
Abstract
Feature Tree represents all the features along with their relationship of a Software Product Line. Any defect in feature 
model can diminish the benefits of product line approach. Hence, the analysis of feature model plays a key role towards 
the success of any Software Product Line. This paper presents various analysis rules for cardinality-based feature model of 
both dead and false optional features. These rules are then verified by using Bayesian Network Based inference mechanism. 
Such verification not only confirms the analysis rules of the feature trees but also ensures the applicability of probabilistic 
information into the feature trees.
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1. Introduction
Software engineering involves investments into 
 requirements analysis, architecture, design, documen-
tation etc., and it has been pressured to introduce new 
products and add functionality to existing products at a 
quick step to be able to compete the demand of market1. 
Although software development has been focused on 
original development but now it has been a recognized 
fact that to achieve better and flexible software at a lower 
cost it is needed to adopt a design process that is based on 
systematic Software Reuse2. 

A collection of software that is related to each other in 
terms of features they share among themselves is known 
as Software Product Line (SPL). Those related software are 
said to be belonging to a software family where each of the 
software in the family are characterized by the features 
that vary from product to product3. Among many other 
usefulness of the concept of SPL, reusability and increase 
in the quality of the software product with respect to the 
time to market are the most important ones. A model 
is created based on the common and varying features 
of a SPL. The fundamental objective behind a model-

based representation of the SPL is mainly to facilitate the 
 stakeholder to select their desired product configurations 
in terms of features. The common requirements among 
all the members of the software family can easily be han-
dled since they are present in every member and thus, 
is included in the overall family architecture. However, 
dealing with the variant requirements is not that straight-
forward because modeling variants makes the domain 
analysis task more complicated by adding an extra level of 
complexity. This is why management of variants belongs 
to one of the critical areas in SPL.

Feature Model (a.k.a. Feature Tree) is used to describe 
the features and their dependencies for creating valid 
products in SPL. Any defects in feature model can signifi-
cantly diminish the benefits of the product line approach. 
Among the various defects, this paper is focused on dead 
and false optional features. Dead features are features that 
are not present in any valid product configuration. False 
optional features, on the other hand, are optional features 
but they are present in all valid product configurations.

The requirements of software are becoming complex 
day by day and a lot of uncertainties are also present in 
the requirements description. Bayesian Network (BN) 
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has already been applied in several software engineer-
ing problems to handle uncertainties. So far, significant 
amount of research has been carried out on the use of BNs 
for predicting defects in software, reliability of software 
etc. However, hardly any of those works have addressed 
the issues related to requirement management in SPL, 
particularly feature model analysis. In this paper we focus 
on addressing this area where we show that the inference 
mechanism based on the conditional probability of BNs 
can be leveraged in analyzing various defects in feature 
model. 

The objective of this paper is to define various dead 
and false optional feature analysis rules by using first 
order logic. These rules are then analyzed and verified 
by using Bayesian Network. We describe how a feature 
tree can be represented by using BN and how the analy-
sis rules can then be defined in BN. We then show our 
adopted approach to prove the analysis rules by using 
Bayesian inference mechanism. The significance of our 
analysis rules is that we defined the rules for cardinality4,5 
based feature model instead of regular feature model. The 
BN based verification shows how to deal with uncertain-
ties in software requirements by using AI techniques6.

The organization of the rest of the paper is as follows. 
A brief overview of various feature types and relationship 
as well as cardinality based feature tree is given in Section 
2. Then Section 3 illustrates the relationship between 
feature diagram and BN and how a feature tree can be 
represented into a BN. In the following section, we give 
the first order logic definition of the analysis rules and 
draw scenario for each case of the analysis rules. Then, the 
analysis rules defined in first order logic have been mod-
eled and verified using BNs in Section 5. Finally, Section 
6 concludes the paper by summarizing our findings and 
outlining our future plan.

2. Feature Model and Cardinality
In the hierarchy of the feature model each node repre-
sents a feature while the edges represent the relationships 
or constraints among the features8. The relationships 
among the parent features and their child features along 
with cross-tree constraints that typically define the inclu-
sion and exclusion of feature with respect to some other 
features9. Here, we briefly discuss the different notations 
of feature models.

Mandatory: There is a mandatory relationship between 
a child feature and its parent feature if- whenever the 

 parent feature appears in a valid product the child feature 
is also included.

Optional: If the inclusion of the child feature is 
optional in a product in which its parent appears, i.e., the 
child feature may or may not be included, then we define 
this relationship among a child feature and its parent fea-
ture as an optional relationship.

Alternative: When only one of the child features origi-
nated from a parent feature can be a part of the product 
in which the parent feature has been included, we define 
that relationship between the set of child feature and the 
parent feature as an alternative relationship.

Or: There is an alternative relationship between a set 
of child features and their parent when only one or more 
of the child features can be a part of the product in which 
the parent feature has been included.

These four relationships are the basic parent-child 
relationships that are commonly dealt with in a feature 
model. Other than these parent-child relationships there 
are also two types of cross-tree constraints among the fea-
tures. The cross-tree constraints are as follows:

Requires: This constraint defines that when the inclu-
sion of one feature (say feature A) requires the inclusion of 
another feature (say feature B) in a valid product. In that 
case the constraint is verbally represented as, “Feature A 
requires feature B”.

Excludes: This constraint is defines that the inclusion 
of one feature (say feature A) requires the exclusion of 
another feature (say feature B) in a valid product. In that 
case the constraint is verbally represented as, “Feature A 
excludes feature B”.

Other than the relationships discussed above some 
experts proposed extension of Feature Oriented Domain 
Analysis (FODA) feature models with cardinalities in 
order to incorporate practical applications and concep-
tual completeness10. Basic two notations for cardinality 
based feature models are defined below:

Feature Cardinality: Feature cardinality is defined as 
a sequence of intervals denoted by [ ] where 
m as lower bound and n as upper bound. The number of 
instances the feature can be selected for a valid product 
is defined by these intervals9. By using this definition we 
can establish that when both lower and upper bound of 
feature cardinality are equal to 1 then that relationship 
becomes the original mandatory relationship defined as 
a non-cardinality based relationship. Similarly for lower 
bound equals to 0 and upper bound equals to 1 then 
that relationship becomes the original optional relation-
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ship which has been defined as a non-cardinality based 
 relationship.

Group Cardinality: Group cardinality is defined as a 
sequence of interval denoted < > where m and n 
represents respectively the upper and the lower bounds 
of the interval9. The maximum and minimum numbers 
of child features from a group cardinality that can be a 
part of a valid product where the parent feature is pres-
ent are denoted by the upper and lower bounds. By using 
this definition we can establish that when both lower and 
upper bound of group cardinality are equal to 1 then that 
relationship becomes the original alternative relationship 
defined as a non-cardinality based relationship. Similarly 
for lower bound equals to 0 and upper bound equals to 1 
then that relationship becomes the original or relation-
ship which has been defined as a non-cardinality based 
relationship.

3.  Feature Diagram and Bayesian 
Network

The notation of feature modeling was proposed in7. 
Modeling the features of a software system family is con-
sidered as one of the most important parts of domain 
analysis. This is both formal and graphical representation 
of the common and varying features of a product fam-
ily. Features are hierarchically organized in a feature tree 
where the root is the representation of the domain concept 
while other nodes represent various features. Mandatory 
and Optional are two classes of features. The relationships 
among the features which are originated from the same 
parents can be either Or relationship or Alternative rela-
tionship. Any cross-tree (or cross-hierarchy) relationship 
is denoted as a dependency.

BNs are the graphical representation of the dependen-
cies among different random variables. BN is represented 
by a directed graph in which the nodes of the graph repre-
sent a random variable (or an event) whereas the directed 
edges among different nodes represent the relationships 
(or dependencies) among the random variables (or 
events). Each of these nodes has Conditional Probability 
Distributions (CPD) associated to it. The random vari-
ables can be discrete. In that case the representation of the 
CPD is renamed as Node Probability Table (NPT). This 
table lists all the possible probability values that a node 
can take based on different combinations of values that 
the parents of these nodes can take. Many cases may arrive 

where the nodes have two possible outcomes. This spe-
cial condition is handled by representing the CPD binary 
probabilities of 0 and 1. This first step of constructing a 
BN is to identify the random variables associated with the 
domain we are studying. The next step is to model those 
variables which can be done trivially. By determining the 
relationships among the variables and finally the NPT is 
constructed for all the variables in separately.

Additionally, a BN is represented by a directed acyclic 
graph or a DAG. The direction of an edge represents the 
dependency between the two nodes which are connected 
by that edge. For example, if a directed edge connects two 
nodes  and , it indicates that is a parent node for 
the node  and, thus,  has a dependency on . On the 
contrary, feature tree is nothing but a tree data structure 
with a root node and a number of non-root nodes. The 
features are represented by the non-root nodes whereas, 
the corresponding edges between features and sub-fea-
tures represent the parent-child relationships. Because of 
the strong resemblance between BNs and feature trees, 
any information that is represented by a feature tree can 
be conveniently represented without any additional effort 
by BNs also. Furthermore, one of the most important and 
unique characteristics of BNs is that it is one of the most 
widely used techniques for incorporating probabilistic 
information when we are dealing with uncertainty. An 
example of feature tree and the corresponding BN for the 
tree is shown in Figure 1. For each of the variables in the 
BN a NPT is built from the dependency information of 
the variables.

4. Feature Analysis Rules
With the increase of the number of features in a feature 
model the potential complexity incorporated with the anal-
ysis of the model is becoming a task of extensive hardship. 
The additional level of complexity is making the analysis 
task error-prone and, hence, number of defects may get 

Figure 1. BN representation of a feature tree.
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introduced at the modeling stage. Therefore, additional care 
is required while creating feature model so that we can pre-
cisely include the domain information within the model. It 
is worth noting that modeling the domain correctly with no 
information lost is a critical task. Moreover, identification 
of the defects at the proper stage of the software develop-
ment lifecycle is a prerequisite for developing valid software 
that fulfills all the requirements of the stakeholders.

Defects found is a SPL feature model has been termed 
as anomalies. In order to detect and correct inconsisten-
cies as well as redundancies addressing these anomalies by 
exploiting intelligent techniques and tools has been sug-
gested by many experts9,11. Different kinds of approaches, 
such as defining corresponding diagnostic task12 trans-
forming feature models into an alternative representation 
of a Constraints Satisfaction Problem (CSP)13 etc. have 
also been proposed by different authors. BNs has also 
been used for making predictions about software defects, 
reliability etc. in different research works. But hardly any 
of the works addressed how to use BNs in order to ana-
lyze the feature model. The work presented in this paper 
deals with two specific types of anomalies namely False 
Optional, Dead Feature.

False Optional: Features that are selected for all valid 
products in spite of being defined as optional features are 
call False Optional (FO) features.

Dead Feature: Features that are defined as optional 
features but never get selected for any of the valid prod-
ucts are known as dead features (DF)14.

Due to the ability of Feature Models to derive a poten-
tially large number of products, any defects in a Feature 
Model will inevitably affect many products of the product 
line. In this section, we represent a set of rules defined in 
first order logic for dead and false optional features based 
on group cardinality. The following First Order Logic 
(FOL) predicates are used to define the rules.

•	 : This predicate means, feature 
v has one or more child feature(s).

•	 : This predicate means, 
feature x is a mandatory child feature of v.

•	 : This predicate means, feature 
x is an optional child feature of v.

•	  This predicates means, when x is 
selected y is also selected beacuse in a valid product x 
always requires y.

•	 : This predicates means, x excludes y 
from being selected for a valid product.

•	 : This predicate indicates 
G is a group cardinality with total number of features 
k, lower bound m and upper bound n.

•	 (G, f): This predicate indicates f is the 
parent feature in the group cardinality G.

•	 ( ): This predicate indicates 
that  are the child features of the parent 
under the group cardinality G.

•	 : This predicate indicates that 
features  are dead features.

•	 : This predicate indicates that 
features  are false optional features.

•	 : This predicate means that the feature x is 
selected.

4.1 False Optional 
Rule 1: One or more features become false optional when 
they are grouped by group cardinality with a mandatory 
parent having lower bound of m and upper bound of 

 with  dead features within the car-
dinality, where k represents the total number of features 
within the cardinality (Figure 2).

Figure 2. Scenario of cardinality based false optional 
feature Rule 1.

 

Rule 2: In a group cardinality having total k features 
along with upper bound of n and lower bound of m, all of 
the features within the cardinality become false optional 
when k = m = n, where  (Figure 3).

Figure 3. Scenario of cardinality based false optional 
feature Rule 2.
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In the feature tree for this rule (Figure 3), a, b, c, d are 
(k = 4) features within the group cardinality having upper 
bound n = 4 and lower bound m = 4. Thus all of the fea-
tures are going to be selected when the mandatory father 
f is selected.

Rule 3: One or more features become false optional when 
they are grouped by a group cardinality with a mandatory 
parent having lower bound of m and upper bound of n (

) with [k-m] dead features within the cardinality, 
where k represents the total number of features within the 
cardinality (Figure 4).

 
 

 
 

4.2 Dead Feature
Rule 1: In a group cardinality having total k features along 
with upper bound of n and lower bound of m, [k-m] fea-
tures within the cardinality become dead feature when m 
= n and there are n (or m) false optional features, where 

 and  (Figure 6).

Figure 5. Scenario of cardinality based false optional 
feature Rule 4. Figure 7. Scenario of cardinality-based dead feature Rule 2.

Figure 4. Scenario of cardinality based false optional 
feature Rule 3.

Rule 4: One or more features become false optional when 
they are grouped by a group cardinality with a manda-
tory parent having lower bound of m and upper bound of 
n and  with [k-m] dead features within the car-
dinality, where k represents the total number of features 
within the cardinality (Figure 5).

Figure 6. Scenario of cardinality-based dead feature Rule 1.

 
 

 
 

In the feature three for this rule (Figure 6), k = 4, m = 
n = 3. Let b, c and d be false optional features. According 
to the rule above (k-n) = (4-3) = 1 feature is dead feature 
which is feature a in this case.

Rule 2: An optional feature that does not belong to group 
cardinality becomes dead when it requires p features that 
belong to group cardinality with lower bound of m and 
upper bound of n, where  and  
(Figure 7).
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5.  Bayesian Network based 
Analysis

In this section of the paper, the Bayesian Network repre-
sentation for false optional and dead features is defined. 
We define BN by finding the all possible dependencies 
among the features based on our logical representation.

5.1 False Optional
Rule 1: In the feature tree for this rule in Figure 10(a), the 
total number of features k = 5, m = 2 and n = 3. Let there 
are (k - m) = (5 - 2) = 3 dead features a, b, and c. Therefore, 

In the feature three for this rule in Figure 7, x is an 
optional feature under the variation point v. The features a, b, 
c, and d are within the group cardinality under feature f with 
upper bound of 2 and lower bound of 1. Feature x requires 3 
features that belong to the group cardinality. But, because of 
the fact that the upper bound of this group cardinality is 2, x 
can never get selected. Therefore, x is a dead feature.

Rule 3: A feature defined as an optional feature becomes 
a dead feature whenever it belongs to group cardinality 

Figure 8. Scenario of cardinality-based dead feature 
Rule 3.

and the number of false optional feature is equal to the 
cardinality upper bound (Figure 8).

In the graph in Figure 8, feature y and z connected 
with <1, 1> group cardinality. Feature x has been defined 
as a mandatory feature. Moreover, an optional feature 
y has a requires relation with feature x. Thus y is a false 
optional feature. Since upper bound is 1, y alone can be 
selected. Therefore z becomes a dead feature.

Rule 4: A feature belonging to group cardinality becomes a 
dead feature if some another feature within the  cardinality 
excludes it (Figure 9).

Figure 9. Scenario of cardinality-based dead feature 
Rule 4.

Figure 10. Bayesian representation of false optional Rule 
1 and Rule 2.
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to satisfy the lower bound of the group cardinality d and 
e are false optional features. In the BN, the child features 
a, b, c, d and e are dependent of the parent feature f. There 
is no other dependency. It has been declared that features 
a, b and c are dead features. Therefore, the probability of 
these features being selected is always 0. The NPT for this 
network is shown in Table 1. 

The similar procedure can be followed for any other 
combination and same result can be achieved with 
 probability value of 0 except for the only valid  combination 
of the child features within the group cardinality. The 
combination is as follows.

By expanding each expressions of the above equation 
and putting appropriate probability value from the NPT 
for each variable we can draw the following conclusion.

Hence, d and e, although defined as optional features, 
turn out to be False Optional features.
Rule 2: In the feature tree for this rule (Figure 10 (b)), a, b, 
c, d are (k = 4) features within the group cardinality hav-
ing upper bound n = 4 and lower bound m = 4. Thus all of 
the features are going to be selected when the mandatory 
father f is selected. From the BN representation we see 
that features a, b, c, and d depend on f (which is their par-
ent feature). There is no other dependency. Thus, for each 
of the child features, whether that feature will get selected 
or not is dependent on f only. The corresponding NPT for 
this network is given in Table 2.

Now, if we choose to select 2 (lower bound) of the 

5 features we have  combinations. Similarly, 

if we choose to select 3 (upper bound) of the 5 features 

we have  combinations. Thus, there are total 

20 possible combinations that satisfy the lower and upper 
bound constraint of this given group cardinality. Let us 
consider some of the 20 combinations and determine the 
probability for those particular combinations of being 
valid.

By expanding each expressions of the above equation 
and putting appropriate probability value from the NPT 
for each variable we can draw the following conclusion.

Similarly, we can show the following equations.

Table 1. NPT of Rule 1 of cardinality based false 
optional feature

f a b c d e
T F
1 0

F T F
T 0 1
F 0 1

f T F
T 0 1
F 0 1

f T F
T 0 1
F 0 1

f T F
T 1 0
F 0 1

f T F
T 1 0
F 0 1

Table 2. NPT of Rule 2 or cardinality based false 
optional features 

T F
1 0

F T F
T 1 0
F 0 1

f T F
T 1 0
F 0 1

f T F
T 1 0
F 0 1

f T F
T 1 0
F 0 1

f a b c D

Now, under the given scenario there is only  

possible combination of the feature for satisfying the given 
constraint. We can prove that this combination is valid 
by doing some straightforward calculations based on the 
joint probability function and the values in the NPT.
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We can conclude the following,

We observe that if feature f is selected, the optional 
feature z gets selected. Due to the reason that feature x 
and y are dead, by the rules of cardinality, the  remaining 
feature z automatically becomes false optional feature. The 
BN verification of Rule 4 can be performed in a  similar 
manner (Figure 11(b)).

5.2 Dead Feature
Rule 1: In the feature three for this rule (Figure 12(a)), k 
= 4, m = n = 3. Let b, c and d be false optional features. 
According to the rule above (k-n) = (4-3) = 1 feature is 
dead feature which is feature a in this case. In the BN, 
all the child features a, b, c, d and e are dependent of the 
parent feature f. Features b, c, and d have been declared as 
false optional features. Therefore, the probability of these 
features being selected is always 1 as long as the parent 
feature f has been selected. As the number of features that 
have been selected from the group cardinality has reached 

By evaluating the expressions in both numerator and 
denominator of the above equation and putting appropri-
ate probability values from the NPT we can conclude the 
following:

Hence, all four child features of a, b, c, and d are False 
Optional features.
Rule 3: In the BN of Figure 11(a), feature f is a variant 
of the variation point v with three variants x, y, z of its 
own. Thus, whether or the the features x, y, z will get 
selected depends on the selection of the features v and f. 
Additionally, f is dependent on v. Table 3 shows the NPT 
for v, x and y.

Based on the lower and the upper bound of the group 
cardinality we can see that after f is selected. There are 

 possible combinations of feature from 
the group cardinality.

We can use the Baye’s rule for calculating the 
 probability that feature z will be selected. NPT from Table 
3 gives us the required CPD.

Figure 11. Bayesian representation of false optional Rule 
3 and Rule 4.

Table 3. NPT for variables in false optional rule 1.

T F
1 0

v T F
T 1 0
F 0 1

f T F
T 0 1
F 0 1

F T F
T 0 1
F 0 1

f T F
T 1 0
F 0 1

v f x y z

Figure 12. BN representation of cardinality based dead 
features Rule 1 and Rule 2.



Shamim Ripon, Musfiqur Rahman, Javedul Ferdous and Md. Delwar Hossain

Indian Journal of Science and Technology 9Vol 9 (31) | August 2016 | www.indjst.org

the upper bound n, no other additional feature can ever 
be selected. Consequently, a will never be selected. The 
joint probability function for this rule is as follows:

Now, under the given scenario there are  = 4 
 possible combinations of the feature for satisfying the 
given constraint. In a similar way as shown in previous 
rules, after constructing the NPT for this rule we can 
show that, 

Similarly we can show the following,

and

For the remaining combination we get,

Hence, a is a dead feature.
Rule 2: In the feature three for this rule in Figure 12(b), 
x is an optional feature under the variation point v. The 
 feature a, b, c, and d are within the group cardinality 
under feature f with upper bound of 2 and lower bound 
of 1. Feature x requires 3 features that belong to the group 
cardinality. But, x can never get selected due to the fact 
that the upper bound of the group cardinality has been 
set to 2. Thus, x becomes dead feature. From the BN we 
can see, x is a variant of feature v. Child features a, b, c, 
and d are dependent on the parent feature f. Furthermore, 
a, c, and d also have dependencies on x. The selection 
of a, c and d will depend on both x and f. On the other 
hand, b is dependent on f. Another important point to 
be noticed here is that unlike the NPT of the earlier rules 
the  following NPT has entries with values other than 0’s 
and 1’s. Because there is no constraint for False Optional 
(FO) or Dead Feature (DF) for the features within the 
cardinality, each of the features has equal probability of 
being selected. In this case ¼ = 0.25 is the value of prob-
ability for each of the features under the cardinality being 
selected. The NPT for this network is shown in Table 4.

The joint probability function is as follows:

Now, since there are total  valid 

 combinations of features from the group cardinality. But 

none of those combinations satisfy the constraint for x 
to be a part of a valid product. Therefore, x becomes a 
dead feature. We can calculate the probability of x being 
selected for each of the valid combinations and we will 
find that the probability value is always 0.

One of the valid combinations is when only one of 
the features from the group cardinality is selected. An 
 example is as follows:

By expanding each expressions of the above equation 
and putting appropriate probability value from the NPT 
for each variable we can draw the following conclusion.

By doing similar calculation we can find that the 
 probability value of x being a part of a valid product for 
any other combination is always 0.

and so on. Hence, x is a dead feature.

Table 4. NPT for Rule 2 of cardinality based dead 
feature
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Rule 3: In the Bayesian network in Figure 13, feature x, y, 
z and w are the four variants of v. Thus the outcome of the 
event of v being or not being selected directly influences 
the outcome of the events of these variant features being 
or not being selected. Thus, x depends only on v,  however 
the probability that the feature y is selected depends 
on x also. Moreover, w is only dependent on v. But z is 
 dependent on whether v is selected or not. Both y and z 
depend on (v, x) and (v, w) at the same time. The NPT are 
given in Table 5.

We can conclude the following after using the values 
from NPT:

We observe from the result that optional 
 feature z is selected. Similar verification can also 
be  conducted for Rule 4.

6. Conclusions
A number of significant efforts have been made so far for 
modeling software product line feature model. Semantic 
web-based approach18,19 and Rule-based approach15,20 are 
two well-known approaches among these efforts. Semantic 
web technology is used to capture domain knowledge. 
Meaningful and shared ontological description of a 
 specific domain can be expressed by this technology18. 
On the contrary, different rules are defined and  verified 
by using first order logic in rule-based approach17,20. 
However, none of these approaches dealt with any kind of 
uncertainty in feature analysis.

We have exploited the theory of probabilistic  reasoning 
by using Bayesian Networks. A feature tree can be 
 represented by BN without going through any  additional 
hardship as the structure of a feature tree resembles that of 
a BN. Since a feature tree is more like an And-Or tree, the 
interdependencies among the features can easily be found 
and thus, the conditional probability function as well as 
the node probability table can easily be constructed based 
on the feature dependencies.

In comparison to our earlier work15 where only first 
order rules are defined but BN verification was not taken 
into account. Later we proposed a BN based verification 
method16 but cardinality based feature tree is not considered 
there. Application of BN for such verification helps us to 
gain much knowledge into the feature tree as well as shows 
us how uncertainties can be handled in a feature tree.

Only a few scenarios are considered in this paper. We 
are currently developing rules for other scenarios of dead 
and false optional features. We are also interested to define 
and verify rules for wrong cardinality in a feature tree.
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