t handle
concept-drift as it can’t discard what is learnt from the old
data. Ensemble learning can better handle concept drift,
by performing bagging using small trees, as smaller trees
can easily adapt to concept drift.

9.  References
  1 	 Diebold F. Big Data: Dynamic Factor Models for

Macroeconomic Measurement and Forecasting. Eighth
World Congress of the Econometric Society. 2000.

  2.	 Laney D. 3-D Data Management: Controlling Data Volume,
Velocity and Variety. META Group Research Note. 2001 Feb
6, p. 1–4.

  3.	 Parthiban P, Selvakumar S. Big Data Architecture for
Capturing, Storing, Analyzing and Visualizing of Web
Server Logs. Indian Journal of Science and Technology. 2016
Jan; 9(4). Doi: 10.17485/ijst/2016/v9i4/84173

  4.	 Kim KW, Park WJ, Park ST. A Study on Plan to Improve
Illegal Parking using big Data. Indian Journal of Science
and Technology. 2015 Sep; 8(21). Doi: 10.17485/ijst/2015/
v8i21/78274

  5.	 Gropp W, Lusk E, Skjellum A. Using MPI: Portable Parallel
Programming with the Message-Passing Interface.MIT
Press. 1999.

  6.	 Borthakur D. HDFS architecture guide. Hadoop Apache
Project. 2008, p.1–13.

  7.	 Dean J, Ghemawat S. MapReduce: simplified data
processing on large clusters. Communications of ACM.
2008, 51(1):107–13.

  8.	 Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig
latin: a not-so-foreign language for data processing. ACM
SIGMOD international conference on Management of data.
ACM. 2008, p. 1099-110.

  9.	 Thushoo A, Sharma J, Jain N, Shao Z, Chakka P, Anthony S.
Hive: a warehousing solution over a map-reduce framework.
2009; 2(2):1626-29.

10.	 Zaharia M, Chowdhury M, Franklin M, Shenker S, Stoica
I. Spark: cluster computing with working sets. USENIX
Conference on Hot Topics in Cloud Computing. 2010,
p. 10–10.

11.	 Toshniwal A, Taneja S, Shukla A, Patel J, Kulkarni S, Jackson
J. Storm @Twitter. ACM SIGMOD International Conference
on Management of Data. 2014, p. 147–56.

12.	 Neumeyer L. S4: Distributed Stream Computing Platform.
IEEE International Conference on Data Mining Workshops
(ICDMW). 2010, p. 170–77.

13.	 Nickolls J, Dally W. The GPU Computing Era. 2010;
30(2):56–9.

14.	 Hartigan J. Clustering Algorithms. Wiley, 1975.

