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Abstract
In this paper we use a methodology based on the Weibull distributions covariates in the presence of cure fraction models, 
censored data and covariates. Objective: The objective of the study is to check the performance of mixture and non-
mixture cure models based on LPML. Methods/Analysis: Two models were explored here in which are the mixture and 
non-mixture cure fraction models. Inferences for the models are obtained under  the Bayesian  approach via  Markov  Chain  
Monte  Carlo (MCMC)  where  the posterior estimates were  obtained by using Metropolis-Hastings sampling methods in 
the presence of covariates and without covariates considering  a real life time dataset and comparing the two cure models 
using the Log Pseudo Maximum Likelihood estimates (LPML)  and some related special cases of the distribution. Findings/ 
Conclusion: We observed that the Weibull distribution has the least LPML value while its special cases  where  the  two 
models  are quite  similar  having the highest values on the other hand, the  Mixture  fits  better than the non-mixture 
having  the  highest (LPML)  based  on the results obtain from all the models suggesting that the standard parametric cure 
(mixture) model fits the AML data which shows a great indication of similarity with the covariates and flexibility of the 
models.

1. Introduction
The cure fraction model1,2 is also used to be called as 
an extension to the usual parametric survival models, 
to account for the fraction of individuals who will not 
experience the event of interest. It can also be called a 
long-term survival models regarding the kind of event 
been specified. The two most common cure models or 
long-term s u r v i v or s  are the mixture a n d  non-mix-
ture models2,7. Although, this model seems attractive 
and it is used widely in reliability and survival analysis 
areas.

2. Some Reviews
The long-term survival models play a very ideal role in the 
area of survival and reliability analysis. In recent years it 

is becoming more increasingly famous for analyzing data 
in clinical trials. The model had extensively suggested by 
authors like23,25,27. More recently statisticians and biome-
tricians conducted some research based on the novelty of 
these models, 4 estimates some parameters in by Bounded 
Cumulative Hazard (BCH) model using Left censored 
data3, proposed a model which they incorporates some 
regression covariates effects by non-mixture BCH model 
approach. 6Proposed a method using a standard model 
for analyzing a clustered and interval censored survival 
time data by incorporating some fluctuation stochas-
tic effects in both  the  PH  and  logistic  components.  
9Demonstrated that the Beta-Weibull density can be 
expressed as a mixture of Weibull densities and provide 
some expressions for their MGF, while28, proposed a new 
approach on mixture model via latent cure rate markers 
in the cure model context. 28Suggested a mixture model 



Indian Journal of Science and TechnologyVol 9 (28) | July 2016 | www.indjst.org 2

Cure Models based on Weibull Distribution with and without Covariates using Right Censored Data

with random effects to cause specific survival data of 
female breast cancer patients. They proposed two sets of 
random effects to capture the regional variation in the 
cure fraction and survival of uncured patients, respec-
tively. 23Proposed some ideas based on their notions 
which include the following:

•	 They suggested that when c ov a r i a t e s  are 
included in the analysis, on the other hand 
mixture model does not require a propor-
tional hazard context.

•	 Mixture model provides improper posterior 
distributions for s ome t y p e s  of  non-infor-
mative improper priors when covariates are 
included through the parameter π via a stan-
dard regression model. 

•	 Mixture model does not seem to outline the 
biological process for obtaining the failure 
time in a situation where cancer relapse is 
involved.

Parametric models, such as Weibull, Gompertz, 
exponential and  many more can be employed. In 
general the main limitation of the parametric cure 
fraction models are sometimes hard to find a distribu-
tion flexible enough to fit the data. On this context, 
the non-parametric techniques a r e  considered to 
be more attractive under the violation of parametric 
assumptions. It has been demonstrated by10,16 that any 
parametric family of distribution can be incorpo-
rated into larger families through an application of the 
probability integral transform. In addition, the beta 
modified Weibull distribution by6 is also a generaliza-
tion of the Weibull distribution new family due to its 
flexibility in accommodating different forms of the risk 
function seems to be an important family that can be 
used in a variety of problems in modeling survival data. 
A Bayesian formulation of the cure fraction model is 
given by several authors as such2,3. A cure rate model 
based on the Beta-Weibull distribution was proposed 
by6 techniques for estimation of cure rates when there 
are partially observed or missing covariates have been 
discussed by1,3,4,7,11,12,14,33.

3. Methods 
Let T be a random variable representing the time until the 
occurrence event of interest and let t > 0 be an observa-
tion from T. In the mixture cure fraction model which 

was first proposed by7, the probability that time-to-event 
is larger than that some specified time t given by the sur-
vival function: 

Where p is the proportion of “long-term survivors” 
or cured patients”, regarding the event of interest (0<p<1) 
and So(t) is the standard parametric survival curve for 
the susceptible ones who will undergo the event. Thus, 
the mixture cure fraction model assumes that at the 
beginning of the follow-up period there is a group of indi-
viduals who will never undergo the event. The cumulative 
distribution function for T is: 

As such, the 
 
indicates 

that . The probability density function 

(p.d.f) for T is: 

Where  is the baseline probability function for 
those who will undergo the event being specified. Let us 
assume right censored data and non-informative miss-
ing type. If we consider a simple random sample given as 

 of size n, having i=1,....,n, for the contribution of 
the i-th subject for the likelihood function of the mixture 
model is given by: 

Where 
 
is a censoring indicator variable, that is, 

 
for an observed lifetime and  for a cen-

sored lifetime. Moreover, the log-likelihood function is: 

Where 
 
is the number of uncensored obser-

vations. On the other hand, the non-mixture formulation 
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has been suggested by some author2. This model is define 
as an asymptote for the cumulative hazard and hence the 
cure fraction. In this case, the survival function for the 
non-mixture otherwise called Bounded Cummulative 
Hazard (BCH) model3 is given by: 

Where 0 < p < 1 is the probability of cured individuals 
and where  with the hazard function:

 

Note that the  implies that 

Where the hazard function  can be inter-

preted as the risk of an event immediate after time t 
conditional on surviving up until time t.

Where 
 
is the number of uncensored 

observations.

3.1 The Weibull Distribution
The Weibull distribution is a very well-known and famous 
distribution named after a great Swedish Physicist, math-
ematician, engineer and scientist Ernst Hjalmar Waloddi 
Weibull in 195125. He used it in 1939 to analyze the break-
ing strengths of materials in Physics”26. The distribution 
has a great advantage over any parametric models over 
the usual Cox proportional hazards (semi-parametric) 
model is that these models are more informative and 
flexible. Because of its relative flexible property of hazard 
function and efficiency in estimating the parameters in 
the survival functions, ever since, it has been a widely gen-
eral used for analyzing lifetime data analysis, modeling 
and simulations. However, only monotonically increasing 

and decreasing hazard functions can be generated from 
the classic two-parameter Weibull distribution5. It can 
be used to model devices with decreasing, constant, or 
increasing failure rate. This versatility is one of the main 
objectives for the wideness use of the Weibull distribu-
tion in survival, engineering and reliability analysis3. The 
procedure employed to analyze survival data include the 
Kaplan-Meier method for estimating the survival func-
tion, the log-rank test and the cox proportional hazard 
for more refined tools to be able to illustrate and analyze 
more complex related model20. In health studies, the use 
of parametric models for survival data analysis has been 
increasing in the recent years or decades in response to 
a need data structures, as such bivariate events times25. 
Using parametric models, it is straightforward process to 
derive the hazard functions and to obtain predicted sur-
vival times. Moreover, Cox model assumes that the ratio 
of the hazard functions of two different levels of a covari-
ate is constant over time (proportional hazards) and 
this is not always achieved when we deal with real data. 
Parametric models can be more flexible to deal with non-
proportional hazards. The Weibull distribution represents 
a generalization of some special cases as follows: 

•	 Exponential distribution: A one-parameter 
exponential distribution28 is a special case of 
Weibull distribution with γ = 1. 

•	 The Beta distribution: A two-parameter distri-
bution16 is a special case of Weibull distribution 
with α = 1, β = 1.

•	 The Rayleigh distribution: A one-parameter 
distribution17 is a special case of Weibull distri-
bution with α = 1. 

•	 The Beta-Weibull (BW) distribution: A four-
parameter distribution12 is a special case of 
Weibull distribution with α = 1, β = 1, γ = 1 and 
λ=1. 

•	 The Exponentiated-Weibull (EW) distribution: 
A three-parameter distribution30 is a special case 
of Weibull distribution with β = 1, γ = 1 and λ 
= 1.

•	  The Beta-Exponential (BE) distribution: A 
three-parameter distribution32 is a special case of 
Weibull distribution with α = 1, β = 1and γ = 1.

•	 The Modified Weibull (MW) distribution: A 
three-parameter distribution31 is a special case of 
Weibull distribution with α = 1,γ = 1 and λ = 1.

•	  The Generalized Modified Weibull (GMW) dis-
tribution: A four-parameter distribution29 is a 
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special case of Weibull distribution with α = 1, β 
= 1, γ = 1 and λ = 1. 

As a special case of the distribution for those that will 
experience the event of interest by the baseline probability 
density function with two parameters given by: 

The baseline survival function is given by: 

Where the γ, λ > 0, that is, they are all positive. The 
corresponding hazard function is given by: 

3.2 The Log-Likelihood functions for the 
Susceptible Individuals
If we assume the mixture model (3), the log-likelihood 
function for θ = γ, λ, p, will be given as: 

 where,

 

Alternatively, if we assume the non-mixture model 
(6), on the other hand the log- likelihood function for p, 
γ, λ will be given as: 

where,

 

Due to the intricate or complexity case of the likeli-
hood functions 

 
the estimation of the 

parameter by maximization or direct method will be 
extremely a difficult task. So to overcome in dealing with 
this type of problem, we consider the use of Bayesian 
Inference based on Markov Chain Monte Carlo (MCMC) 
methods. We can probably also take in the incorporate 
a vector of covariates Xi that may be closely related and 
associated with the proportion p of cure rate fraction 
models by replacing p in the log-likelihood function 

by: 

Where  is the vector of 
the observations of J covariates for the i-th individual 
and  is the vector of unknown 
parameters. Furthermore, we can study the effect of the 
vector of covariates Wi on the parameter λ by replacing λ 
in the mixture and non-mixture log-likelihood functions 
that is,  given by:  

 

Where   
is the vector of the observations of K covariates for the 
i-th individual and  is the vector 
of unknown parameters. 

4. Bayesian Analysis 
We assume an earlier uniform U (0,1) prior distribu-
tion for the extent probability p of long-term survivors 
and the Gamma function having (0.001,0.001) for the 
scale parameter λ and the shape parameter γ, where the 
Gamma (a,b) denotes a gamma distribution with mean 
and variance where a and b are known hyper parameters. 
We likewise expect gamma to assume a prior distribution 
for the parameters p, γ, and λ. If we consider the covari-
ates, using the non-informative prior distribution for the 
unknown parameters in the models. 
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4.1 Log Pseudo Marginal Likelihood 
Measure (LPML): 
Comparison of mixture and non-mixture assuming 
different distributions was accessed by log Pseudo mar-
ginal likelihood measure. The LPML is derived from the 
Conditional Predictive Ordinate (CPO) statistics13. For 
the i-th observation, the CPOi is given by: An MCMC 
approximation of CPOi is given by: 

Where Θ is the incomplete vector of parameters, Di 
is each instance of the full data D, D[i] is D without the 

current observation i and  is the posterior density 
of Θ given Di, i = 1,....,n. 

Where B is the number of iterations during the 
implementation of the MCMC procedure after the burn 
-in period and Θb is vector of the samples that will be 
obtained at the 4th to 5th iterations15. For a given model, 
the LPML value is given by:

 

The larger the value of LPML, the better is fit of the 
model15. Alternatively, the Pseudo Bayes factor (PMF)15 
comparing models m and m’ is: 

If we assume cure fraction models or the long-term 
survivors above, therefore we would consider the Gamma 
prior distribution function having Gamma (0.001, 0.001) 
for the regression parameters αo and βo, and a Gaussian 
prior distribution N (0, 100) for the regression parameters 
α1 and β1, l = 1,.....k. We likewise assume a prior inde-
pendence distribution for the parameters. We consider 
Log Pseudo Maximum Likelihood (LPML), proposed 
by15. The LPML is an approximation of the Bayes factor 
and its objective is to incorporate the complexity of a 
model. LMPL is easy to calculate and applicable to a wide 

range of statistical models. It is based on the posterior 
distribution of the log-likelihood following the original 
suggestion of15, for model choice in the Bayesian frame-
work into the selection criterion. Metropolis-Hastings 
sampling algorithm which is very vital, flexible and versa-
tile method for simulating intricate or non-intricate cases 
to sample an arbitrarily parametric class distributions. It 
is also use involving the Acceptance-Rejection sampling 
method, including the Gibbs algorithm serve as special 
cases of the Metropolis-Hastings sampling algorithm8. 
We also obtained the Highest Probability Density (HPD) 
intervals for parameters of interest13. A  

HPD interval for a generic parameter θ is a subset of 

the parameter space C given by  

where 
 
is the posterior distribution for θ given 

the data D and k is the largest number such that 

.

5. Acute Myelogenous Leukemia 
(AML) Data 
A right censored survival data of 33 patients from Acute 
Myelogenous Leukemia data was used35. Also measured 
was the patient’s white blood cell count at the time of 
diagnosis. The patients were also factored into two (2) 
groups according to the presence or absence of a mor-
phologic characteristic of white blood cells. 

In the analysis we consider the cure fraction models 
introduced above in the presence or not of covariates in 
the models. So in the first analysis we assume the cure 
fraction models not considering any covariates in the 
models14. All cases in this work, we generated 30,000 sam-
ples for each parameter of interest given automatically by 
R software24. 

We assume a burn-in-sample of size 10,000 to mini-
mize the effect of the initial values used in the simulation 
process. We simulated another 200,000 Gibbs a sample, 
taking every 100th sample to have approximately uncor-
related values, which gives the posterior summaries of 
interest was based on the final Gibbs sample of size 2,000 
samples. The convergence of the approach algorithm was 
monitored using standard procedures, as well as the sim-
ulation process. 
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5. Results
In Table 1 above, it shows the inference results consid-
ering Bayesian approaches using MCMC methods, we 
have used the Log Pseudo Maximum Likelihood esti-
mates (LMPL) and given automatically by R software24. 
From the fitted survival models, we conclude that the 
Mixture and non-mixture models are very well fitted by 
the survival times with similarities in the intervals. From 
the results obtained above, we observed that the Bayesian 
inferences give similar results. Overall, Mixture model 
is the better fitted by the data (with larger Monte Carlo 

estimates for Log Pseudo Maximum Likelihood estimates 
(LMPL). While the Mixture model on the other hand (the 
first order approximation of non-mixture model) gives 
the larger value of LMPL and also the inference results 
considering a standard 2-parameter Weibull distribu-
tion not considering any covariates, where the Bayesian 
estimates where obtained by Markov Chain Monte Carlo 
(MCMC) using Metropolis-Hastings random walk sam-
pling to obtain the posterior summaries. 

In Table 2 above, the estimated parameters with 
covariates for the posterior summary of distribution was 
shown where Metropolis-Hastings samples drawn from 

Table 1. The posterior summaries for the parameters of the models not including with 
covariate and considering the data set of 43 Acute Myelogenous Leukemia patients

Estimated
Parameter

Posterior 
median          

95%
H DPa          

LP M Lb       HWc  
p value   

Geweke’s 
p value

γ 2.1034 (0.6784,1.2345)
-742.403

0.463 0.429
Mixture λ -0.3865 (-1.1256,0.6364) 0.4569 0.343

p -0.2306 (-0.4566,0.2381) 0.152 0.651

γ 1.9980 (3.5975,5.2487) -730.774 0.232 0.076
Non-
mixture

λ -0.5640 (-1.1376,0.3364) 0.099 0.223

p -0.6876 (0.0166,0.2681) 0.772 0.435

Table 2. The posterior summaries with covariate and considering the data set  of 43 Acute 
Myelogenous Leukemia patients

Cure
Models       

Estimated
Parameter

Posterior 
median          

95%
H DPa          

LP M Lb       HWc  
p value   

Geweke 
p value

γ 1.0129 (0.3684 , 2.1799) -866.403 0.453 0.729
ζ0 -0.3526 (-1.1376, 0.3364) 0.069 0.533
ζ1 -0.6706 (-0.0166,-0.2681) 0.152 0.651

Mixture ζ2 -0.9889 (-0.5611, 0.2922) 0.148 0.307
η0 -0.1337 (-1.1376,0.3364) 0.799 0.343
η1 -0.4843 (-0.5416,0.2922) 0.618 0.707
η2 -0.9124 (-1.1376,-0.3364) 0.779 0.243

γ 0.9930 (0.5975,11.2487) -864.774 0.232 0.076
ζ0 -0.5640 (-1.2356,0.4534) 0.099 0.223
ζ1 -0.6876 (0.0756,0.2681) 0.372 0.353

Nonmixture ζ2 -1.0025 (0.4561,1.2722) 0.618 0.307
η0 -0.1466 (-2.1576,1.3767) 0.099 0.256
η1 -0.4688 (-0.0550,1.2368) 0.834 0.435
η2  -0.9530 (1.0250,0.1167)                              0.568                  0.872
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Table 3. The posterior summaries assuming mixture model and cure fraction without covariate 
considering the dataset of 43 Acute Myelogenous Leukemia patients

Cure
Models       

Estimated
Parameter

Posterior 
median          

95%
H DPa          

LP M Lb       HWc  
p value   

Geweke’s 
p value

Weibull γ 1.0129 (0.3684,2.1799) -756.403   0.453 0.729
λ -1.0381              (0.5337,1.6854)                                 0.338                      0.607
p -0.3526          (-1.1376,0.3364)                                0.069                      0.533

Exponential γ 0. 9930  (1.5975,0.8487)  -728.684           0.232                      0.076
p 1.0456               (0.5611,1.2922)                                 0.618                      0.307

 Beta α
β 1.2006               (0.0166,0.2681)  0.392                                            0.251
p -0.4126 (-1.1376,0.3364) 0.099 0.343

Rayleigh γ 1.5563               (1.4012,1.8571)      -7654.557           0.244 0.265
p -0.3126              (-1.1376,4.3364)                                0.023 0.223

 BW α 0.9930 (2.5975,3.2487) -858.664 0.232 0.076
β 1.0456 (0.4611,1.3922) 0.632 0.267
γ -0.5640 (1.1376,0.3364) 0.199 0.323
λ -0.6876 (0.0166,0.2681) 0.372 0.351
p -1.0025 (0.5611,1.2922) 0.618 0.307

EW β 0.9456 (0.2311,1.3922) -875.521 0.932 0.247
γ 1.0649 (1,9664,5.2017) 0.483 0.347
λ -0.3126 (-0.1376,0.3364) 0.329 0.243
p 1.2006  (0.0166,0.2681) 0.392 0.251

BE α 1.6540 (1.4782,1.5581) -845.557 0.302 0.265
β -0.3126 (-1.1376,4.3364) 0.023 0.323
γ -0.0806 (-1.0166,-0.2881) 0.362 0.281
p -1.9084 (-1.5611,-0.4922) 0.618 0.237

MW α 0.9129 (0.3684,2.1799) -856.403 0.453 0.729
γ 1.0381 (0.5337,1.6754) 0.338 0.607
λ 1.2932 (0.1207,3.2681) 0.224 0.251
p -0.3526 (-1.1376,0.3364) 0.069 0.533

GMW α 0.9433 (2.5645,2.2423) -878.723 0.356 0.081
β 1.0726 (0.533,1.2354) 0.532 0.275
γ -0.3640 (1.2476,0.5404) 0.327 0.428
λ -0.2536              (0.0264,0.3720) 0.153 0.629
p -1.0130 (0.4631,1.4512) 0.428 0.327
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Table 4. The posterior summaries, without cure fraction or covariates in the special cases 

Cure
Models       

Estimated
Parameter

Posterior 
median          

95%
H DPa          

LP M Lb       HWc  
p value   

Geweke’s 
p value

Weibull γ 1.0129 (0.3684,2.1799) -726.403   0.453 0.639
λ -1.0381              (0.5337,1.6854)                                 0.338                      0.607

Exponential γ 0. 9930  (1.5975,0.8487)  -708.684           0.232                      0.076

 Beta α 1.0649               (1.9664,1.2017)  -786.561           0.483                      0.023
β 1.2006               (0.0166,0.2681)  0.392                                            0.251

Rayleigh γ 1.5563               (1.4012,1.8571)      -745.877           0.244 0.265

 BW α 0.9930 (2.5975,3.2487) -835.674 0.232 0.076
β 1.0456 (0.4611,1.3922) 0.632 0.267
γ -0.5640 (1.1376,0.3364) 0.199 0.323
λ -0.6876 (0.0166,0.2681) 0.372 0.351

EW β 1.0456 (0.4611,1.3922) -823.521 0.632 0.267
γ 1.0649 (1,9664,5.2017) 0.483 0.347
λ -0.3126 (-0.1376,0.3364) 0.329 0.243

BE α 1.6540 (1.4782,1.5581) -845.557 0.302 0.265
β -0.3126 (-1.1376,4.3364) 0.023 0.323
γ -0.0806 (-1.0166,-0.2881) 0.362 0.281

MW α 1.0129 (0.3684,2.1799) -856.403 0.453 0.729
γ 1.0381 (0.5337,1.6854) 0.338 0.607
λ 1.2932 (0.1107,3.2681) 0.224 0.251

GMW α 0.9433 (2.5645,2.2423) -878.723 0.356 0.081
β 1.0726 (0.533,1.2354) 0.618 0.307
γ 0.5640 (1.1376,0.3364) 0.099 0.223
λ -0.6876 ((0.0166,0.2681) 0.372 0.351

Table 5.

Cure
Models       

Estimated
Parameter

Posterior 
median          

95%
H DPa          

LP M Lb       HWc  
p value   

Geweke’s 
p value

Weibull γ 1.0129  (0.3684,2.1799) -845.403 0.453 0.729
ζ0 -0.3826 (- 0.9376,0.3764) 0.569 0.933
ζ1 -0.3716              (-0.3466,0.2681) 0.152 0.651
ζ2 -0.9889 (-0.4645,-0.7324) 0.648 0.757
η0 -0.1337 (-1.3476,0.5240) 0.799 0.343
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η1 -0.4843 (-0.5416,0.2922) 0.618 0.707
η2 -0.9124 (-1.1376,-0.4564) 0.779 0.245

Exponential γ 0.9930 (4.5975,11.2487) -828.774 0.232 0.076
η0 -0.1466 (-2.1576,1.3767) 0.099 0.256
η1 -0.4688 (-0.0550,1.2368) 0.834 0.435
η2 -0.9830 (2.1180,0.1287) 0.768 0.645

 Beta α 1.0649 (1.9364,4.2317) -785.521 0.483 0.007
β 1.2006 (0.0166,0.2681) 0.392 0.251
η0 -0.1466 (-2.1576,1.3767) 0.099 0.256
η1 -0.4688 (-0.0550,1.2368) 0.834 0.435
η2 -0.9530 (1.0250,0.1167) 0.568 0.872

Rayleigh γ 1.654 (1.4712,1.8571) -785.557 0.101 0.265
η0 -0.1466 (-2.1576,1.3767) 0.099 0.256
η1 -0.4688 (-0.0550,1.2368) 0.834 0.435
η2 -0.9530 (1.0250,0.1167) 0.568 0.872

 BW α 0.9840 (4.5975,11.2487) -858.774 0.232 0.076
β 1.0456 (0.5611,1.2922) 0.618 0.307
γ -0.5640 (1.2360,0.4564) 0.099 0.223
ζ0 -0.3526 (-1.4617,0.2340) 0.069 0.533
ζ1 -0.6706 (-0.0166,0.2681) 0.152 0.651
ζ2 -0.9383 (-0.5611,-0.2352) 0.305 0.148
η0 -0.1337 (0.9876,0.3634) 0.799 0.343
η1 -0.4843 (-0.325,0.6783) 0.418 0.607
η2 -0.9530 (1.0250,0.7667) 0.568 0.872

EW β 1.0649 (1,9664,5.2017)      -835.521 0.483 0.007
γ -0.3126 (-0.1376,0.3364) 0.099 0.243
ζ0 -0.3526 (-1.1376,0.3364) 0.069 0.533
ζ1 -0.6706 (-0.0166,0.2681) 0.152 0.651
ζ2 -0.9889 (-0.5611,-0.2922) 0.148 0.307
η0 -0.1337 (-1.1376,0.3364) 0.799 0.343
η1 -0.4843 (-0.5416,0.2922) 0.618 0.707
η2 -0.9124 (-1.1976,-0.3364) 0.479 0.487

BE α 1.654 (1.4712,1.8571) -825.557 0.113 0.265
β -0.3126 (-1.1376,4.3364) 0.023 0.223
γ -0.0806 (-1.0166,-0.2881) 0.362 0.281
η0   -0.1466 (-2.1576,1.3767) 0.099 0.256
η1 -0.4688 (-0.0550,1.2368) 0.834 0.435
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the joint posterior distribution and we used the results 
of the median over the mean, for this reason where by 
most of the special cases of the distribution were skewed 
in nature. Also we noted that all p values from (HW) 
Heidelberger and Welch convergence diagnostic crite-
ria do not reject the null hypothesis of stationary of the 
chains, since they are all larger or equal than 0.10. While 
the Geweke’s p values also suggest convergence, on the 
other hand these results shows that, among all the mod-
els considered Weibull distribution has the least (LPML) 
Log Pseudo Marginal Likelihood value, while GMW, BW, 
MW, BE and EW distributions have similar LPML val-
ues, where a strong evidence shows that these models 
are better fitted by the data than the model based on the 
standard Beta, Exponential, Weibull and Rayleigh distri-
butions fitting the distributions in the presence of cure 
fraction for the23. 

Figure 1 shows the graph plots of the Kaplan-Meier 
estimates for the survival function versus the respective 
predict values obtained from the parametric mixture 
models for each probability distribution of interest: 1. 
Weibull, 2. Expo-nential, 3. Beta, 4. Rayleigh, 5. BW, 6. 
EW, 7. BE, 8. MW and GMW distributions for (Acute 
Myelogenous Leukaemia (AML) dataset). It clearly shows 

that by having a diagonal straight lines in the plots this 
represents a well perfect relationship and agreement 
between Kaplan-Meier estimates and predicted values.

Figure 1. Shows the graph plots of the Kaplan-Meier 
estimates.

The Table 3 below shows the inferences for the pos-
terior summaries assuming the mixture model and cure 
fraction based on the Weibull distribution and its special 
cases, among all the models considered Weibull distribu-
tion has the least (LPML) Log Pseudo Marginal Likelihood 
value, while GMW, BW, MW, BE and EW distributions 
have similar LPML values, where a strong evidence shows 

η2 -0.9530 (1.0250,0.1167) 0.568 0.872

MW α   1.0129 (0.3684,2.1799) -866.403 0.453 0.729
γ 1.0381 (0.5337,1.6854) 0.338 0.607
ζ0 -0.3526 (-1.1376,0.3364) 0.069 0.533
ζ1 -0.6706 (-0.0166,0.2681) 0.152 0.651
ζ2 -0.9889 (-0.5611,-0.2922) 0.148 0.307
η0 -0.1337 (-1.1456,0.3364) 0.799 0.343
η1 -0.4843 (-0.5416,0.2922) 0.638 0.817
η2 -0.9124 (-1.1376,-0.3364) 0.779 0.243

GMW α 0.9240 (4.5975,11.2687) -856.764 0.232 0.176
β 1.0256 (0.5611,1.4922) 0.618 0.507
γ -0.5440 (1.2760,0.4574) 0.129 0.343
ζ0 -0.3526 (-1.4617,0.2640) 0.069 0.553
ζ1 -0.6706 (-0.0166,0.2581) 0.152 0.851
ζ2 -0.9383 (-0.2611,-0.3652) 0.205 0.458
η0 -0.1337 (0.8876,0.3334) 0.699 0.543
η1 -0.4843 (-0.725,0.6483) 0.518 0.607
η2 -0.9530 (1.0450,0.7567) 0.668 0.853
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that these models are better fitted by the data than the 
model based on the standard Beta, Exponential, Weibull 
and Rayleigh distributions fitting the distributions in the 
presence of cure fraction for the23, without including the 
cure fraction p shows great indication of similarity with 
Table 4in terms of the LMPL results which proves a better 
fit in the results20. We ignored the non-mixture tables as 
both output were similar.

The Table 4 below shows the results in summary of 
the posterior for the models based on the Weibull distri-
bution and its special cases, without including the cure 
fraction p. The GMW, BW, MW, BE, EW and Beta dis-
tributions fitted of models not including p gives larger 
LMPL values compare with the fit of models including 
the cure fraction this shows that the cure fraction 
models are more are suitable, flexible and straight to 
model Acute Myelogenous Leukemia study data.

From Table5 below they clearly show that the poste-
rior summary for the mixture and non-mixture-models 
based on  the Weibull distribution and its special cases 
where the two models are quite similar but the Mixture 
models fits better having the highest (LPML) based on the 
results obtain. Also, the 95% credible intervals for η2 do 
not include the zero value suggesting that the AML data 
shows a great indication of similarity with the covariates. 
We also obtained Bayesian estimates for the cure fractions 
of each risk group considering the simulated samples for 
η0, η1 and η2 and the relations. The groups have different 
cure fractions. We can obtain Bayesian estimates for the 
cure fractions of each risk group considering the simu-
lated samples for η0, η1 and η2 and the relations.

6. Conclusion:
In the life time data analysis, where we have the pres-
ence of cure fraction and covariates for a data with this 
structure can be appropriately analyzed using different 
parametrical formulations, as mixture and non-mixture 
models. In this paper, we showed that parametric models 
based on the BW distribution and its special cases can be 
useful to analyze medical data sets. We adopt the limita-
tion of the BW distribution is that the survival function 
cannot be expressed in a closed form10. This problem can 
become more critical when we consider covariates, since 
the likelihood function then becomes more complex. 
Data with this structure can be appropriately analyzed 
using different parametrical formulations, as mixture and 

non-mixture models. In this context of Bayesian  analysis 
using the Markov Chain Monte Carlo (MCMC) meth-
ods, we obtained the LMPL above and the corresponding 
credible intervals and the posterior means, which were 
automatically generated by R software on the fitted sur-
vival models, we interpret and conclude the Mixture and 
non-mixture Models that they were very much clear fit-
ted and suited the survival statistical models considering 
the results obtain from Tables and figure. As a layman 
statistician we observe that the values were similar and 
closer to each other likewise the LMPL results. We also 
showed that the use Bayesian methodology is a way to get 
the inferences for the parameters of the model, where the 
model estimation is facilitated by the use of the R pack-
age MCMC pack. An advantage of Bayesian approach 
over other methods is that it explicitly incorporates the 
prior opinion for the parameters when more covariates 
were considered. In clinical applications, the knowledge 
of a specialist on the proportion of patients who are to 
the event can be incorporated into a prior distribution for 
the cure fraction p, results to a more relatively inferences.
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