
Abstract
Objectives: In this paper, the response time of the tasks is minimized by migrating the tasks from the overloaded
computers to the under load computers using a load balancing technique. Methods/Statistical analysis: Load balancing
algorithms belong to the nearest neighbor technique considers only the neighbor computers for migrating the tasks to
reduce communication cost between the computers. Though several nearest neighbor techniques are available, this paper
uses the diffusion technique for balancing the tasks between the computers in a distributed system, as the strength of the
diffusion technique lies in all port communication model and asynchronous implementation. Findings: To evaluate the
performance of the system, the load on the system is varied with the mean inter arrival time of the tasks at each computer.
The simulation has been carried out to observe the performance of the proposed algorithm (Dynamic Distributed Diffusion)
with the existing algorithms SID, GDE, AN by considering tasks arrive to a computer with a Poisson process and follow n*
M/D/1 Queuing model. The simulations show the proposed algorithm reduced the load balancing time, compared to the
existing algorithms in the literature. Application/Improvements: The proposed algorithm can be suited to any topology
and it reduces the load balancing time and hence the response time of the tasks is minimized.

Task allocation in distributed systems
P. Neelakantan* and S. Sreekanth

Department of CSE, SITAMS, Chittoor - 517127, Andhra Pradesh, India;
pneelakantan@rediffmail.com, pranavsree_2000@rediffmail.com

Keywords: Diffusion, Load Balancing, Migration, Nearest Neighbor, Response Time, Task Allocation

1.  Introduction
Load-balancing in a distributed system can be done
statically before the execution of any task, or during
the runtime of the task. Static load balancing1,2 uses
the average behavior of the system in making the load
decisions, and their principal advantage is the lower
overhead cost needed to execute them. Static load
balancing policies does not adapt their decision to fluctua-
tions in workload. In contrast, Dynamic load-balancing2,3
attempts to dynamically balance the loads reflecting
the current system state and that are thought to be able
to further improve the system performance. Dynamic
load balancing is suited for the applications that have
uncertain computational requirements or unpredictable
communication patterns. Adaptive calculations, circuit
simulations and VLSI design, N-body problems, parallel
discrete event simulation, and data mining are just a few
of those applications.

Dynamic Load-Balancing (DLB)4 redistributes the
load among the computers during run time, so that each

computer contains the same or nearly the same amount
of work load. In dynamic load balancing the tasks are
transferred from the heavily loaded computers to the
lightly loaded computers over a dedicated network with
the aim of reducing the response time of the task.

In Literature, many authors proposed iterative load
balancing algorithms considering the loads as real
numbers and those loads can be split arbitrarily. However,
medium and coarse grain applications, the tasks are not
infinitely divisible and hence they are treated as integer
numbers. The load balancing algorithm designed for
discrete load model cannot produce a global load balance
even after the after the termination of the load balancing
algorithm5.

The issue of when to invoke a load balancing operation,
which computer makes load balancing decision, how to
collect information and migration of the load between the
computers are the issues to be resolved in Dynamic load
balancing strategy6.

An allocation of tasks that causes the computers to
contain approximately an equal amount of workload will

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(31), DOI: 10.17485/ijst/2016/v9i31/89615, August 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Task allocation in distributed systems

Indian Journal of Science and Technology2 Vol 9 (31) | August 2016 | www.indjst.org

increase the efficiency of a computation. Increasing the
overall efficiency will typically reduce the response time
of task that is the ultimate, practical goal. The tasks are to
be executed in parallel for faster processing.

When task times known in advance, tasks are allocated
to the computers in a system before computation. However,
there are many applications whose time is not known in
advance. The service time of tasks will change over time
and tasks with unpredictable behavior will be allocated to
the computers at run time. In static load balancing, tasks
are allocated to the computers in a system during compile
time, while in dynamic load balancing policies, the tasks
are allocated to the computers at run time.

A practical solution of the dynamic load-balancing
problem involves four distinct phases4 .In this approach,
a computer involved in the load balancing process will
perform the load balancing by considering the following
four aspects.

Load Evaluation: •	 To find an imbalance in the system,
a load index of a computer will serve as a basis. The
load at every computer computed in determining
load imbalance. Computers containing low load index
value said to be lightly loaded computers and comput-
ers with higher load index value said to be overloaded
computer. To make the load index same in all the
computers few tasks from the overloaded computer
transferred to the lightly loaded computer to reduce
the imbalance in the system.
Load balancing profitability determinatio•	 n: When a
load imbalance exists in the system, the load balancing
algorithm transfers tasks from overloaded computers
to lightly loaded computers. While transferring tasks
to the remote computers, communication delay &
migration cost has taken into account to determine
the profitability of load balancing.
 Task migration strategy•	 : In task migration strategy,
the load balancing algorithm chooses the overloaded
computer to remove tasks from its queue and these
tasks are transferred to the lightly loaded computer
queue. The source and destination computers are
chosen in such way that minimizes the communication
overhead incurred during the load balancing process.
Task selection strategy:•	 The source computer must take
care in selecting the tasks for transferring. The tasks
selected should meet the objective of load balancing.

In this paper, the proposed algorithms focus on second
and third aspects. The second phase involves a load bal-

ancing decision that uses two different approaches on the
type of information they use. In a centralized approach7,8
the information is collected from all the computers
in a system, so the load balancing will be accurate.
However, they impose more communication overhead,
because the computers in the distributed systems are
widely dispersed and not scalable when the number of
computers in the system increases. On the other hand
distributed approaches produce less overhead in taking
the load balancing decision because of involvement of few
computers.

The load index of each computer at regular intervals
of time and it is known as the load evaluation instant. The
load information collected from the computer should
balance the load gathering frequency and the ageing of
load information. The use of obsolete values by the load
balancing algorithm can be avoided by implementing the
following three load information collection rules:

On-demand Load information: Computers collect •	
load information from each other whenever a load-
balancing operation is about to begin or be initiated9.
Periodical Load information: The load information •	
is exchanged among the computers periodically. This
information may be useful or not useful to the other
computers in the system10

On-state-change-driven Load information: when •	
utilization of computers increases by a certain degree,
they inform their load to the other computers in the
system11.

Collection of load information from the computers in a
system by using an on-demand method minimizes the
communication overhead incurred but delays the load
balancing operation, which could result in a increase of
processing time of tasks. Bidding methods use on-demand
load collection policy, where lightly loaded computer’s
request the load information from the other computers
in a system and choose the best computer for doing load
balancing9.

Conversely, the periodic method10,11 allows computers
to initiate the load balancing operation immediately
based on the load information of the computers. The
setting of interval for information gathering from the
computers is the main issue in the periodical method.
Heavy communication overhead is incurred when a
short interval is set for load balancing operation, while
the accuracy of the load information used in the load
balancing operation is nullified when the length of the

P. Neelakantan and S. Sreekanth

Indian Journal of Science and Technology 3Vol 9 (31) | August 2016 | www.indjst.org

interval for the load information from the computers is
set high.

The on-state-change-driven load information is the
combination of on-demand load information and periodic
load information schemes. In this case, the neighbors will
receive a status message from the computer, when its load
is changed by certain degree or if the updated interval is
elapsed since the last update. This mechanism reduces the
frequent updates and hence the communication cost is also
reduced. The load index of a computer serves as load infor-
mation which is used to know the state of the computer.
The zero or a low value of the load index indicates that the
computer is lightly loaded and large load index indicates
that the computer is overloaded. The overloaded computer
is not considered in allocating the tasks and load balancing
algorithm must remove some of the tasks from the over-
loaded computer to reduce its load index. The load index
is a non-negative value and value of load index increases
over time as the tasks are added to the computer.

In the design of load balancing algorithms, the utiliza-
tion of idle computers must be increased to improve the
performance of the system. The calculation of load indi-
ces of a particular computer must impose less overhead
in a system and it should not interfere with the perfor-
mance of the system. While calculating the load index
of a computer in a system, the following aspects must be
considered as it serves as a basis for improving the system
performance:

The load index measure of a computer must include •	
processing time on the task, memory and I/O require-
ments.
Future loads will have more impact on the perfor-•	
mance on the system than the current load. So, future
loads must be predicted to reduce the side effects of
load balancing.
Allow for a simple relation to the load index, so that •	
these values are easily translatable;
Adopt stable indices, rejecting variable values. •	

The reason behind the wide range of load indices in lit-
erature is there is no agreement about the efficiency and
effectiveness of the single load index. Different load indi-
ces have been computed depending on various parameters
such as CPU queue length, the average CPU queue length
over a period, CPU utilization, response time and the
amount of main memory available.

The load indices can be divided into two groups: Specific
indices and generic indices. Specific indices allow obtaining

a single value to represent the load index of a computer, while
generic indices contain two or more values, which require
to be averaged. Generic indices used when the behavior of
the application is not known12. Even then generic load indi-
ces have not shown any performance improvement over
the single load index value, instead it poses more overload
on the system which affects the performance of the system.
In general the most widely accepted load index in literature
is the usage of queue length and execution /response time.

The formula proposed8 for obtaining the load index of
a computer is a linear combination of the task execution
time over the resource and resource contains a
queue length which is given by:

	 ∑N
i j jj=1

L = S q � (1)

Where N is the total number of resources having queues
in a computer. Fontlupt et al.9 proposed the load index of
a computer as the number of items residing in the queue
of a computer. The total load of the system is given by

	 ∑ p-1

i=1
W = W[i] � (2)

1.1  Load imbalance detection
For load balancing to be useful, one must first determine
when to load balance. Load balancing among the computers
comprises detecting the load imbalance and determining
the cost of load balancing. The load imbalance detected in
a synchronous manner by comparing the average load of
the system with loads of every computer in the system or
in an asynchronous fashion, when the load of a computer
exceeds certain threshold.

1.2  Work Transfer Vector Calculation
The imbalance among the computers in the distributed
system is reduced by an appropriate transfer strategy. The
transfer strategy includes choosing the sender and the
destination computer pair and the amount of the load
to be transferred between the sender computer to the
destination computer. The destination computer shall be
chosen (i) Randomly (ii) Fixed (iii) Evaluated

1.3  Task selection
Once the amount of the load to be moved between the
computers has been calculated, tasks to be selected will

Task allocation in distributed systems

Indian Journal of Science and Technology4 Vol 9 (31) | August 2016 | www.indjst.org

meet the amount of the load to be transferred between
the computers. The selection of the tasks will have an
impact on the quality of load balancing. Tasks can be
transferred in a single direction between two computers
or in mutual direction. The problem of selecting which
tasks to move is weakly NP-complete, since it is simply
the sum of subset problem. Fortunately, approximation
algorithms exist which allow the subset sum problem to
be solved to a specified nonzero accuracy in polynomial
time6,13,14.

Another factor that influences the task transfer
between the computers includes communication delay. In
general, a cost is associated with each task transfer and a
task with a lowest cost considered for migration.

1.4  Task Migration
In addition to selecting which tasks to move, a load
balancing framework must also provide mechanisms
for actually moving those tasks from one computer to
another. Task movement must preserve the integrity of a
task’s state and any pending communication.

1.5  System level
In this level, a group of computers is involved in the load
balancing process and the decisions taken at this level will
affect a group of computers. There are three approaches
depending on the set of computers that participate in the
load balancing process.

1.5.1  Centralized
In Centralized policies14, only one computer acts as load
balancing decision maker called a master computer.
Tasks arriving from the external world are sent to the
master computer which allocates tasks to the computers
in the system to do load balancing. The master computer
collects the information from all the computers in the
system to do load balancing. The allocation will be fair
and results in best allocation strategies. The centralized
policies employ a client-server model in distributed
systems.

Because there is only one computer is involved in
the load balancing decision, the number of messages
between the computers in the system is minimized and
fair allocation of tasks to the computers is guaranteed.
The major disadvantage of the centralized load balancing
policy is a single point of failure and heavily loads on
master computer.

1.5.2  Totally distributed
In a distributed scheme15, load balancing decision involves
all the computers in the system. Collecting information
from all the computers in the system to do load balancing
will pose high communication overhead, which forfeits
the purpose of load balancing. To put the communication
overhead minimal, load-balancing operation is restricted
to the domains where the domain of the given computer
is the set of computers directly connected to it. The
overlapping domains and non overlapping domains can
be distinguished by observing the relationship between
different domains.

The nearest neighbor approach is referred to be
as the domain containing a computer and a direct
communication link with the other computers. Nearest-
neighbor load-balancing methods operate to reduce
load imbalance between a computer and its neighboring
computers with the aim of diffusing load among the
computers converging toward a system-wide balance.

Otherwise, load-balancing strategies categorized
as non-nearest-neighbor approaches. In Non-nearest
neighbor approach, computers collect load information
from the computers present in entire system, which are
not restricted to its domain. The scope of the domain
extends to a large radius that may also include the
neighbors’ neighbors and so on. Load balancing done by
using totally distributed approach offer high reliability
when compared to the centralized approach, but they
incur more communication overhead compared to
the centralized approach. In this paper, the proposed
algorithms for load balancing using the nearest neighbor
approach.

1.5.3  Partially distributed
When a system contains more than hundreds of computers,
neither centralized nor distributed approaches proved
inappropriate. Partially distributed strategies (also called
semi-distributed) are proposed as a trade-off between
centralized and fully distributed mechanisms.

The main idea is to divide a distributed system into
domains and allocate tasks to these domains13. These strat-
egies can be viewed at two levels: (i) load balancing within
a domain and (ii) load-balancing among all the domains.
Each level of the strategy contains different solutions.
Each domain is usually managed by a single master-com-
puter using a centralized strategy and, or every computer
is involved in taking the load balancing decision, mas-

P. Neelakantan and S. Sreekanth

Indian Journal of Science and Technology 5Vol 9 (31) | August 2016 | www.indjst.org

ter-computers may (or may not) exchange aggregated
information about their corresponding clusters9.

1.5.4  Synchronous versus Asynchronous
The load balancing operations carried out by all the
computers at the same instant of time and the computers
could not proceed with normal computation referred
as synchronous strategy. If the computer carries
load-balancing operations regardless of what other
computers are doing referred as asynchronous strategy16

2.  Proposed Method
Let is a set of computers and is a set
of edges connecting computers in a distributed system
with N computers represented as an undirected graph
G . The set of computers that are connected
directly with computer i are called neighbor computers
and is represented by .

2.1  Notations
“N: Number of computers in a distributed system

V: set of computers in a distributed system N=|V|
: Computer i load at time t i

 Computer i domain at time t =

: Computer load that belongs to domain of
computer at time t

 : Computer i domain average load given by

: System average load 1
N

L (t)ii=1

N∑ at time t

 System variance,

Computer j deficit load at time t j
: Computer i excess load at time t

 Computer i domain maximum load
: Computer i domain minimum load

: Apportion of the load sent to the deficit
neighbor j in domain of computer i

: load distribution done by computer i

Assumptions
“It is assumed that a distributed system consists of

identical high performance computers (homogeneous
system) connected by a set of high bandwidth
communication links. It has been assumed a distributed
system consists of independent parallel jobs where they
can be run at any time, in any order and at any computer.
The arrival of the jobs is a Poisson distribution.”17

It is assumed that the load at a particular computer is
the sum of jobs that are allocated to that computer. Let A

(i) be the set of jobs assigned to computer i, then the load

at computer i is Li A(i)= ∈∑ tkk , where is the job k. In real
world applications, the load cannot be arbitrarily divided,
but only to some extent. So a discrete model for the load
is needed.

2.2  Mathematical Model
“Let is the load value of computer in a system of
N computers at a given time instant t and the load values
among the computers in the system are represented by
using the load vector . The load
values of a computer can be a real or non negative integer
values depending on the granularity of the application.
Let the load value of every computer in a system is repre-
sented as an integer quantity. When the load is represented
as an integer quantity the maximum load difference in the
system between any two computers is to be 0 or 1.

Let the load balancing algorithm is initiated at time
t and it takes some time t1 where t1>t to balance the load
among the computers. Let the average system load at time
t is given by

	 L (t) 1
N L (t)ii

N
= µ =

=∑ 1
� (3)

Since load balancing algorithms are the load
conservative, i.e., they do not neither create nor destroy
load, but only move it around the system such that load
values of individual computer changes due to load bal-
ancing actions .In static load situations the value of
does not change over time. Thus

The imbalance of the system load at the time t is mea-
sured with a synthetic indicator, the variance of the load
of the computers, i.e., their quadratic deviation from .

	 � (4)

Task allocation in distributed systems

Indian Journal of Science and Technology6 Vol 9 (31) | August 2016 | www.indjst.org

a computer that initiated the load balancing algorithm
balances its domain, in a refined way by sending messages
to the overloaded computers in its domain to distribute
the loads to the under loaded neighbors

The computer i compute the load average of its domain
by taking the load information of the neighbors kept in the
memory which is rounded to the nearest lowest integer
value, which is given by

	 L t) =
L (t) L (t)

| D | + 1i

i jj

i

Di
+

∈∑
� (5)

After computing the load average, it evaluates the
relative load weight to detect whether it is an overloaded
computer or an under loaded computer. For this purpose
it uses below formula

	 � (6)

From the equation (5) If the value
>0 indicates computer i is overloaded and it has to send
its excess load to one of its deficient neighbors. The
value <0 indicates that the computer is
under loaded and there no need to transfer the load and
hence no need to invoke the load balancing algorithm.
Depending on the value of) the load
balancing algorithm is initiated by the computer i.”17

2.3.1  Load Transfer Calculation
“Once the computer i determine that it is having an excess
load, it has to distribute its excess load to the deficient
neighbors. The computer i form two sets and

depending on the deficit and excess load values.
Computers having the deficit loads form the Active set
which is denoted by and computers having the
excess loads form the set After forming the two
sets, for each deficit neighbor in set , load deficit
for an individual computer is stored which is given by”17

Activei (t) = where

Sendi(t) = where k
 =

The formula for the total deficit of the domain of
computer is

	 TD (t) = dev (t)i ijj {Active }i∈∑ � (7)

The computer i determines the total deficit load and then
calculates how much portion of its excess load is to be sent
to each of its deficit neighbors by use of the below formula

If variance among the system is minimized, each
computer in the system would contain equal loads to
process so as to minimize the response time of process
or job.”17

2.3  Description of the Model
“In a distributed system, the computers exchange their
load information at periodic intervals of time called
information exchange interval . The information
exchange consists of load information of a computer and
at the instant this information exchange takes place is
called an information exchange epoch. In order to reduce
the communication overhead, the information exchange
is restricted only to the neighboring computers.

Each computer i receives a load information message
from its neighbors, which is kept in the computer i
memory. Due to communication delays induced by
the network, each computer i will have an estimate of
the load at the neighbor computers, because within the
communication delay d some load may be added
to the computer j or removed from the computer j.
The load information from computer j to computer i is
represented where is a certain
time instant satisfying . The computer i, as

=0 (delay is zero for the computer i) will have exact
information about its load.

A set of time instants is associated with each computer
for doing load balancing. At a given time instant, the
computer i executes the load balancing algorithm by
comparing its load with the estimated load of its neighbors
that are stored in the computer i local memory during
status exchange epoch. In order to analyze the DDD
behavior, the variable t is discriminated by assuming the
values t=0, 1, 2….

When loads among the computers are distributed
randomly, a single iteration of the proposed load balancing
algorithm consists of two procedures: procedure LB and
procedure Accurate LB. In procedure LB, when the load
of the computer is greater than the average load of the
domain of the computer i, then that the computer is said
to be an overloaded computer, so it sends its excess load
to the under load neighbors.

In the procedure AccurateLB of DDD, the computer
that initiated the load balancing algorithm checks its
underlying domain for the balanced state. The domain
attains balanced state if the load difference between two
computers in it is not greater than 1. If it is not balanced,

P. Neelakantan and S. Sreekanth

Indian Journal of Science and Technology 7Vol 9 (31) | August 2016 | www.indjst.org

Step3: If computer i is not having the maximum load
in its domain, instead some other computer k is having the
maximum load, then it would send a message, instructing
computer k to send one unit of a computer k load to one
its least loaded neighbor until the value of runs
out.

The difference of the load between the computers in
the domain of computer i is greater than 1, load
units need to be transferred. Two constraints must be sat-
isfied while transferring load units to the computers
of domain of computer i.

Constraint 1: The excess load units sent by the com-
puter in the set to the deficit neighbors in the set

 , the sender computer load value must be equal
or greater than one load unit to the next higher loaded
computer in to avoid the task shuttle between the
computers. From this, it will be concluded that the larg-
est computer in remains as largest or equal to the
next higher loaded computer in , after sending

 units of a load to a least loaded deficit computer
in

Constraint 2: After receiving load units from
the computer in the set , the least loaded com-
puter load value in the set must be equal to the
load value of the next least loaded computer in .
The above two constraints play a key role in avoiding task
thrashing effect.

The above operations have been computed by
depending on the load values stored in its memory. From
above it is clear that the amount of load sent by
to its neighboring computers in a time t and the load value
of the in time t+1 is given by “17

	 L (t +1) = L x (t) - (t) x (t)i i ij ij=1

N
ijj=1

N
− +∑ ∑ϕ � (10)

3.  Simulations
Here, the results of a simulation study and performance
comparison of the proposed algorithm with the existing
algorithms in the literature are presented. The information
that is made available at a given instant of load balancing
decision for transferring the load from overloaded com-
puters to under loaded computers will have a significant
effect on the relative performance of the algorithms. The
below information is used by the algorithms for balancing
loads among the computers in the distributed system.

	 � (8)

2.3.2  Accurate Load Movements
“The procedure AccurateLB is used by computer i
to check its domain for accurate balance. To do this,
some additional parameters are required to probe for
unbalanced domains. These parameters will do accurate
load movements to balance the domain and hence to
decrease the variance of the domain. The additional
parameters introduced in the algorithm are:

Maximum load value of the computer in the domain •	
of computer :
minimum load value of the computer in the domain of •	
computer : {

To detect the imbalance in the domain of , the
above two parameters will be used . If the difference of
the maximum load value of a computer in and a
minimum load value of a computer in is greater
than 1 which is given by
then the domain is said to be unbalanced, which requires
some load movements to reduce the variance in the
system.”17

2.3.3  Load Adjustments between Computers
The computer i detect the imbalance in its domain
and moves some of the load units to the neighboring
computers to reduce the load variance in its domain. The
following steps are used to reduce the load variance in the
domain of computer i.

Step 1: In the domain of computer i, if computer i is the
computer with maximum load and other computers in the
domain contain an equal amount of load, then computer i
will distribute units of load to its neighbors one by
one. The computed value of in (9), is used to lower
bound the load value of the computer i by the load average
of its domain. The computer i distribute its load based on
the neighbor computers order kept in its memory. The
value of will always be smaller than the number
of neighbors.

	 � (9)

Step 2: The load value of computer i is maximum in its
domain and other computers in have different load values
in domain of computer i, then a unit of load is distributed
among the least loaded neighbors in its domain.

Task allocation in distributed systems

Indian Journal of Science and Technology8 Vol 9 (31) | August 2016 | www.indjst.org

N: Number of Computers
E[T]= Mean task inter-arrival time to a computer

= Arrival rate at computer i(=)
M = Exponential distribution of tasks arrival process

= Service rate at computer i

= Utilization of computer i=

 = System load=
ρi
Ni

i N

=0

=∑
H= Hyper- Exponential distribution describing task

service demands
E[S]= Expected service time of a task

= Standard deviation of task service time
The distributed system consists of computers

connected by communication links. Here it is assumed
that the computers in a distributed system have the
same processing capabilities and communication delay
is not arbitrarily large. An arbitrary topology generated
consisting of 10 to 50 computers with edges connect-
ing the computers. To evaluate the performance of the
system, the load at the system is varied by reducing or
increasing the mean inter arrival time for tasks at each
computer.

The simulation has been carried out to observe
the performance of the proposed algorithm (Dynamic
Distributed Diffusion) with the existing algorithms SID,
GDE, AN by considering task arrive to a computer with
a Poisson process with different system load levels [0.1 to
0.9]. The task size is constant with 100Kbytes. Here it is
assumed N* M/D/1 Queuing model.

The simulation conditions are kept identical for all the
algorithms same. It is assumed that all the computers in a
system have the service rate of 1 and the service time for
each task is constantly distributed with a service time of
20 sec. The simulation runs for 5000 task arrivals to mea-
sure the throughput of the system and the load balancing
time of the algorithms. Each run was replicated five times
with different random seeds and the results averaged
over replications where 90% of a confidence interval is
obtained for each data point.

3.1 � Influence of Computer Size on Load
Balancing Time

The load balancing time is tested for the varying load index
value of the computers in a distributed system. The input
value is varied from under loaded situations to overloaded

Figure 1.  The effect of computer size on Load balancing
time when =0.1.

Figure 2.  The effect of computer size on load balancing
time when =0.4.

Figure 3.  The effect of computer size on load balancing
time when =0.9.

situations by changing the parameter The scalability of
the algorithms are tested by varying the size from 10 to
50 computers in the distributed system. It has been found
that all the algorithms inclusive of the proposed algorithm
done well in the light load conditions (=0.1).However
the proposed algorithm has done well when compared to
the existing algorithms in the literature under moderate
and heavy load conditions (=0.4& =0.9).

P. Neelakantan and S. Sreekanth

Indian Journal of Science and Technology 9Vol 9 (31) | August 2016 | www.indjst.org

5.  References
  1.	 Tang X, Chanson ST. Optimizing static job scheduling in

a network of heterogeneous computers. Proceedings of the
International Conference on Parallel Processing, Toronto,
Ont. 2000. p. 373–82.

  2.	 Zuhair K et al. Mizan: a system for dynamic load balancing
in large-scale graph processing. Proceedings of the 8th ACM
European Conference on Computer Systems. Enosys’13,
NY. 2013. p. 169–82.

  3.	 Cortes A, Cedo F et al. On the Stability of a Distributed
Dynamic Load Balancing Algorithm. Proceedings of the
1998 International Conference on Parallel and Distributed
Systems, Tainan. 1998. p. 435–46.

  4.	 Corradi A, Leonardi L, Zambonelli F. Diffusive Load-
Balancing Policies for Dynamic Applications. IEEE
Concurrency. 1999; 7(1):22–31.

  5.	 Cortes A, Ripoll A, Cedo F, Senar MA, Luque E. An
asynchronous and iterative load balancing algorithm
for discrete load model. Journal of Parallel Distributed
Computing. 2002; 62(12):1729–46.

  6.	 Elsasser R, Monien B, Preis R. Diffusive load balancing
schemes on heterogeneous networks. Proceedings of The
Twelfth Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA ‘00). ACM, New York, NY, USA.
2000; 30–8.

  7.	 Saletore VA. A Distributed and Adaptive Dynamic Load
Balancing Scheme for Parallel Processing of Medium-
Grain tasks. In Proceedings of the 5th Distributed Memory
Computing Conference. 1990; 2. p. 94–9.

  8.	 Ferrari D, Zhou S. An empirical investigation of load indices
for load balancing applications. Proceedings of Performance
’87, the 12th Int’l Symposium on Computer Performance
Modeling, Measurement and Evaluation. 1988; 23:515–28.

  9.	 Fontlupt C, Marquet P, Dekeyser J. Data parallel
load balancing strategies. Parallel Computing. 1998;
24(11):1665–84.

10.	 Antonis K, Garofalakis J, Mourtos I, Spirakis P. A
hierarchical adaptive distributed algorithm for load
balancing. Journal of Parallel and Distributed Computing.
2004; 64(1):151–62.

11.	 Yeon MS, Jeong BS. Multi-level load balancing methods for
hierarchical web server clusters. Indian Journal of Science
and Technology. 2015 Sep; 8(21):1–5.

12.	 Couturier R, Vernier F et al. A decentralized convergence
detection algorithm for asynchronous parallel iterative
algorithms. IEEE Transactions on Parallel Distributed
Systems. 2005; 16(1):4–13.

13.	 Lavanya M, Ravi A, Aditya A, Samyuktha R, Vaithiyanathan
V, Saravanan S. An enhanced load balancing scheduling
approach on private clouds. Indian Journal of Science and
Technology. 2015 Dec; 8(35):1–4.

The load balancing times taken by the algorithms
are shown in the graphs presented in the Figures 1, 2,
3. The execution time increases with the increase in the
number of computers has been observed while running
the simulation.

4.  Conclusions and Future Work
In this paper, the proposed algorithm considers arbitrary
topology for load balancing in distributed systems. Still
the load balancing problems is an NP-complete problem
and remains as a challenging task in the research field.
Since the algorithms proposed in this paper are iterative in
nature, the issue that arises in designing the load balancing
algorithms of such nature is the stable load distribution.
The proposed algorithms do not attain the stable state (1
in 25 tests), and they are terminated by inducing an upper
delay in the program.

However, for the majority cases, the proposed
algorithm DDD starts working fine when compared to
the existing algorithms proposed in the literature. The
goal of minimizing the response time is achieved through
the proposed algorithm. The proposed load-balancing
algorithm had less load balancing overhead that has an
impact on average response time of the system. When it
comes to scalability, most of the load balancing algorithms
existing in the literature has failed for the larger system
sizes. However, the proposed algorithm attained stable
distribution in both static load situations as well as in
dynamic load situations and runs well for the computer
sizes up to 100.

In the future work, a load balancing algorithm shall
be developed for homogeneous systems by considering
communication delay while transferring tasks to the
different computers in distributed systems. In this paper,
the proposed algorithm assumes the scheduling policy
is First Come & First Serve basis. Both in homogeneous
and heterogeneous systems OS Scheduling policies like
round robin, priority scheduling must be taken into
account while doing load balancing. Another aspect to
be considered by the load balancing algorithm includes
the deadline of the task, where the task is scheduled in
such a way that it has to meet its deadline. This paper does
not consider tasks with deadline as it requires extensive
research and different techniques to be incorporated.

Task allocation in distributed systems

Indian Journal of Science and Technology10 Vol 9 (31) | August 2016 | www.indjst.org

16.	 Balaji N, Umamakeshwari A. Load Balancing in Virtualized
Environment - A Survey. Indian Journal of Science and
Technology. 2015 May; 8(S9):230–34.

17.	 Neelakantan P. Article: Load Balancing in Distributed
Systems using Diffusion Technique. International Journal
of Computer Applications. 2012 Feb; 39(4):1–10.

14.	 Singh A, Juneja D, Malhotra M. Autonomous Agent Based
Load Balancing Algorithm in Cloud Computing. Procedia
Computer Science. 2015; 45:832–41.

15.	 Panwar R, Mallick B. Load balancing in cloud computing
using dynamic load management algorithm. 2015
International Conference on Green Computing and
Internet of Things (ICGCIoT), Noida. 2015. p. 773–78.

