
Abstract
Background/Objectives: When an IoT service failure occurs, it is difficult to identify the source of the problem. In order to
ensure stale IoT services, error causes need to be identified and the flow of interconnection services controlled. Methods/
Statistical Analysis: Two types of requirements, namely, platform-device direct connections, and platform-device network
connections, are specified for stable IoT services. A SDN based architecture using REST APIs that combines the analysis
results in accordance with the requirements of both connection types is represented. Findings: In this paper, a method
for providing stable IoT services was presented. The efficacy of the proposed method was verified via simulation using a
floodlight SDN controller to the SDN adaptor of proposed architecture in a case study. Network errors and the causes of
IOT service faults can be easily identified using our proposed architecture and API. Application/Improvements: The pro-
posed architecture can be applied to manage errors in IoT services. Further, it can be used with a reference architecture to
instantiate systems that provide stable IoT services.

A Method for Ensuring Stable IoT Services
based on SDN

Joonseok Park1, Mikyeong Moon2* and Keunhyuk Yeom3

1Research Institute of Logistics Innovation and Networking, Pusan National University, Busan, 46241,
Korea; pjs50@pusan.ac.kr

2Division of Computer Engineering, Dongseo University, Busan, 47011, Korea; mkmoon@dongseo.ac.kr
3Computer Science and Engineering, Pusan National University, Busan, 46241, Korea; yeom@pusan.ac.kr

Keywords: Internet of Things (IoT), IoT Management, IoT Service, Reliable IoT Service, Software Defined Network
(SDN)

1.  Introduction
The IoT (Internet of Things) paradigm1–3 consists of three
hierarchical layers, i.e., IoT services, IoT platform, and
IoT devices, as shown in Figure 1. These layers communi-
cate via the Internet. The top layer, IoT services, realizes
and facilitates the provision of business values to external
objects. The middle layer, IoT platform, supports execu-
tion of IoT services and intermediates the processing and
communications between IoT services and devices. The
bottom layer consists of IoT devices, which are physical
objects that acquire real-world data.

In the IoT paradigms, IoT services utilize various
combined IoT devices. This means that various IoT ser-
vices can be implemented using the information acquired
by numerous IoT devices. However, IoT service defects
can occur based on problems in the interconnected envi-
ronments and IoT devices. Consequently, a monitoring

and control mechanism that facilitates the provision and
reception of stable IoT services is essential.

In IoT environment, developers and users cannot
quickly detect problems that occur with IoT services.
These problems include unexpected errors and faults, such
as device failures and network problems. However, when
they occur, it is difficult to identify their source. Further,
there is currently much debate about how to ensure QoS
(Quality of Service) in IoT, how to detect IoT service
faults, and how to monitor the status of IoT services.

The SDN (Software Defined Network) concept4–6,
in which network flow can be controlled and informa-
tion on the status of devices acquired via software, has
recently been introduced. The key characteristic of SDN
is facilitation of programmable networks. SDN facili-
tates network control operations via the northbound and
southbound APIs of SDN controllers. Further, it facilitates

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(24), DOI: 10.17485/ijst/2016/v9i24/96155, June 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A Method for Ensuring Stable IoT Services based on SDN

Indian Journal of Science and Technology2 Vol 9 (24) | June 2016 | www.indjst.org

the collection of statistics about network status by using
LLDP (Link Layer Discovery Protocol)7. Thus, it can help
to detect network topology and the status of each network
device such as network port and destination. In addition,
an SDN controller can be used to define network control
rules such as change of destination when a network prob-
lem occurs.

In this study, we apply the SDN concept to control and
monitor the status of IoT services. Further, to ensure sta-
ble IoT services, an architecture that classifies two types of
connections for stable IoT services and helps in the man-
agement of IoT service errors is proposed.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 introduces the
identified requirements and the proposed architecture.
Section 4 presents a case study in which the proposed
architecture was applied. Section 5 concludes this paper
and outlines future work.

2.  Related Work
Much research is being conducted on IoT QoS (Quality
of Service) and to date researchers have made related
proposals such as a three-layer QoS model8, QoS-aware
computational method9, and a context-based network
infrastructure10. QoS refer to the provision of preferential
delivery service for applications that need it by ensuring
sufficient bandwidth, controlling latency and jitter, and
reducing data loss.

The proposed three-layer QoS model utilizes a mech-
anism that schedules the QoS attribute at the application,

network, and sensing layers. The application layer sched-
ules the services based on the QoS and transfers the
resource request to the QoS model in the network layer.
The network layer allocates network resources to the
selected services. The sensing layer selects the applicable
sensing devices. This approach is focused on the optimi-
zation of attributes of QoS in IoT. It is a top-down method
that starts from the QoS concerns of service and divides
the IoT layers. Our approach also utilizes the notion of
layers. However, it is bottom-up and focuses on identifi-
cation and management of service failures.

The proposed QoS-aware computational method
comprises four basic modes: Serial mode, parallel mode,
branch mode, and circulation mode. The method can be
used to calculate IoT QoS. In serial mode, the services
perform sequentially based on a certain order. In paral-
lel mode, tasks are executed simultaneously. In branch
mode, the system can complete the task following the
completion of successful service detection. In circu-
lation mode, the services execute in series and each is
performed based on a given cycle time. This approach
decomposes the total QoS metrics of composite IoT ser-
vices into their simple constituent services and calculates
the corresponding range of indicators. From an IoT ser-
vices aspects, this approach focuses on quality analysis
of composite IoT service. Whereas our approach focuses
on requirement analysis and actual fault detection in IoT
services.

The proposed context-based network infrastruc-
ture is composed of five components: Context manager,
virtualization manager, SDN-based network manager,
multi-network access mobility manager, and trust man-
ager. The context manager extracts context (e.g., device
location, user’s activity) and delivers it to the virtual-
ization manger and the SDN-based network manager.
The virtualization manger creates a virtualized network
instance. The SDN-based network manager performs traf-
fic engineering, load balancing, and QoS administration.
The multi-network access mobility manager performs
context-based connection for the self-organizing group
network. This research is focused on context-awareness
in order to support user-centric IoT services. However,
it is still ongoing and provides conceptual elements for
network infrastructure. Our approach applies the concept
of SDN to detect and solve network connection prob-
lems. Further, it defines primary requirements, APIs, and
explicit architecture elements to ensure the provision of
stable services.

 1

A Method for Ensuring Stable IoT Services based on SDN

Joonseok Park1, Mikyeong Moon2* and Keunhyuk Yeom3
1Research Institute of Logistics Innovation and Networking, Pusan National University, Busan, 46241, Korea;

pjs50@pusan.ac.kr
2Division of Computer Engineering, Dongseo University, Busan, 47011, Korea; mkmoon@dongseo.ac.kr

3Computer Science and Engineering, Pusan National University, Busan, 46241, Korea; yeom@pusan.ac.kr

Abstract
Background/Objectives: When an IoT service failure occurs, it is difficult to identify the source of the
problem. In order to ensure stale IoT services, error causes need to be identified and the flow of interconnection
services controlled. Methods/Statistical Analysis: Two types of requirements, namely, platform-device direct
connections, and platform-device network connections, are specified for stable IoT services. A SDN based
architecture using REST APIs that combines the analysis results in accordance with the requirements of both
connection types is represented. Findings: In this paper, a method for providing stable IoT services was
presented. The efficacy of the proposed method was verified via simulation using a floodlight SDN controller to
the SDN adaptor of proposed architecture in a case study. Network errors and the causes of IOT service faults
can be easily identified using our proposed architecture and API. Application/Improvements: The proposed
architecture can be applied to manage errors in IoT services. Further, it can be used with a reference architecture
to instantiate systems that provide stable IoT services.
Keywords: Internet of Things (IoT), IoT Management, IoT Service, Reliable IoT Service, Software Defined
Network (SDN)

1. Introduction

The IoT (Internet of Things) paradigm1–3 consists of three hierarchical layers, i.e., IoT services, IoT platform,
and IoT devices, as shown in Figure 1. These layers communicate via the Internet. The top layer, IoT services,
realizes and facilitates the provision of business values to external objects. The middle layer, IoT platform,
supports execution of IoT services and intermediates the processing and communications between IoT services
and devices. The bottom layer consists of IoT devices, which are physical objects that acquire real-world data.

Figure 1. IoT layers.

In the IoT paradigms, IoT services utilize various combined IoT devices. This means that various IoT services
can be implemented using the information acquired by numerous IoT devices. However, IoT service defects can
occur based on problems in the interconnected environments and IoT devices. Consequently, a monitoring and
control mechanism that facilitates the provision and reception of stable IoT services is essential.

Comment [C1]: TS: Please place
Author for Correspondence as
footnote in the first page.

Figure 1.  IoT layers.

Joonseok Park, Mikyeong Moon and Keunhyuk Yeom

Indian Journal of Science and Technology 3Vol 9 (24) | June 2016 | www.indjst.org

3.  Our Approach
Two types of connection are specified for stable IoT
services: platform-device direct connections and plat-
form-device network connections. A single architecture
that combines the analysis results in accordance with the
requirements of both connection types is proposed.

3.1  Requirements
IoT services run on a platform by using IoT device
information. Two types of monitoring requirements are
specified based on the relationships among the IoT lay-
ers shown in Figure 1. The focus is on the connection
between the platform and each device. The first type of
requirement is called platform-device direct connec-
tions requirement. This requirement identifies whether a
device is stable or not. It is divided into four categories:
communication, connectivity, data flow stability, and data
reliability, as shown in Table 1.

Communication indicates the monitoring behavior •	
of the device protocol. The communication coverage,
data rate, and power consumptions of devices differ
based on the protocol employed.
Connectivity refers to the activation status of the •	
current device. When a device is not connected,
IoT services generate inappropriate values or do not
operate.
Data flow stability indicates whether the device trans-•	
mits information reliably. Data flow stability can
be tested by changing the device data transmission
period.
Data reliability indicates whether the transmitted •	
information has errors. Each device has a defined
range of values. By checking the data range, the cur-
rent error status can be determined.

The second requirement type is called the platform-de-
vice network connection requirement. This requirement
is used to ascertain the problem in the network status
of a device. It is divided into four categories: Topology,
throughput, routing, and control, as shown in Table 2.

Topology indicates how the device is connected. The •	
path through which the device information flows can
be identified by checking the network topology and
the device connection.
Throughput shows how many packets are transmitted •	
from each device and indicates the status of the switch
bandwidth. This information can be used to alert or
calculate the delay or bottleneck in device traffic.
Routing indicates the destination of each device. When •	
an IoT service error occurs, the routing information of
each device can be traced and problem at the network
level detected.
Control checks and acquires the real-time traffic infor-•	
mation of each host and switch. The defined rule can
be changed when suspect data flows are identified.

3.2  Architecture
We also propose an architecture that supports the
identified requirements. Figure 2 shows the proposed
architecture and its constituent elements. The architec-
tural elements are as follows:

IoT network access interface: Shows access points •	
composed of monitoring functions.
Device profile manager: Creates, reads, updates, and •	
deletes device information, including supported
protocol.
Device connection manager: Checks device connec-•	
tion status and sets device information transmission
cycle.

Table 1.  Platform-device direct connections
requirement categories
Type Description

Communication Monitors device protocol, such as
ZigBee, Zwave, and IP-based.

Connectivity Indicates whether the current device is
activated.

Data Flow stability
Indicates whether the device provides
stable information, such as setting
device period.

Data Reliabiity Indicates whether the device produces a
range or reasonable values.

Table 2.  Platform-device network connections
requirement categories

Type Description

Topology Indicates the device’s connection topology.

Throughput Indicates bandwidth and packet transmission.

Routing Indicates port, and start and end points of
each device.

Control Checks current status of the device and hosts
and defines rules.

A Method for Ensuring Stable IoT Services based on SDN

Indian Journal of Science and Technology4 Vol 9 (24) | June 2016 | www.indjst.org

Traffic manager: Checks throughput and routing, and •	
calculates traffic information, such as delay, bottle-
neck.
Topology manager: Views and lists the topology of all •	
devices.
Switch/Host handler: Retrieves real-time information •	
for switch and host, and changes defined rules.
SDN adapter: Presents the binding points where vari-•	
ous SDN controllers can be adapted.
Profile: States the database where device profile infor-•	
mation is stored.
Event Log: Denotes the database where all network-re-•	
lated events, such as transmission rate and bandwidth,
are stored.

Table 3 shows the defined REST (Representational
State Transfer)11 APIs provided to identify error causes
and control interconnection flow. In Table 3, the API list
column gives the ID and a brief description of each API’s

role. The API description column consists of method
type, API, and related requirement type sub-columns.
The method type column shows the REST API type, such
as get, put, post, delete. The API column denotes the API
call structure. The result is obtained by assigning a value
for uid in the <uid> section. The related requirement type
column lists the requirement supported by the API.

For example, to view a device’s port information by
using the API denoted ID-8, the API can be called using
/api/view_statistic_info/port/json. As shown in Figure 3,
the result is then displayed in JSON (JavaScript Object
Notation)12 format. The result shows the device’s port
status detail, such as port number, number of received
packets, and number of transmitted packets. Using this
information, we can identify the network problem by
comparing the assigned value with the defined metric
assigned minimum and maximum values.

In the architecture, IoT access interfaces are real-
ized using the APIs defined in Table 3. Table 4 shows the
identified architecture elements and related requirements
type. As shown in the table, each architectural element is
defined to support the identified requirements.

4.  Case study and Evaluation
We applied our approach to develop IoT services to mea-
sure air pollution. Figure 4 shows the structure of the
system used in our case study.

Table 3.  API list example

API List
API Description

 Method Type API Related Requirement Type
ID-1: Retrive device list Get /api/get_device_list/<uid>/json Communication

ID-2: Retrive device protocol Get /api/get_device_protolcol/<uid>/json Communication

ID-3: Check device status Get /api/get_device_status/<uid>/json Connectivity

ID-4: Update data transmission period Put /api/set_device_
period/<uid>/<period>/json Connectivity

ID-5: Retrive device value Get /api/get_value/<uid>/<date>/json Data Flow Stability

ID-6: Retrive device sensor value Get /api/get_value/<uid>/<sid>/json Data Reliability

ID-7: View topology Get /api/view_topology/json Topology

ID-8: Get device statistical data Get /api/view_statistic_info/<statType>/
json Throughput

ID-9: Retreive device network information Get /api/view_network_info/<uid>/json Throughput

ID-10: Retreive device route information Get /api/view_network_info/<src-
id>/<src-port>/<des-id>/<des-port> Routing

ID-11: Delete device flow information Delete /api/del_network_flow/<uid>/json Control

 4

Figure 2. Proposed architecture.

 IoT network access interface: Shows access points composed of monitoring functions.

 Device profile manager: Creates, reads, updates, and deletes device information, including supported
protocol.

 Device connection manager: Checks device connection status and sets device information transmission
cycle.

 Traffic manager: Checks throughput and routing, and calculates traffic information, such as delay,
bottleneck.

 Topology manager: Views and lists the topology of all devices.

 Switch/Host handler: Retrieves real-time information for switch and host, and changes defined rules.

 SDN adapter: Presents the binding points where various SDN controllers can be adapted.

 Profile: States the database where device profile information is stored.

 Event Log: Denotes the database where all network-related events, such as transmission rate and
bandwidth, are stored.

Table 3 shows the defined REST (Representational State Transfer)11 APIs provided to identify error causes
and control interconnection flow. In Table 3, the API list column gives the ID and a brief description of each
API’s role. The API description column consists of method type, API, and related requirement type sub-columns.
The method type column shows the REST API type, such as get, put, post, delete. The API column denotes the
API call structure. The result is obtained by assigning a value for uid in the <uid> section. The related
requirement type column lists the requirement supported by the API.

Table 3. API list example

API List
API Description

 Method
Type API Related Requirement Type

ID-1: Retrive device list Get /api/get_device_list/<uid>/json Communication

ID-2: Retrive device protocol Get /api/get_device_protolcol/<uid>/json Communication

ID-3: Check device status Get /api/get_device_status/<uid>/json Connectivity

ID-4: Update data transmission period Put /api/set_device_period/<uid>/<period>/json Connectivity

ID-5: Retrive device value Get /api/get_value/<uid>/<date>/json Data Flow Stability

ID-6: Retrive device sensor value Get /api/get_value/<uid>/<sid>/json Data Reliability

ID-7: View topology Get /api/view_topology/json Topology

ID-8: Get device statistical data Get /api/view_statistic_info/<statType>/json Throughput
ID-9: Retreive device network
information Get /api/view_network_info/<uid>/json Throughput

ID-10: Retreive device route
information Get /api/view_network_info/<src-id>/<src-

port>/<des-id>/<des-port> Routing

ID-11: Delete device flow information Delete /api/del_newtork_flow/<uid>/json Control

Figure 2.  Proposed architecture.

Joonseok Park, Mikyeong Moon and Keunhyuk Yeom

Indian Journal of Science and Technology 5Vol 9 (24) | June 2016 | www.indjst.org

Figure 3.  Exmple results of an API call.

Table 4.  Requiremnt type and architecure elements

Requirements Architecture Elements
Communicatioin Device Profile Manager, Profile

Connectivity Device Connection Manager, Event
Log

Data Flow Statbility Device Connection Manager, Event
Log

Data Reliabity Device Profile Manager, Device
Connection Manager, Profile

Topology SDN Adaptor, Topology Manager

Throughput SDN Adaptor, Switch/Host Handler

Routing SDN Adaptor, Switch/Host Handler,
Traffic Manger

Control SDN Adaptor, Switch/Host Handler,
Traffic Manger

Figure 4.  Structure of the system used in our case study.

Table 5.  Sensor specification

Sensor Measurement Specification

Humidity 0–100% RH

VOCs Up to 100 ppm

CO2 400–5,000 ppm

Dust 0–0.5 mg/m3

Temperature -40–120 °C

 5

For example, to view a device’s port information by using the API denoted ID-8, the API can be called using
/api/view_statistic_info/port/json. As shown in Figure 3, the result is then displayed in JSON (JavaScript Object
Notation)12 format. The result shows the device’s port status detail, such as port number, number of received
packets, and number of transmitted packets. Using this information, we can identify the network problem by
comparing the assigned value with the defined metric assigned minimum and maximum values.

Figure 3. Exmple results of an API call.

In the architecture, IoT access interfaces are realized using the APIs defined in Table 3. Table 4 shows the
identified architecture elements and related requirements type. As shown in the table, each architectural element
is defined to support the identified requirements.

Table 4. Requiremnt type and architecure elements

Requirements Architecture Elements

Communicatioin Device Profile Manager, Profile

Connectivity Device Connection Manager, Event Log

Data Flow Statbility Device Connection Manager, Event Log

Data Reliabity Device Profile Manager, Device Connection Manager, Profile

Topology SDN Adaptor, Topology Manager

Throughput SDN Adaptor, Switch/Host Handler

Routing SDN Adaptor, Switch/Host Handler, Traffic Manger

Control SDN Adaptor, Switch/Host Handler, Traffic Manger

4. Case study and Evaluation
We applied our approach to develop IoT services to measure air pollution. Figure 4 shows the structure of the

system used in our case study.

Figure 4. Structure of the system used in our case study.

As shown in Figure 4, the air-pollution measurement
services provide information on air-quality data such as
temperature, humidity, carbon dioxide, volatile organic
compounds, and dust. IoT devices were developed to
acquire these air-quality data.

Table 5 shows the specifications for the measurement
sensors. As shown in Figure 4, air-pollution measure-
ment devices can be placed wherever a user located. They
can measure the air quality in real time. The measured
air-quality data are transmitted to the IoT platform. IoT
services that provide region-, zone- and time-specific
air-pollution analysis and report are operated using the
air-quality data passed from the IoT platform. To apply
our approach for the provision of stable IoT services, we
implemented a platform dashboard prototype in accor-
dance with the proposed architecture and APIs. Figure 5
shows the interface supporting the platform-device direct
connection requirement.

In Figure 5, the graph in the upper left, for example,
shows the data flow stability requirement type. The ID-5
API shown in Table 3 is used. The bottom left of the figure
shows the connectivity and data reliability obtained using

 5

For example, to view a device’s port information by using the API denoted ID-8, the API can be called using
/api/view_statistic_info/port/json. As shown in Figure 3, the result is then displayed in JSON (JavaScript Object
Notation)12 format. The result shows the device’s port status detail, such as port number, number of received
packets, and number of transmitted packets. Using this information, we can identify the network problem by
comparing the assigned value with the defined metric assigned minimum and maximum values.

Figure 3. Exmple results of an API call.

In the architecture, IoT access interfaces are realized using the APIs defined in Table 3. Table 4 shows the
identified architecture elements and related requirements type. As shown in the table, each architectural element
is defined to support the identified requirements.

Table 4. Requiremnt type and architecure elements

Requirements Architecture Elements

Communicatioin Device Profile Manager, Profile

Connectivity Device Connection Manager, Event Log

Data Flow Statbility Device Connection Manager, Event Log

Data Reliabity Device Profile Manager, Device Connection Manager, Profile

Topology SDN Adaptor, Topology Manager

Throughput SDN Adaptor, Switch/Host Handler

Routing SDN Adaptor, Switch/Host Handler, Traffic Manger

Control SDN Adaptor, Switch/Host Handler, Traffic Manger

4. Case study and Evaluation
We applied our approach to develop IoT services to measure air pollution. Figure 4 shows the structure of the

system used in our case study.

Figure 4. Structure of the system used in our case study.

the ID-4 and ID-6 APIs in Table 3. In addition, it shows
the accumulation of quality measurement data for each
region (upper right) and air-quality monitoring data for a
specific region (bottom right) by using the ID-6 API.

Figure 6 and 7 show the interface for the platform-de-
vice network connection requirement. In this case study,
we bound the floodlight13 SDN controller to the SDN
adaptor of proposed architecture and tested our network
environment by using the mininet14 network simulator.
Figure 6 shows the topology status obtained using the
ID-7 API.

Figure 7 shows a network problem detected at the plat-
form-device network connection level. The upper left part
of the figure visualizes the current device’s network status
by displaying the throughput among switches by using
throughput requirement type and the ID-8 and ID-9 APIs.
The network status is also checked based on the defined
interval. When an error occurs, the device’s IP address,
error type, and occurrence time are displayed, as shown
in upper right corner, using the ID-8 API. The link topol-
ogy is also checked and displayed, as shown in the bottom
left part, using the ID-7 API that is, topology requirements

A Method for Ensuring Stable IoT Services based on SDN

Indian Journal of Science and Technology6 Vol 9 (24) | June 2016 | www.indjst.org

 6

 As shown in Figure 4, the air-pollution measurement services provide information on air-quality data such as
temperature, humidity, carbon dioxide, volatile organic compounds, and dust. IoT devices were developed to
acquire these air-quality data.

Table 5. Sensor specification

Sensor Measurement Specification

Humidity 0–100% RH

VOCs Up to 100 ppm

CO2 400–5,000 ppm

Dust 0–0.5 mg/m3

Temperature -40–120 ℃

Table 5 shows the specifications for the measurement sensors. As shown in Figure 4, air-pollution
measurement devices can be placed wherever a user located. They can measure the air quality in real time. The
measured air-quality data are transmitted to the IoT platform. IoT services that provide region-, zone- and time-
specific air-pollution analysis and report are operated using the air-quality data passed from the IoT platform. To
apply our approach for the provision of stable IoT services, we implemented a platform dashboard prototype in
accordance with the proposed architecture and APIs. Figure 5 shows the interface supporting the platform-device
direct connection requirement.

Figure 5. Platform-device direct connection requirement interface.

In Figure 5, the graph in the upper left, for example, shows the data flow stability requirement type. The ID-5
API shown in Table 3 is used. The bottom left of the figure shows the connectivity and data reliability obtained
using the ID-4 and ID-6 APIs in Table 3. In addition, it shows the accumulation of quality measurement data for
each region (upper right) and air-quality monitoring data for a specific region (bottom right) by using the ID-6
API.

Figure 6 and 7 show the interface for the platform-device network connection requirement. In this case study,
we bound the floodlight13 SDN controller to the SDN adaptor of proposed architecture and tested our network
environment by using the mininet14 network simulator. Figure 6 shows the topology status obtained using the ID-
7 API.

Figure 5.  Platform-device direct connection requirement interface.

 7

Figure 6. Toplogy interface for platform-device network connection requirement.

Figure 7 shows a network problem detected at the platform-device network connection level. The upper left
part of the figure visualizes the current device’s network status by displaying the throughput among switches by
using throughput requirement type and the ID-8 and ID-9 APIs. The network status is also checked based on the
defined interval. When an error occurs, the device’s IP address, error type, and occurrence time are displayed, as
shown in upper right corner, using the ID-8 API. The link topology is also checked and displayed, as shown in the
bottom left part, using the ID-7 API that is, topology requirements type in Table 3. The display shows whether the
device has failed or not. As shown in the bottom right corner, host and switch information where the traffic is
concentrated excessively are also displayed using the ID-9 API that is, the routing requirement type. In this
manner, network errors and the causes of IoT service faults can be easily identified using our proposed
architecture and API.

Figure 7. Interface for network-connection aspects.

When an IoT service failure occurs, it is difficult to identify the causes. To overcome this problem, we
explicitly identify the types of errors. Using our implemented dashboard, we can easily identify the cause of any
IoT service problem.

Figure 6.  Toplogy interface for platform-device network connection requirement.

 7

Figure 6. Toplogy interface for platform-device network connection requirement.

Figure 7 shows a network problem detected at the platform-device network connection level. The upper left
part of the figure visualizes the current device’s network status by displaying the throughput among switches by
using throughput requirement type and the ID-8 and ID-9 APIs. The network status is also checked based on the
defined interval. When an error occurs, the device’s IP address, error type, and occurrence time are displayed, as
shown in upper right corner, using the ID-8 API. The link topology is also checked and displayed, as shown in the
bottom left part, using the ID-7 API that is, topology requirements type in Table 3. The display shows whether the
device has failed or not. As shown in the bottom right corner, host and switch information where the traffic is
concentrated excessively are also displayed using the ID-9 API that is, the routing requirement type. In this
manner, network errors and the causes of IoT service faults can be easily identified using our proposed
architecture and API.

Figure 7. Interface for network-connection aspects.

When an IoT service failure occurs, it is difficult to identify the causes. To overcome this problem, we
explicitly identify the types of errors. Using our implemented dashboard, we can easily identify the cause of any
IoT service problem.

Figure 7.  Interface for network-connection aspects.

Joonseok Park, Mikyeong Moon and Keunhyuk Yeom

Indian Journal of Science and Technology 7Vol 9 (24) | June 2016 | www.indjst.org

type in Table 3. The display shows whether the device has
failed or not. As shown in the bottom right corner, host
and switch information where the traffic is concentrated
excessively are also displayed using the ID-9 API that is,
the routing requirement type. In this manner, network
errors and the causes of IoT service faults can be easily
identified using our proposed architecture and API.

When an IoT service failure occurs, it is difficult to
identify the causes. To overcome this problem, we explic-
itly identify the types of errors. Using our implemented
dashboard, we can easily identify the cause of any IoT
service problem.

5.  Conclusion
In this paper, a method for providing stable IoT services was
presented. Two types of requirements, namely, platform-
device direct connections, and platform-device network
connections, were proposed. In addition, an architecture
that supports these requirements by using REST APIs was
also proposed. The efficacy of the proposed method was
verified via simulation by using a floodlight SDN controller
in a case study. The proposed architecture can be applied to
manage errors in IoT services. Further, it can be used with
a reference architecture to instantiate systems that provide
stable IoT services. In future work, we plan to extend our
research to integrated IoT platform developments.

6. Acknowledgment
This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (NRF-
2014R1A1A2007061, NRF- 2014R1A1A2055924).

7.  References
1.	 Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of

Thing (IoT): A vision, architectual elements, and future

directions. future Generation Computer Systems. 2013 Sep;
29(7):1645–60.

2.	 Dijkman R, Sprenkels B, Peeters T, Janssen A. Business
models for the Internet of Things. International Journal of
Information Management. 2015 Dec; 35(6):672–8.

3.	 Jayavel K, Nagaraja V. Survey of migration, integration
and interconnection techniques of data centric network to
intenet-towards Intenet of Things (IoT). Indian Journal of
Science and Technology. 2016 Mar; 9(11):1–8.

4.	 Jarraya Y, Madi T, Debbabi M. A survey and a layered taxon-
omy of software-defined networking. IEEE Communication
Surveys and Tutorials. 2014 Apr; 16(4):1955–80

5.	 Farhady H, Lee H, Nakao A. Software-defined networking:
A survey. Computer Networks. 2015 Apr; 81(1):79–95.

6.	 Agnise XK, Balagopal D. Leveraging the power of software
defined paradigm to control communication in a net-
work. Indian Journal of Science and Technology. 2016 Apr;
9(14):1–5.

7.	 IEEE Standards Association. Available from: http://stan-
dards.ieee.org/getieee802/download/802.1AB-2009.pdf

8.	 Li L, Li S, Zhao S. QoS-aware scheduling of services-
orinted internet of things. IEEE Transactions on Industrial
Informatics. 2014 May; 10(2):1497–505.

9.	 Ming Z, Yan M. QoS-aware computational method for IoT
composite service. The Journal of China Univerities of Posts
and Telecommuncations. 2013 Aug; 20(1):35–9.

10.	 Chin W, Kim H, Heo Y, Jang J. A context-based future net-
works and communications. Procedia Computer Science.
2015 Aug; 56(1):266–70.

11.	 Architectural styles and the design of network-based soft-
ware architectures chapter 5 representaional state transfer.
Available from: http://www.ics.uci.edu/~fielding/pubs/dis-
sertation/rest_arch_style.htm

12.	 JSON. Available from: http://json.org/
13.	 Floodlight. Available from: http://www.projectfloodlight.

org/floodlight/
14.	 Mininet. Available from: http://mininet.org/

