
Abstract
Feature Tree represents all the features along with their relationship of a Software Product Line. Any defect in feature
model can diminish the benefits of product line approach. Hence, the analysis of feature model plays a key role towards
the success of any Software Product Line. This paper presents various analysis rules for cardinality-based feature model of
both dead and false optional features. These rules are then verified by using Bayesian Network Based inference mechanism.
Such verification not only confirms the analysis rules of the feature trees but also ensures the applicability of probabilistic
information into the feature trees.

Verification of SPL Feature Model by using
Bayesian Network

Shamim Ripon1*, Musfiqur Rahman2, Javedul Ferdous1 and Md. Delwar Hossain1

1Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh; dshr@ewubd.edu
2Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada

Keywords: Bayesian Network, Dead Feature, False Optional Feature, Feature Analysis, Software Product Line

1. Introduction
Software engineering involves investments into
 requirements analysis, architecture, design, documen-
tation etc., and it has been pressured to introduce new
products and add functionality to existing products at a
quick step to be able to compete the demand of market1.
Although software development has been focused on
original development but now it has been a recognized
fact that to achieve better and flexible software at a lower
cost it is needed to adopt a design process that is based on
systematic Software Reuse2.

A collection of software that is related to each other in
terms of features they share among themselves is known
as Software Product Line (SPL). Those related software are
said to be belonging to a software family where each of the
software in the family are characterized by the features
that vary from product to product3. Among many other
usefulness of the concept of SPL, reusability and increase
in the quality of the software product with respect to the
time to market are the most important ones. A model
is created based on the common and varying features
of a SPL. The fundamental objective behind a model-

based representation of the SPL is mainly to facilitate the
 stakeholder to select their desired product configurations
in terms of features. The common requirements among
all the members of the software family can easily be han-
dled since they are present in every member and thus,
is included in the overall family architecture. However,
dealing with the variant requirements is not that straight-
forward because modeling variants makes the domain
analysis task more complicated by adding an extra level of
complexity. This is why management of variants belongs
to one of the critical areas in SPL.

Feature Model (a.k.a. Feature Tree) is used to describe
the features and their dependencies for creating valid
products in SPL. Any defects in feature model can signifi-
cantly diminish the benefits of the product line approach.
Among the various defects, this paper is focused on dead
and false optional features. Dead features are features that
are not present in any valid product configuration. False
optional features, on the other hand, are optional features
but they are present in all valid product configurations.

The requirements of software are becoming complex
day by day and a lot of uncertainties are also present in
the requirements description. Bayesian Network (BN)

*Author for correspondence

Indian Journal of Science and Technology, 9(31), DOI: 10.17485/ijst/2016/v9i31/93731, August 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Verification of SPL Feature Model by using Bayesian Network

Indian Journal of Science and Technology2 Vol 9 (31) | August 2016 | www.indjst.org

has already been applied in several software engineer-
ing problems to handle uncertainties. So far, significant
amount of research has been carried out on the use of BNs
for predicting defects in software, reliability of software
etc. However, hardly any of those works have addressed
the issues related to requirement management in SPL,
particularly feature model analysis. In this paper we focus
on addressing this area where we show that the inference
mechanism based on the conditional probability of BNs
can be leveraged in analyzing various defects in feature
model.

The objective of this paper is to define various dead
and false optional feature analysis rules by using first
order logic. These rules are then analyzed and verified
by using Bayesian Network. We describe how a feature
tree can be represented by using BN and how the analy-
sis rules can then be defined in BN. We then show our
adopted approach to prove the analysis rules by using
Bayesian inference mechanism. The significance of our
analysis rules is that we defined the rules for cardinality4,5
based feature model instead of regular feature model. The
BN based verification shows how to deal with uncertain-
ties in software requirements by using AI techniques6.

The organization of the rest of the paper is as follows.
A brief overview of various feature types and relationship
as well as cardinality based feature tree is given in Section
2. Then Section 3 illustrates the relationship between
feature diagram and BN and how a feature tree can be
represented into a BN. In the following section, we give
the first order logic definition of the analysis rules and
draw scenario for each case of the analysis rules. Then, the
analysis rules defined in first order logic have been mod-
eled and verified using BNs in Section 5. Finally, Section
6 concludes the paper by summarizing our findings and
outlining our future plan.

2. Feature Model and Cardinality
In the hierarchy of the feature model each node repre-
sents a feature while the edges represent the relationships
or constraints among the features8. The relationships
among the parent features and their child features along
with cross-tree constraints that typically define the inclu-
sion and exclusion of feature with respect to some other
features9. Here, we briefly discuss the different notations
of feature models.

Mandatory: There is a mandatory relationship between
a child feature and its parent feature if- whenever the

 parent feature appears in a valid product the child feature
is also included.

Optional: If the inclusion of the child feature is
optional in a product in which its parent appears, i.e., the
child feature may or may not be included, then we define
this relationship among a child feature and its parent fea-
ture as an optional relationship.

Alternative: When only one of the child features origi-
nated from a parent feature can be a part of the product
in which the parent feature has been included, we define
that relationship between the set of child feature and the
parent feature as an alternative relationship.

Or: There is an alternative relationship between a set
of child features and their parent when only one or more
of the child features can be a part of the product in which
the parent feature has been included.

These four relationships are the basic parent-child
relationships that are commonly dealt with in a feature
model. Other than these parent-child relationships there
are also two types of cross-tree constraints among the fea-
tures. The cross-tree constraints are as follows:

Requires: This constraint defines that when the inclu-
sion of one feature (say feature A) requires the inclusion of
another feature (say feature B) in a valid product. In that
case the constraint is verbally represented as, “Feature A
requires feature B”.

Excludes: This constraint is defines that the inclusion
of one feature (say feature A) requires the exclusion of
another feature (say feature B) in a valid product. In that
case the constraint is verbally represented as, “Feature A
excludes feature B”.

Other than the relationships discussed above some
experts proposed extension of Feature Oriented Domain
Analysis (FODA) feature models with cardinalities in
order to incorporate practical applications and concep-
tual completeness10. Basic two notations for cardinality
based feature models are defined below:

Feature Cardinality: Feature cardinality is defined as
a sequence of intervals denoted by [] where
m as lower bound and n as upper bound. The number of
instances the feature can be selected for a valid product
is defined by these intervals9. By using this definition we
can establish that when both lower and upper bound of
feature cardinality are equal to 1 then that relationship
becomes the original mandatory relationship defined as
a non-cardinality based relationship. Similarly for lower
bound equals to 0 and upper bound equals to 1 then
that relationship becomes the original optional relation-

Shamim Ripon, Musfiqur Rahman, Javedul Ferdous and Md. Delwar Hossain

Indian Journal of Science and Technology 3Vol 9 (31) | August 2016 | www.indjst.org

ship which has been defined as a non-cardinality based
 relationship.

Group Cardinality: Group cardinality is defined as a
sequence of interval denoted < > where m and n
represents respectively the upper and the lower bounds
of the interval9. The maximum and minimum numbers
of child features from a group cardinality that can be a
part of a valid product where the parent feature is pres-
ent are denoted by the upper and lower bounds. By using
this definition we can establish that when both lower and
upper bound of group cardinality are equal to 1 then that
relationship becomes the original alternative relationship
defined as a non-cardinality based relationship. Similarly
for lower bound equals to 0 and upper bound equals to 1
then that relationship becomes the original or relation-
ship which has been defined as a non-cardinality based
relationship.

3. Feature Diagram and Bayesian
Network

The notation of feature modeling was proposed in7.
Modeling the features of a software system family is con-
sidered as one of the most important parts of domain
analysis. This is both formal and graphical representation
of the common and varying features of a product fam-
ily. Features are hierarchically organized in a feature tree
where the root is the representation of the domain concept
while other nodes represent various features. Mandatory
and Optional are two classes of features. The relationships
among the features which are originated from the same
parents can be either Or relationship or Alternative rela-
tionship. Any cross-tree (or cross-hierarchy) relationship
is denoted as a dependency.

BNs are the graphical representation of the dependen-
cies among different random variables. BN is represented
by a directed graph in which the nodes of the graph repre-
sent a random variable (or an event) whereas the directed
edges among different nodes represent the relationships
(or dependencies) among the random variables (or
events). Each of these nodes has Conditional Probability
Distributions (CPD) associated to it. The random vari-
ables can be discrete. In that case the representation of the
CPD is renamed as Node Probability Table (NPT). This
table lists all the possible probability values that a node
can take based on different combinations of values that
the parents of these nodes can take. Many cases may arrive

where the nodes have two possible outcomes. This spe-
cial condition is handled by representing the CPD binary
probabilities of 0 and 1. This first step of constructing a
BN is to identify the random variables associated with the
domain we are studying. The next step is to model those
variables which can be done trivially. By determining the
relationships among the variables and finally the NPT is
constructed for all the variables in separately.

Additionally, a BN is represented by a directed acyclic
graph or a DAG. The direction of an edge represents the
dependency between the two nodes which are connected
by that edge. For example, if a directed edge connects two
nodes and , it indicates that is a parent node for
the node and, thus, has a dependency on . On the
contrary, feature tree is nothing but a tree data structure
with a root node and a number of non-root nodes. The
features are represented by the non-root nodes whereas,
the corresponding edges between features and sub-fea-
tures represent the parent-child relationships. Because of
the strong resemblance between BNs and feature trees,
any information that is represented by a feature tree can
be conveniently represented without any additional effort
by BNs also. Furthermore, one of the most important and
unique characteristics of BNs is that it is one of the most
widely used techniques for incorporating probabilistic
information when we are dealing with uncertainty. An
example of feature tree and the corresponding BN for the
tree is shown in Figure 1. For each of the variables in the
BN a NPT is built from the dependency information of
the variables.

4. Feature Analysis Rules
With the increase of the number of features in a feature
model the potential complexity incorporated with the anal-
ysis of the model is becoming a task of extensive hardship.
The additional level of complexity is making the analysis
task error-prone and, hence, number of defects may get

Figure 1. BN representation of a feature tree.

Verification of SPL Feature Model by using Bayesian Network

Indian Journal of Science and Technology4 Vol 9 (31) | August 2016 | www.indjst.org

introduced at the modeling stage. Therefore, additional care
is required while creating feature model so that we can pre-
cisely include the domain information within the model. It
is worth noting that modeling the domain correctly with no
information lost is a critical task. Moreover, identification
of the defects at the proper stage of the software develop-
ment lifecycle is a prerequisite for developing valid software
that fulfills all the requirements of the stakeholders.

Defects found is a SPL feature model has been termed
as anomalies. In order to detect and correct inconsisten-
cies as well as redundancies addressing these anomalies by
exploiting intelligent techniques and tools has been sug-
gested by many experts9,11. Different kinds of approaches,
such as defining corresponding diagnostic task12 trans-
forming feature models into an alternative representation
of a Constraints Satisfaction Problem (CSP)13 etc. have
also been proposed by different authors. BNs has also
been used for making predictions about software defects,
reliability etc. in different research works. But hardly any
of the works addressed how to use BNs in order to ana-
lyze the feature model. The work presented in this paper
deals with two specific types of anomalies namely False
Optional, Dead Feature.

False Optional: Features that are selected for all valid
products in spite of being defined as optional features are
call False Optional (FO) features.

Dead Feature: Features that are defined as optional
features but never get selected for any of the valid prod-
ucts are known as dead features (DF)14.

Due to the ability of Feature Models to derive a poten-
tially large number of products, any defects in a Feature
Model will inevitably affect many products of the product
line. In this section, we represent a set of rules defined in
first order logic for dead and false optional features based
on group cardinality. The following First Order Logic
(FOL) predicates are used to define the rules.

•	 : This predicate means, feature
v has one or more child feature(s).

•	 : This predicate means,
feature x is a mandatory child feature of v.

•	 : This predicate means, feature
x is an optional child feature of v.

•	 This predicates means, when x is
selected y is also selected beacuse in a valid product x
always requires y.

•	 : This predicates means, x excludes y
from being selected for a valid product.

•	 : This predicate indicates
G is a group cardinality with total number of features
k, lower bound m and upper bound n.

•	 (G, f): This predicate indicates f is the
parent feature in the group cardinality G.

•	 (): This predicate indicates
that are the child features of the parent
under the group cardinality G.

•	 : This predicate indicates that
features are dead features.

•	 : This predicate indicates that
features are false optional features.

•	 : This predicate means that the feature x is
selected.

4.1 False Optional
Rule 1: One or more features become false optional when
they are grouped by group cardinality with a mandatory
parent having lower bound of m and upper bound of

 with dead features within the car-
dinality, where k represents the total number of features
within the cardinality (Figure 2).

Figure 2. Scenario of cardinality based false optional
feature Rule 1.

Rule 2: In a group cardinality having total k features
along with upper bound of n and lower bound of m, all of
the features within the cardinality become false optional
when k = m = n, where (Figure 3).

Figure 3. Scenario of cardinality based false optional
feature Rule 2.

Shamim Ripon, Musfiqur Rahman, Javedul Ferdous and Md. Delwar Hossain

Indian Journal of Science and Technology 5Vol 9 (31) | August 2016 | www.indjst.org

In the feature tree for this rule (Figure 3), a, b, c, d are
(k = 4) features within the group cardinality having upper
bound n = 4 and lower bound m = 4. Thus all of the fea-
tures are going to be selected when the mandatory father
f is selected.

Rule 3: One or more features become false optional when
they are grouped by a group cardinality with a mandatory
parent having lower bound of m and upper bound of n (

) with [k-m] dead features within the cardinality,
where k represents the total number of features within the
cardinality (Figure 4).

4.2 Dead Feature
Rule 1: In a group cardinality having total k features along
with upper bound of n and lower bound of m, [k-m] fea-
tures within the cardinality become dead feature when m
= n and there are n (or m) false optional features, where

 and (Figure 6).

Figure 5. Scenario of cardinality based false optional
feature Rule 4. Figure 7. Scenario of cardinality-based dead feature Rule 2.

Figure 4. Scenario of cardinality based false optional
feature Rule 3.

Rule 4: One or more features become false optional when
they are grouped by a group cardinality with a manda-
tory parent having lower bound of m and upper bound of
n and with [k-m] dead features within the car-
dinality, where k represents the total number of features
within the cardinality (Figure 5).

Figure 6. Scenario of cardinality-based dead feature Rule 1.

In the feature three for this rule (Figure 6), k = 4, m =
n = 3. Let b, c and d be false optional features. According
to the rule above (k-n) = (4-3) = 1 feature is dead feature
which is feature a in this case.

Rule 2: An optional feature that does not belong to group
cardinality becomes dead when it requires p features that
belong to group cardinality with lower bound of m and
upper bound of n, where and
(Figure 7).

Verification of SPL Feature Model by using Bayesian Network

Indian Journal of Science and Technology6 Vol 9 (31) | August 2016 | www.indjst.org

5. Bayesian Network based
Analysis

In this section of the paper, the Bayesian Network repre-
sentation for false optional and dead features is defined.
We define BN by finding the all possible dependencies
among the features based on our logical representation.

5.1 False Optional
Rule 1: In the feature tree for this rule in Figure 10(a), the
total number of features k = 5, m = 2 and n = 3. Let there
are (k - m) = (5 - 2) = 3 dead features a, b, and c. Therefore,

In the feature three for this rule in Figure 7, x is an
optional feature under the variation point v. The features a, b,
c, and d are within the group cardinality under feature f with
upper bound of 2 and lower bound of 1. Feature x requires 3
features that belong to the group cardinality. But, because of
the fact that the upper bound of this group cardinality is 2, x
can never get selected. Therefore, x is a dead feature.

Rule 3: A feature defined as an optional feature becomes
a dead feature whenever it belongs to group cardinality

Figure 8. Scenario of cardinality-based dead feature
Rule 3.

and the number of false optional feature is equal to the
cardinality upper bound (Figure 8).

In the graph in Figure 8, feature y and z connected
with <1, 1> group cardinality. Feature x has been defined
as a mandatory feature. Moreover, an optional feature
y has a requires relation with feature x. Thus y is a false
optional feature. Since upper bound is 1, y alone can be
selected. Therefore z becomes a dead feature.

Rule 4: A feature belonging to group cardinality becomes a
dead feature if some another feature within the cardinality
excludes it (Figure 9).

Figure 9. Scenario of cardinality-based dead feature
Rule 4.

Figure 10. Bayesian representation of false optional Rule
1 and Rule 2.

Shamim Ripon, Musfiqur Rahman, Javedul Ferdous and Md. Delwar Hossain

Indian Journal of Science and Technology 7Vol 9 (31) | August 2016 | www.indjst.org

to satisfy the lower bound of the group cardinality d and
e are false optional features. In the BN, the child features
a, b, c, d and e are dependent of the parent feature f. There
is no other dependency. It has been declared that features
a, b and c are dead features. Therefore, the probability of
these features being selected is always 0. The NPT for this
network is shown in Table 1.

The similar procedure can be followed for any other
combination and same result can be achieved with
 probability value of 0 except for the only valid combination
of the child features within the group cardinality. The
combination is as follows.

By expanding each expressions of the above equation
and putting appropriate probability value from the NPT
for each variable we can draw the following conclusion.

Hence, d and e, although defined as optional features,
turn out to be False Optional features.
Rule 2: In the feature tree for this rule (Figure 10 (b)), a, b,
c, d are (k = 4) features within the group cardinality hav-
ing upper bound n = 4 and lower bound m = 4. Thus all of
the features are going to be selected when the mandatory
father f is selected. From the BN representation we see
that features a, b, c, and d depend on f (which is their par-
ent feature). There is no other dependency. Thus, for each
of the child features, whether that feature will get selected
or not is dependent on f only. The corresponding NPT for
this network is given in Table 2.

Now, if we choose to select 2 (lower bound) of the

5 features we have combinations. Similarly,

if we choose to select 3 (upper bound) of the 5 features

we have combinations. Thus, there are total

20 possible combinations that satisfy the lower and upper
bound constraint of this given group cardinality. Let us
consider some of the 20 combinations and determine the
probability for those particular combinations of being
valid.

By expanding each expressions of the above equation
and putting appropriate probability value from the NPT
for each variable we can draw the following conclusion.

Similarly, we can show the following equations.

Table 1. NPT of Rule 1 of cardinality based false
optional feature

f a b c d e
T F
1 0

F T F
T 0 1
F 0 1

f T F
T 0 1
F 0 1

f T F
T 0 1
F 0 1

f T F
T 1 0
F 0 1

f T F
T 1 0
F 0 1

Table 2. NPT of Rule 2 or cardinality based false
optional features

T F
1 0

F T F
T 1 0
F 0 1

f T F
T 1 0
F 0 1

f T F
T 1 0
F 0 1

f T F
T 1 0
F 0 1

f a b c D

Now, under the given scenario there is only

possible combination of the feature for satisfying the given
constraint. We can prove that this combination is valid
by doing some straightforward calculations based on the
joint probability function and the values in the NPT.

Verification of SPL Feature Model by using Bayesian Network

Indian Journal of Science and Technology8 Vol 9 (31) | August 2016 | www.indjst.org

We can conclude the following,

We observe that if feature f is selected, the optional
feature z gets selected. Due to the reason that feature x
and y are dead, by the rules of cardinality, the remaining
feature z automatically becomes false optional feature. The
BN verification of Rule 4 can be performed in a similar
manner (Figure 11(b)).

5.2 Dead Feature
Rule 1: In the feature three for this rule (Figure 12(a)), k
= 4, m = n = 3. Let b, c and d be false optional features.
According to the rule above (k-n) = (4-3) = 1 feature is
dead feature which is feature a in this case. In the BN,
all the child features a, b, c, d and e are dependent of the
parent feature f. Features b, c, and d have been declared as
false optional features. Therefore, the probability of these
features being selected is always 1 as long as the parent
feature f has been selected. As the number of features that
have been selected from the group cardinality has reached

By evaluating the expressions in both numerator and
denominator of the above equation and putting appropri-
ate probability values from the NPT we can conclude the
following:

Hence, all four child features of a, b, c, and d are False
Optional features.
Rule 3: In the BN of Figure 11(a), feature f is a variant
of the variation point v with three variants x, y, z of its
own. Thus, whether or the the features x, y, z will get
selected depends on the selection of the features v and f.
Additionally, f is dependent on v. Table 3 shows the NPT
for v, x and y.

Based on the lower and the upper bound of the group
cardinality we can see that after f is selected. There are

 possible combinations of feature from
the group cardinality.

We can use the Baye’s rule for calculating the
 probability that feature z will be selected. NPT from Table
3 gives us the required CPD.

Figure 11. Bayesian representation of false optional Rule
3 and Rule 4.

Table 3. NPT for variables in false optional rule 1.

T F
1 0

v T F
T 1 0
F 0 1

f T F
T 0 1
F 0 1

F T F
T 0 1
F 0 1

f T F
T 1 0
F 0 1

v f x y z

Figure 12. BN representation of cardinality based dead
features Rule 1 and Rule 2.

Shamim Ripon, Musfiqur Rahman, Javedul Ferdous and Md. Delwar Hossain

Indian Journal of Science and Technology 9Vol 9 (31) | August 2016 | www.indjst.org

the upper bound n, no other additional feature can ever
be selected. Consequently, a will never be selected. The
joint probability function for this rule is as follows:

Now, under the given scenario there are = 4
 possible combinations of the feature for satisfying the
given constraint. In a similar way as shown in previous
rules, after constructing the NPT for this rule we can
show that,

Similarly we can show the following,

and

For the remaining combination we get,

Hence, a is a dead feature.
Rule 2: In the feature three for this rule in Figure 12(b),
x is an optional feature under the variation point v. The
 feature a, b, c, and d are within the group cardinality
under feature f with upper bound of 2 and lower bound
of 1. Feature x requires 3 features that belong to the group
cardinality. But, x can never get selected due to the fact
that the upper bound of the group cardinality has been
set to 2. Thus, x becomes dead feature. From the BN we
can see, x is a variant of feature v. Child features a, b, c,
and d are dependent on the parent feature f. Furthermore,
a, c, and d also have dependencies on x. The selection
of a, c and d will depend on both x and f. On the other
hand, b is dependent on f. Another important point to
be noticed here is that unlike the NPT of the earlier rules
the following NPT has entries with values other than 0’s
and 1’s. Because there is no constraint for False Optional
(FO) or Dead Feature (DF) for the features within the
cardinality, each of the features has equal probability of
being selected. In this case ¼ = 0.25 is the value of prob-
ability for each of the features under the cardinality being
selected. The NPT for this network is shown in Table 4.

The joint probability function is as follows:

Now, since there are total valid

 combinations of features from the group cardinality. But

none of those combinations satisfy the constraint for x
to be a part of a valid product. Therefore, x becomes a
dead feature. We can calculate the probability of x being
selected for each of the valid combinations and we will
find that the probability value is always 0.

One of the valid combinations is when only one of
the features from the group cardinality is selected. An
 example is as follows:

By expanding each expressions of the above equation
and putting appropriate probability value from the NPT
for each variable we can draw the following conclusion.

By doing similar calculation we can find that the
 probability value of x being a part of a valid product for
any other combination is always 0.

and so on. Hence, x is a dead feature.

Table 4. NPT for Rule 2 of cardinality based dead
feature

Verification of SPL Feature Model by using Bayesian Network

Indian Journal of Science and Technology10 Vol 9 (31) | August 2016 | www.indjst.org

Rule 3: In the Bayesian network in Figure 13, feature x, y,
z and w are the four variants of v. Thus the outcome of the
event of v being or not being selected directly influences
the outcome of the events of these variant features being
or not being selected. Thus, x depends only on v, however
the probability that the feature y is selected depends
on x also. Moreover, w is only dependent on v. But z is
 dependent on whether v is selected or not. Both y and z
depend on (v, x) and (v, w) at the same time. The NPT are
given in Table 5.

We can conclude the following after using the values
from NPT:

We observe from the result that optional
 feature z is selected. Similar verification can also
be conducted for Rule 4.

6. Conclusions
A number of significant efforts have been made so far for
modeling software product line feature model. Semantic
web-based approach18,19 and Rule-based approach15,20 are
two well-known approaches among these efforts. Semantic
web technology is used to capture domain knowledge.
Meaningful and shared ontological description of a
 specific domain can be expressed by this technology18.
On the contrary, different rules are defined and verified
by using first order logic in rule-based approach17,20.
However, none of these approaches dealt with any kind of
uncertainty in feature analysis.

We have exploited the theory of probabilistic reasoning
by using Bayesian Networks. A feature tree can be
 represented by BN without going through any additional
hardship as the structure of a feature tree resembles that of
a BN. Since a feature tree is more like an And-Or tree, the
interdependencies among the features can easily be found
and thus, the conditional probability function as well as
the node probability table can easily be constructed based
on the feature dependencies.

In comparison to our earlier work15 where only first
order rules are defined but BN verification was not taken
into account. Later we proposed a BN based verification
method16 but cardinality based feature tree is not considered
there. Application of BN for such verification helps us to
gain much knowledge into the feature tree as well as shows
us how uncertainties can be handled in a feature tree.

Only a few scenarios are considered in this paper. We
are currently developing rules for other scenarios of dead
and false optional features. We are also interested to define
and verify rules for wrong cardinality in a feature tree.

7. References
1. Nyholm C. Product line development– An overview.

Building Reliable Component- Based Systems. Extended
Report for Crnkovic I, Larsson M, editors. Artech House;
2002 Jul. p. 44–58.

2. Somerville I. Software Reuse. Software Engineering. 9th ed.
Pearson; 2010.

3. Clements PC, Northrop LM. Software product lines:
Practices and patterns. SEI Series in Software Engineering.
Addison-Wesley; 2001.

Figure 13. BN representation of cardinality based dead
features Rule 3 and Rule 4.

Table 5. NPT for dead feature Rule 3

T F
1 0

v T F
T 1 0
F 0 1

v x T F
T T 1 0
T F I I
F T I I
F F 0 1

v T F
T 0 1
F 0 1

v T F
T 1 0
F 0 1

F a b c D

Shamim Ripon, Musfiqur Rahman, Javedul Ferdous and Md. Delwar Hossain

Indian Journal of Science and Technology 11Vol 9 (31) | August 2016 | www.indjst.org

 4. Czarnecki K, Helsen S, Eisenecker U. Formalizing
 cardinality-based feature models and their specialization.
Software Process: Improvement and Practice. 2005 Jan/
Mar; 10(1):7–29.

 5. Riebisch M, Bollert K, Streitferdt D, Philippow I. Extending
feature diagrams with UML multiplicities. Proceedings
of the 6th World Conference on Integrated Design and
Process Technology (IDPT2002); 2002 Jun.

 6. Fenton N, Neil M, Marquez D. Using Bayesian networks to
predict software defects and reliability. Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk
and Reliability. 2008 Dec; 222(4):701–12.

 7. Kang KC, Cohen SG, Hess J, Novak W, Peterson A.
 Feature-Oriented Domain Analysis (FODA) feasibility
study. Technical Report. Carnegie-Mellon University:
Software Engineering Institute; 1990 Nov.

 8. Benavides D, Felfernig A, Jose A, Reinfrank F. Automated
analysis in feature modelling and product configuration.
Proceedings of 13th International Conference on Software
Reuse, ICSR; Pisa. 2013 Jun. p. 160–75.

 9. Benavides D, Segura S, Ruiz-Cortes A. Automated analysis
of feature models 20 years later: A literature review.
Information Systems. 2010 Sep; 35(6):615–36.

10. Czarnecki K, Bednasch T, Unger P, Eisenecker U. Generative
programming for embedded software: An industrial
 experience report. Proceedings of the 1st ACM SIGPLAN/
SIGSOFT Conference on Generative Programming and
Component Engineering; 2002. p. 156–72.

11. Batory D, Benavides D, Ruiz-Cortes A. Automated analysis
of feature models: Challenges ahead. Communications of
the ACM. 2006 Dec; 49(12):45–7.

12. Trinidad P, Benavides D, Duran A, Ruiz-Cortez A, Toro
M. Automated error analysis for the agilization of feature

modeling. Journal of Systems and Software. 2008 Jun;
81(6):883–96.

13. White J, Benavides D, Schmidt DC, Trinidad P, Dougherty
B, Ruiz-Cortes A. Automated diagnosis of feature model
configurations. Journal of Systems and Software. 2010 Jul;
83(7):1094–107.

14. Massen T, Lichter H. Deficiencies in feature models.
Workshop on Software Variability Management for Product
Derivation- Towards Tool Support; 2004.

15. Ripon S, Hossain SJ, Azad K, Hassan M. Modeling and
analysis of product line variants. Proceedings of SPLC; 2012
Sept. p. 26–31.

16. Rahman M, Ripon S. Using bayesian networks to model
and analyze software product line feature model. Multi-
disciplinary trends in artificial intelligence. Murty MN,
Xiangjian H, Chillarige RR, editors. Lecture Notes in
Computer Science. Springer International Pub; 2014. p.
220–31.

17. Elfaki A, Fong S, Vijayaprasad P, Johar M, Fadhil M. Using
rule-based method for detecting anomalies in software
product line. Research Journal of Applied Sciences,
Engineering and Technology. 2014; 7(2):275–81.

18. Ripon S, Piash MM, Hossain SMA, Uddin MS. Modeling
product line variants – semantic web approach. Lecture
Notes on Software Engineering. 2013 Feb; 1(1):84–8.

19. Ripon S, Piash MM, Hossain SMA, Uddin MS. Semantic web
based analysis of product line variant model. International
Journal of Computer and Electrical Engineering. 2014 Feb;
6(1):1–6.

20. Rincon LF, Giraldo GL, Mazo R, Salinesi C. An ontological
rule-based approach for analyzing dead and false optional
features in feature models. Electronic Notes in Theoretical
Computer Science. 2014 Feb; 302:111–132.

