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Background/Objectives: When an IoT service failure occurs, it is difficult to identify the source of the problem. In order to 
ensure stale IoT services, error causes need to be identified and the flow of interconnection services controlled. Methods/
Statistical Analysis: Two types of requirements, namely, platform-device direct connections, and platform-device network 
connections, are specified for stable IoT services. A SDN based architecture using REST APIs that combines the analysis 
results in accordance with the requirements of both connection types is represented. Findings: In this paper, a method 
for providing stable IoT services was presented. The efficacy of the proposed method was verified via simulation using a 
floodlight SDN controller to the SDN adaptor of proposed architecture in a case study. Network errors and the causes of 
IOT service faults can be easily identified using our proposed architecture and API. Application/Improvements: The pro-
posed architecture can be applied to manage errors in IoT services. Further, it can be used with a reference architecture to 
instantiate systems that provide stable IoT services. 
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1.  Introduction
The IoT (Internet of Things) paradigm1–3 consists of three 
hierarchical layers, i.e., IoT services, IoT platform, and 
IoT devices, as shown in Figure 1. These layers communi-
cate via the Internet. The top layer, IoT services, realizes 
and facilitates the provision of business values to external 
objects. The middle layer, IoT platform, supports execu-
tion of IoT services and intermediates the processing and 
communications between IoT services and devices. The 
bottom layer consists of IoT devices, which are physical 
objects that acquire real-world data.

In the IoT paradigms, IoT services utilize various 
combined IoT devices. This means that various IoT ser-
vices can be implemented using the information acquired 
by numerous IoT devices. However, IoT service defects 
can occur based on problems in the interconnected envi-
ronments and IoT devices. Consequently, a monitoring 

and control mechanism that facilitates the provision and 
reception of stable IoT services is essential. 

In IoT environment, developers and users cannot 
quickly detect problems that occur with IoT services. 
These problems include unexpected errors and faults, such 
as device failures and network problems. However, when 
they occur, it is difficult to identify their source. Further, 
there is currently much debate about how to ensure QoS 
(Quality of Service) in IoT, how to detect IoT service 
faults, and how to monitor the status of IoT services.

The SDN (Software Defined Network) concept4–6, 
in which network flow can be controlled and informa-
tion on the status of devices acquired via software, has 
recently been introduced. The key characteristic of SDN 
is facilitation of programmable networks. SDN facili-
tates network control operations via the northbound and 
southbound APIs of SDN controllers. Further, it facilitates 
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the collection of statistics about network status by using 
LLDP (Link Layer Discovery Protocol)7. Thus, it can help 
to detect network topology and the status of each network 
device such as network port and destination. In addition, 
an SDN controller can be used to define network control 
rules such as change of destination when a network prob-
lem occurs. 

In this study, we apply the SDN concept to control and 
monitor the status of IoT services. Further, to ensure sta-
ble IoT services, an architecture that classifies two types of 
connections for stable IoT services and helps in the man-
agement of IoT service errors is proposed. 

The remainder of this paper is organized as follows. 
Section 2 discusses related work. Section 3 introduces the   
identified requirements and the proposed architecture. 
Section 4 presents a case study in which the proposed 
architecture was applied. Section 5 concludes this paper 
and outlines future work. 

2.  Related Work
Much research is being conducted on IoT QoS (Quality 
of Service) and to date researchers have made related 
proposals such as a three-layer QoS model8, QoS-aware 
computational method9, and a context-based network 
infrastructure10. QoS refer to the provision of preferential 
delivery service for applications that need it by ensuring 
sufficient bandwidth, controlling latency and jitter, and 
reducing data loss. 

The proposed three-layer QoS model utilizes a mech-
anism that schedules the QoS attribute at the application, 

network, and sensing layers. The application layer sched-
ules the services based on the QoS and transfers the 
resource request to the QoS model in the network layer. 
The network layer allocates network resources to the 
selected services. The sensing layer selects the applicable 
sensing devices. This approach is focused on the optimi-
zation of attributes of QoS in IoT. It is a top-down method 
that starts from the QoS concerns of service and divides 
the IoT layers. Our approach also utilizes the notion of 
layers. However, it is bottom-up and focuses on identifi-
cation and management of service failures.

The proposed QoS-aware computational method 
comprises four basic modes: Serial mode, parallel mode, 
branch mode, and circulation mode. The method can be 
used to calculate IoT QoS. In serial mode, the services 
perform sequentially based on a certain order. In paral-
lel mode, tasks are executed simultaneously. In branch 
mode, the system can complete the task following the 
completion of successful service detection. In circu-
lation mode, the services execute in series and each is 
performed based on a given cycle time. This approach 
decomposes the total QoS metrics of composite IoT ser-
vices into their simple constituent services and calculates 
the corresponding range of indicators. From an IoT ser-
vices aspects, this approach focuses on quality analysis 
of composite IoT service. Whereas our approach focuses 
on requirement analysis and actual fault detection in IoT 
services. 

The proposed context-based network infrastruc-
ture is composed of five components: Context manager, 
virtualization manager, SDN-based network manager, 
multi-network access mobility manager, and trust man-
ager. The context manager extracts context (e.g., device 
location, user’s activity) and delivers it to the virtual-
ization manger and the SDN-based network manager. 
The virtualization manger creates a virtualized network 
instance. The SDN-based network manager performs traf-
fic engineering, load balancing, and QoS administration. 
The multi-network access mobility manager performs 
context-based connection for the self-organizing group 
network. This research is focused on context-awareness 
in order to support user-centric IoT services. However, 
it is still ongoing and provides conceptual elements for 
network infrastructure. Our approach applies the concept 
of SDN to detect and solve network connection prob-
lems. Further, it defines primary requirements, APIs, and 
explicit architecture elements to ensure the provision of 
stable services. 
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1. Introduction 
 

The IoT (Internet of Things) paradigm1–3 consists of three hierarchical layers, i.e., IoT services, IoT platform, 
and IoT devices, as shown in Figure 1. These layers communicate via the Internet. The top layer, IoT services, 
realizes and facilitates the provision of business values to external objects. The middle layer, IoT platform, 
supports execution of IoT services and intermediates the processing and communications between IoT services 
and devices. The bottom layer consists of IoT devices, which are physical objects that acquire real-world data. 

 

Figure 1.  IoT layers. 

In the IoT paradigms, IoT services utilize various combined IoT devices. This means that various IoT services 
can be implemented using the information acquired by numerous IoT devices. However, IoT service defects can 
occur based on problems in the interconnected environments and IoT devices. Consequently, a monitoring and 
control mechanism that facilitates the provision and reception of stable IoT services is essential.  
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Figure 1.  IoT layers.
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3.  Our Approach
Two types of connection are specified for stable IoT 
services: platform-device direct connections and plat-
form-device network connections. A single architecture 
that combines the analysis results in accordance with the 
requirements of both connection types is proposed. 

3.1  Requirements
IoT services run on a platform by using IoT device 
information. Two types of monitoring requirements are 
specified based on the relationships among the IoT lay-
ers shown in Figure 1. The focus is on the connection 
between the platform and each device. The first type of 
requirement is called platform-device direct connec-
tions requirement. This requirement identifies whether a 
device is stable or not. It is divided into four categories: 
communication, connectivity, data flow stability, and data 
reliability, as shown in Table 1. 

Communication indicates the monitoring behavior •	
of the device protocol. The communication coverage, 
data rate, and power consumptions of devices differ 
based on the protocol employed.
Connectivity refers to the activation status of the •	
current device. When a device is not connected, 
IoT services generate inappropriate values or do not 
operate.
Data flow stability indicates whether the device trans-•	
mits information reliably. Data flow stability can 
be tested by changing the device data transmission 
period.
Data reliability indicates whether the transmitted •	
information has errors. Each device has a defined 
range of values. By checking the data range, the cur-
rent error status can be determined.

The second requirement type is called the platform-de-
vice network connection requirement. This requirement 
is used to ascertain the problem in the network status 
of a device. It is divided into four categories: Topology, 
throughput, routing, and control, as shown in Table 2. 

Topology indicates how the device is connected. The •	
path through which the device information flows can 
be identified by checking the network topology and 
the device connection.
Throughput shows how many packets are transmitted •	
from each device and indicates the status of the switch 
bandwidth. This information can be used to alert or 
calculate the delay or bottleneck in device traffic.
Routing indicates the destination of each device. When •	
an IoT service error occurs, the routing information of 
each device can be traced and problem at the network 
level detected.
Control checks and acquires the real-time traffic infor-•	
mation of each host and switch. The defined rule can 
be changed when suspect data flows are identified.

3.2  Architecture 
We also propose an architecture that supports the 
identified requirements. Figure 2 shows the proposed 
architecture and its constituent elements. The architec-
tural elements are as follows: 

IoT network access interface: Shows access points •	
composed of monitoring functions. 
Device profile manager: Creates, reads, updates, and •	
deletes device information, including supported 
protocol.
Device connection manager: Checks device connec-•	
tion status and sets device information transmission 
cycle.

Table 1.  Platform-device direct connections 
requirement categories
Type Description

Communication Monitors device protocol, such as 
ZigBee, Zwave, and IP-based.

Connectivity Indicates whether the current device is 
activated.

Data Flow stability
Indicates whether the device provides 
stable information, such as setting 
device period.

Data Reliabiity Indicates whether the device produces a 
range or reasonable values.

Table 2.  Platform-device network connections 
requirement categories

Type Description

Topology Indicates the device’s connection topology. 

Throughput Indicates bandwidth and packet transmission.

Routing Indicates port, and start and end points of 
each device.

Control Checks current status of the device and hosts 
and defines rules.
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Traffic manager: Checks throughput and routing, and •	
calculates traffic information, such as delay, bottle-
neck.
Topology manager: Views and lists the topology of all •	
devices. 
Switch/Host handler: Retrieves real-time information •	
for switch and host, and changes defined rules.
SDN adapter: Presents the binding points where vari-•	
ous SDN controllers can be adapted.
Profile: States the database where device profile infor-•	
mation is stored. 
Event Log: Denotes the database where all network-re-•	
lated events, such as transmission rate and bandwidth, 
are stored. 

Table 3 shows the defined REST (Representational 
State Transfer)11 APIs provided to identify error causes 
and control interconnection flow. In Table 3, the API list 
column gives the ID and a brief description of each API’s 

role. The API description column consists of method 
type, API, and related requirement type sub-columns. 
The method type column shows the REST API type, such 
as get, put, post, delete. The API column denotes the API 
call structure. The result is obtained by assigning a value 
for uid in the <uid> section. The related requirement type 
column lists the requirement supported by the API. 

For example, to view a device’s port information by 
using the API denoted ID-8, the API can be called using   
/api/view_statistic_info/port/json. As shown in Figure 3, 
the result is then displayed in JSON (JavaScript Object 
Notation)12 format. The result shows the device’s port 
status detail, such as port number, number of received 
packets, and number of transmitted packets. Using this 
information, we can identify the network problem by 
comparing the assigned value with the defined metric 
assigned minimum and maximum values. 

In the architecture, IoT access interfaces are real-
ized using the APIs defined in Table 3. Table 4 shows the 
identified architecture elements and related requirements 
type. As shown in the table, each architectural element is 
defined to support the identified requirements. 

4.  Case study and Evaluation
We applied our approach to develop IoT services to mea-
sure air pollution. Figure 4 shows the structure of the 
system used in our case study.

Table 3.  API list example

API List
API Description

 Method Type API Related Requirement Type
ID-1: Retrive device list Get /api/get_device_list/<uid>/json Communication

ID-2: Retrive device protocol Get /api/get_device_protolcol/<uid>/json Communication 

ID-3: Check device status Get /api/get_device_status/<uid>/json Connectivity

ID-4: Update data transmission period Put /api/set_device_
period/<uid>/<period>/json Connectivity

ID-5: Retrive device value Get /api/get_value/<uid>/<date>/json Data Flow Stability

ID-6: Retrive device sensor value Get /api/get_value/<uid>/<sid>/json Data Reliability

ID-7: View topology Get /api/view_topology/json Topology

ID-8: Get  device statistical data Get /api/view_statistic_info/<statType>/
json Throughput 

ID-9: Retreive device network information Get /api/view_network_info/<uid>/json Throughput

ID-10: Retreive device route information Get /api/view_network_info/<src-
id>/<src-port>/<des-id>/<des-port> Routing 

ID-11: Delete device flow information Delete /api/del_network_flow/<uid>/json Control
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Figure 3.  Exmple results of an API call.

Table 4.  Requiremnt type and architecure elements

Requirements Architecture Elements
Communicatioin Device Profile Manager, Profile 

Connectivity Device Connection Manager, Event 
Log

Data Flow Statbility Device Connection Manager, Event 
Log

Data Reliabity Device Profile Manager, Device 
Connection Manager, Profile

Topology SDN Adaptor, Topology Manager

Throughput SDN Adaptor, Switch/Host Handler

Routing SDN Adaptor, Switch/Host Handler, 
Traffic Manger

Control SDN Adaptor, Switch/Host Handler, 
Traffic Manger

Figure 4.  Structure of the system used in our case study.

Table 5.  Sensor specification

Sensor Measurement Specification

Humidity 0–100% RH 

VOCs Up to 100 ppm

CO2 400–5,000 ppm

Dust 0–0.5 mg/m3

Temperature -40–120 °C
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As shown in Figure 4, the air-pollution measurement 
services provide information on air-quality data such as 
temperature, humidity, carbon dioxide, volatile organic 
compounds, and dust. IoT devices were developed to 
acquire these air-quality data. 

Table 5 shows the specifications for the measurement 
sensors. As shown in Figure 4, air-pollution measure-
ment devices can be placed wherever a user located. They 
can measure the air quality in real time. The measured 
air-quality data are transmitted to the IoT platform. IoT 
services that provide region-, zone- and time-specific 
air-pollution analysis and report are operated using the 
air-quality data passed from the IoT platform. To apply 
our approach for the provision of stable IoT services, we 
implemented a platform dashboard prototype in accor-
dance with the proposed architecture and APIs. Figure 5 
shows the interface supporting the platform-device direct 
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shows the data flow stability requirement type. The ID-5 
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the ID-4 and ID-6 APIs in Table 3. In addition, it shows 
the accumulation of quality measurement data for each 
region (upper right) and air-quality monitoring data for a 
specific region (bottom right) by using the ID-6 API.

Figure 6 and 7 show the interface for the platform-de-
vice network connection requirement. In this case study, 
we bound the floodlight13 SDN controller to the SDN 
adaptor of proposed architecture and tested our network 
environment by using the mininet14 network simulator. 
Figure 6 shows the topology status obtained using the 
ID-7 API. 

Figure 7 shows a network problem detected at the plat-
form-device network connection level. The upper left part 
of the figure visualizes the current device’s network status 
by displaying the throughput among switches by using 
throughput requirement type and the ID-8 and ID-9 APIs. 
The network status is also checked based on the defined 
interval. When an error occurs, the device’s IP address, 
error type, and occurrence time are displayed, as shown 
in upper right corner, using the ID-8 API. The link topol-
ogy is also checked and displayed, as shown in the bottom 
left part, using the ID-7 API that is, topology requirements 
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type in Table 3. The display shows whether the device has 
failed or not. As shown in the bottom right corner, host 
and switch information where the traffic is concentrated 
excessively are also displayed using the ID-9 API that is, 
the routing requirement type. In this manner, network 
errors and the causes of IoT service faults can be easily 
identified using our proposed architecture and API. 

When an IoT service failure occurs, it is difficult to 
identify the causes. To overcome this problem, we explic-
itly identify the types of errors. Using our implemented 
dashboard, we can easily identify the cause of any IoT 
service problem.

5.  Conclusion
In this paper, a method for providing stable IoT services was 
presented. Two types of requirements, namely, platform-
device direct connections, and platform-device network 
connections, were proposed. In addition, an architecture 
that supports these requirements by using REST APIs was 
also proposed. The efficacy of the proposed method was 
verified via simulation by using a floodlight SDN controller 
in a case study. The proposed architecture can be applied to 
manage errors in IoT services. Further, it can be used with 
a reference architecture to instantiate systems that provide 
stable IoT services. In future work, we plan to extend our 
research to integrated IoT platform developments.

6. Acknowledgment
This research was supported by Basic Science Research 
Program through the National Research Foundation of 
Korea (NRF) funded by the Ministry of Education (NRF-
2014R1A1A2007061, NRF- 2014R1A1A2055924).

7.  References
1.	 Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of 

Thing (IoT): A vision, architectual elements, and future 

directions. future Generation Computer Systems. 2013 Sep; 
29(7):1645–60.

2.	 Dijkman R, Sprenkels B, Peeters T, Janssen A. Business 
models for the Internet of Things. International Journal of 
Information Management. 2015 Dec; 35(6):672–8.

3.	 Jayavel K, Nagaraja V. Survey of migration, integration 
and interconnection techniques of data centric network to 
intenet-towards Intenet of Things (IoT). Indian Journal of 
Science and Technology. 2016 Mar; 9(11):1–8.

4.	 Jarraya Y, Madi T, Debbabi M. A survey and a layered taxon-
omy of software-defined networking. IEEE Communication 
Surveys and Tutorials. 2014 Apr; 16(4):1955–80

5.	 Farhady H, Lee H, Nakao A. Software-defined networking: 
A survey. Computer Networks. 2015 Apr; 81(1):79–95. 

6.	 Agnise XK, Balagopal D. Leveraging the power of software 
defined paradigm to control communication in a net-
work. Indian Journal of Science and Technology. 2016 Apr; 
9(14):1–5. 

7.	 IEEE Standards Association. Available from: http://stan-
dards.ieee.org/getieee802/download/802.1AB-2009.pdf

8.	 Li L, Li S, Zhao S. QoS-aware scheduling of services-
orinted internet of things. IEEE Transactions on Industrial 
Informatics. 2014 May; 10(2):1497–505.

9.	 Ming Z, Yan M. QoS-aware computational method for IoT 
composite service. The Journal of China Univerities of Posts 
and Telecommuncations. 2013 Aug; 20(1):35–9.

10.	 Chin W, Kim H, Heo Y, Jang J. A context-based future net-
works and communications. Procedia Computer Science. 
2015 Aug; 56(1):266–70.

11.	 Architectural styles and the design of network-based soft-
ware architectures chapter 5 representaional state transfer. 
Available from: http://www.ics.uci.edu/~fielding/pubs/dis-
sertation/rest_arch_style.htm

12.	 JSON. Available from: http://json.org/
13.	 Floodlight. Available from: http://www.projectfloodlight.

org/floodlight/
14.	 Mininet. Available from: http://mininet.org/


