
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(21), DOI: 10.17485/ijst/2016/v9i21/95147, June 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

An Efficient Object Oriented Design Model: By
Measuring and Prioritizing the Design Metrics

of UML Class Diagram with Preeminent Quality
Attributes

 Sudha Rajesh1* and A. Chandrasekar2

1Sathyabama University, OMR, Sholinganallur, Chennai – 600119, Tamil Nadu, India; sudharajesh2005@gmail.com
2Department of CSE, St. Joseph’s College of Engineering, OMR, Sholinganallur, Chennai - 600119, Tamil Nadu, India;

drchandrucse@gmail.com

Keywords: Class Diagram, Design Metrics, Efficient Object Oriented Design Model, Quality Attributes

Abstract
In Software Engineering, non-functional quality attributes plays a major part in the design phase. The conflicts among
quality attributes will smash up the overall software quality. Due to many changes in the requirements, may affect the
overall design quality. It is very important to maintain the quality in the former stages of SDLC. In order to overcome the
conflicts among attributes and to design quality software, a work is proposed to create an Efficient Object Oriented Design
Model (EOODM), by Measuring and Prioritizing the Quality Metrics of UML Class Diagram. The above model works in
three steps as, 1) The conflicts quality attributes are managed by creating generic rules, 2) The measurement is done by
quantify the Object Oriented Design metrics of a class diagram. 3) The priority will be given to the attributes by equivalence
partitioning of the quality metrics. However, all the design is done by using UML diagrams, especially the Class Diagram,
where they are the ruler for the developers. We are in a position to measure and estimate the software quality attributes
along with the quality metrics. By measuring the Design Metrics of Class Diagram leads to Preeminent Quality Software.
This model will help the designers to evaluate a better software system.The main aim is to enhance the software design by
improving the design metrics of UML class diagram.

1. Introduction
In emerging world of Software Engineering, SDLC pro-
cesses are very important in developing the software
products. The developers’ endeavour is to deliver the
product with packed quality. IEEE Definition of software
quality is “The degree to which a system, component,
or process meets specified requirements”. Pressman’s
definition of quality is “Conformance to explicitly stated
functional and performance requirements, explicitly
documented development standards, and implicit charac-
teristics that are expected of all professionally developed
software”. Quality’s perspective can be classified as
Product-based quality, Value-based quality, User-based

quality and Manufacturing -based quality shown in
Figure 1. From these perspectives value-based qual-
ity is very important, since it defines the design quality
of the software. To maintain the quality in former stages
of SDLC is essential. Most of the developers propose the
product design focusing on Functional Requirements.

Without considering the Non- Functional
Requirements, there will be collapse in the overall system
quality. The requirements of the product design will be
listed out by the stakeholders. During the period of ana-
lyzing the requirements gathered, there will more conflicts
among stakeholders’ views. These conflicts may also lead
to poor quality of software design.The developers use the
Object Oriented Design methodologies to enlarge the

An Efficient Object Oriented Design Model: By Measuring and Prioritizing the Design Metrics of UML Class Diagram with
Preeminent Quality Attributes

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 2

 software; chiefly they use the UML Class Diagram.
The metrics of class diagram may also be measured at

the early stages of SDLC process. But the developers do
not take care of the design part, which makes the system
to be weak in quality. To avoid the above said problems
with quality, can be reduced by developing an Efficient
Object Oriented Design Model. During the development
of the system architecture, it is important to authorize
that the structural design has the necessary quality attri-
butes; this is usually done using one or more architecture
evaluations.A quality constraint is a prerequisite that
is positioned on a software structure by a stakeholder;
an excellence feature in the system really there on one
occasion it have be employed. Quality attribute is the
belongings of a software structure1.

In 2 studied Non-Functional Attributes (NFA) and can
be accomplished by applying guidelines while developing
software systems. Such guidelines include best practices,
design patterns and architectural styles. However, achiev-
ing multiple non-functional attributes at the same time
has extra concerns. Guidelines have different effects on
non-functional attributes of software, and guidelines have
relationships among each other too. A guideline that has
positive effect on a non-functional attribute may have
negative effect on another attribute. In 3 suggests that
non-functional quality is of little relevance for users and
customers, and is instead primarily a concern for Software
architects. The practitioners consider non -functional
qualities as a late addition, slightly than as a major driver
of structural design. Development teams underestimate
the contribution of non-functional qualities to a system’s
success.According to4 it is essential to recognizeall stake-
holders, gather all requirements and make sure they know

the inference of thesoftware. The space among stakehold-
ers’ idea of the anticipated software and the analysis’s
representationof that software is the reason of failing
in analysis. If the necessities precise byanalysts can be
experienced not in favor of stakeholders’ hope, then this
space might be pointed, and improved solutions might
be given. They used ReqVerifier tool to check software
requirements andprove them next to stakeholders’ vision
in order to enlarge a good software requirement for qual-
ity software. In5 explained that the condition management
to be the procedure of documenting, tracing, prioritizing
and agreeing on requirements and then calculating modi-
fication and communicate to relevant stakeholders.

It is very important to analysis the requirement in the
early stages of SDLC process, because they are useful to
avoid the stakeholders’ conflicts and satisfy the future
expectations of them6. In7 projected 6 metrics-Weighted
Methods per Class (WMC), Response sets for Class
(RFC), Lack of Cohesion in methods (LCOM), Coupling
Between Object Classes (CBO), Depth of Inheritance Tree
(DIT), Number of Children of a class (NOC), with the
help of various software quality attributes (e.g. efficiency,
complexity, understandability, reusability, maintainabil-
ity and testability) can be calculated. In8 referred a lot of
software quality estimation techniques to construct soft-
ware quality model andas well evaluatethe presentation
of these technique. Some techniquesare Artificial Neural
Network, Case-Base Rule, Regression Tree,Rule Based
System, Multiple Linear Regression and Fuzzy System
etc. Their outcomes expose that Fuzzy and Rule Based
System techniquescan give a high-quality explanation to
design a Software Quality Model. In9 acknowledged that
choosing a SDLC models are very important, if the mod-
els are selected in a wrong way, it will lead the software
development in some critical situations. They proposed
a usable variety matrix fordecide best-fit SDLC mod-
els on special style ofSoftware Development Projects,
wrap mutuallyconventional and lively methodologies.
In10 proposed the object-oriented frameworks, which
enables the reusable of the software. But reusing is not
straightforward; most of them are reused in fewer quanti-
ties. They also suggests that reuse of software is the main
objectives of Software Engineering. In11 suggested that
complexity metrics of the class diagram is collection of
three varieties of relationships: association, generalization
and aggregation,which construct their overall structure.
They suggested merging these three associations thatal-
low a complete and suitable determination of difficulty.

Figure 1. Quality Perspective.

Sudha Rajesh and A. Chandrasekar

Indian Journal of Science and Technology 3Vol 9 (21) | June 2016 | www.indjst.org

In12 suggested the basic software characteristics such as
maintainability, portability, complexity, testability, reus-
ability, and understandability can be measured using the
design metrics. These characteristics help the designers
to improve the quality of the system in better way. In13
developed a Generic Model which helps the developers
to predict the quality in software system. They also cal-
culated the quality factors with accuracy. The predictions
are done by using the quality factors, Software develop-
ment process and SDLC process. In14 provided a set of
metrics to characterizes large object-oriented software
systems. Their metrics distinguish the quality with respect
to APIs of the modules. The intermodule dependencies
are origin to inheritance, associational relationships, state
access violations, fragile base-class design. In15 developed
a mathematical formalism which gives suitableconsid-
eration to the things of the object-oriented system. Also
shows that recent study in this region includes unstable
treatment ofspecial yield and their possessions at dis-
similar progress phase. Moreover outline thesequential
progress of study in this region, and discover space that
proposeschance for upcoming study.

1.1 Research Questions
The primary goal of the proposed work is to develop an
Efficient Object Oriented Design Model - by Measuring
and Prioritizing the Design Metrics of UML Class
Diagram with Preeminent Quality Attributes. As a result,
the following questions are to be answered:

	 1. How the conflicts of stakeholders are managed
according to the system development?

	 2. What are the design metrics of a class diagram?
	 3. How the design metrics are to be measured?
	 4. How the design metrics are to be prioritized?
	 5. Will the metrics richness and rightnessdistinguish

between the design output in former and later stages
of Object Oriented Design?

1.2 Contributions
The major involvement of this work is to develop a model
that should satisfy the above questions as follows:

	 1. To collect all the stakeholders’ decisions in a single
structural view that expose the centric-view decision
in an architectural design.

	 2. The conflicts in stakeholders’ views are managed by
analyzing it, with finest consistency rules.

	 3. The design metrics are measured by the relation-
ships and associations between them.

	 4. The metrics are prioritized based upon the quality
attributes’ contribution to develop the software.

	 5. It is possible to get quality software, if all the design
metrics are measured in the former stages of SDLC
process rather than in later stages.

2. Motivation behind the
Proposed Work.
Following are the drawbacks identified: 1) There are many
conflicts among stakeholders’ views. Therefore it affects
the overall systems’ quality. 2) Developers are concen-
trating only on the functional attributes not on the non
- functional attributes. It also affects the systems’ quality.
3) Moreover the designs of a software system are done by
using the Object Oriented Design Metrics and these met-
rics are not properly measured for the evaluation. 4) The
UML Class Diagram is used for designing the software
system, which also makes the design part to complex.
Since there are many classes, it is difficult to identify the
associations and relationships among classes. An Efficient
Object Oriented Design Model (EOODM) is proposed
to conquer the above mentioned drawbacks. This model
first collects the stakeholders’ views (attributes needed
to develop software) and manages the conflicts by creat-
ing consistency rules. Then the design metrics for class
diagram is measured by quality factors. Since Object
Oriented Design Metrics plays an important role in
designing phase of SDLC, some of the metrics are mea-
sured here. At last the priority will be given to the quality
attributes based on their evaluation. Marcela Genero, Luis
Jiménez, Mario Piattini16, OO model, like class diagrams
are the input object in the early hours of improvement,
so centre of attention in their excellence must give to the
quality of the OOIS which is eventually executed. William
A.Ward, Jr.17, Anas Bassam AL-Badareen, Mohd Hasan
Selamat, Marzanah A. Jabar, Jamilah Din, and Sherzod
Turaev18, suggested various models to improve the qual-
ity of software.ShilpeeChamoli, Gil Tenne and Sanjay
Bhatia19, suggest an idea to identify the software metrics
for various application, then analyzing which metrics
affects the accurateness of software. This defect will make
the software not to be in quality. In20 suggested a method
to evaluate the software projects and give them a rating,
to identify the quality of each and every stages of the soft-
ware development phases. The quality may vary due to

An Efficient Object Oriented Design Model: By Measuring and Prioritizing the Design Metrics of UML Class Diagram with
Preeminent Quality Attributes

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 4

many changes in the development process. In21 proposed
alatest algorithm with the aim of a designerto change a
structural design to a complete model basis on dissimilar
expansion of Petri Nets.

3. Proposed Model - Efficient
Object Oriented Design Model
(EOODM).
The following EOODM says that stakeholders’ views are
collected, managed, design metrics are specified, mea-
sured, given priority and validated. A sample voting
system application has taken to implement the following
steps.

3.1 Evolution of EOODM
Step1: Gathering the stakeholders’ views for Voting
System.	

The following Table1 shows the various stakeholders’
views for developing a voting system22. These views will
create a problem during the design phase, because the

developer will develop a model according to the views
without the knowledge of different view in electoral dis-
pute resolution bodies. Since all the views cannot be taken
into account for designing practice, there will be some
conflicts.
Step 2:Manage the conflicts in stakeholders’ views

These conflicts can be managed by using the following
rules23, Rule1:Identifying stakeholders, Rule2:Recognize
and Classify stakeholders’view,Rule3: Institutional
Review, Rule4: Executive Development, Rule5:Conflict
Analysis. By consideringthe above steps, the conflicts
among stakeholders can beavoided. Once the stakehold-
ers’ conflicts are identified, their views are analyzed to
manage the conflicts between them; they depend upon an
approach for successful conflict management maximizes
the integrative function of the two parties in conflict20,

1 1 2 2 3 3 1 1 2 2 1 3 n n n nMax y a b X b X b X b X b X X b X X+ += + + = +…+ + + +…

Where x1 – utility to disputant 1 , x2 – utility to dispu-
tant 2 , x3 . . . xn – utility to third parties affected by the
dispute between 1 and 2
Step 3:Specify the Design according to stakeholders’ views
(UML Class Diagram)
Step 4: Get the relationships between classes

The following Table2 shows the relationships among
the classes from above figure 3. Among 18 classes, there
were 17 relations which notify that the design was more
complexity. If any one of the relationship of attributes or
methods of classes are tried to modify, then it will affect
in most of the places
Step 5: Specify Quality attributes with Design metrics

Table 1. Stakeholders and their Views for Voting System

Stakeholders
Political
Parties and
Candidates

Election
Board
Staff

Administrative
Branch of
Government

Elected
Government
(Legislature)

Electoral
argument
-declaration
Bodies

Official
System

Stakeholders’
views Assurance Safety

Measures Responsibility Performance Security Accessible

Election Supervisor
and Observers The

Media
The Voters

Social
Society
AssociationDomestic Domestic

Effective Truthful

Regular
comm... &
Responds
(accurately)

Regular
consultation
with these
stakeholders

Analysis

Design

Implementa�o

Tes�ng

Maintenance

Gather the stakeholders’ views

Manage the conflicts in
stakeholders’ views

Specify the Design according to
stakeholders’ views

Get the rela�onships between
classes

 Specify Quality a�ributes with
Design metrics

 Measure the design metrics

 Validate the metrics by giving
Priority, based on stakeholders’

views

Figure 2. Efficient Object Oriented Design Model (EOODM)

Sudha Rajesh and A. Chandrasekar

Indian Journal of Science and Technology 5Vol 9 (21) | June 2016 | www.indjst.org

Table 2. Relationships among classes

Classes/
Relationships

C1 C2 C3 C4 C5 C6 C7 C8 C9
C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C1 - Gen - - - - - - - - - - - - - - - -
C2 - - - - Gen - - - - - - - - - - - - -
C3 - Gen - - Gen Dep - - - - - - - - - - - -
C4 - - - - Dep - - - - - - - - - - - - -
C5 - - - - - - - - - - - - - - - - - -
C6 - - - - - - - - - - - - - - - - - Asso
C7 - - - - Agg - - Gen - - - - - - - - - -
C8 - - - - - Comp - - - - - - - - - - - -
C9 - - - - - - Comp - - - - - - - - - - -
C10 - - - - - - - - Gen - - - - - - - - -
C11 - - - - - - - - Gen - - - - - - - - -
C12 - - - - - - Gen - - - - - - - - - -
C13 - - - - - - Gen - - - - - - - - - - -
C14 - - - - - - - - - Gen - - - - - - - -
C15 - - - - - - - - - Gen - - - - - - - -
C16 - - - - - - - - - - Gen - - - - - - -
C17 - - - - - Comp - - - - - - - - - - - Agg
C18 - - - - - - - - - - - - - - - - - -
Asso →
Association ,Gen
→ Generalization,
Agg → Aggregation,
Comp →
Composition,
Dep → Dependency

There are many quality attributes existing to define the
design of a system. But the most important quality attri-
bute for object oriented design is modifiability metrics of
class diagram24. If there is one modification it replicate
in many places. The modifiability metrics for voting sys-
tem (Figure 2) and the weighted value for the metrics are
shown in Table3.
Step 6: Measure the design metrics	

The average modifiability of a system is calculated as

()
()

n
i

i 1
M c

AM S
n
==

∑

(eq1)

Modifiability of a class c:

M(c) = C(c) + MG(c) + MA(c) + MC(c) + MD(c) +
MCAss(c) + MAssC(c)			 (eq 2)
Complexity of a class c:

C(c) = total no. of attributes + total no. of attributes
operations in a given class c (eq3)
Modifiability Generalization of a class c:

The generalization of a class in voting system is
defined as the product of generalization weight value and
the summation of complexity of all sub classes as follows,

()
()

2

  =
G GW C ASub c

MG c
 (eq 4)

Modifiability Aggregation of a class c MA(c):
The aggregation of a class in voting system is defined as

the product of aggregation weight value and sum of com-
plexity of immediate super class of aggregation with the
complexity of all sub classes of generalization in immedi-
ate super class of aggregation of a class is as follows,

()
() ()() () ()

 (5)
2

 + =
A G A AW C ASub ISup c C Isup c

MA c eq

An Efficient Object Oriented Design Model: By Measuring and Prioritizing the Design Metrics of UML Class Diagram with
Preeminent Quality Attributes

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 6

Modifiability Composition of a class c MC(c):
The composition of a class in voting system is defined as
the product of composition weight value and sum of com-
plexity of immediate super class of composition with the
complexity of all sub classes of generalization in immedi-
ate super class of composition of a class is as follows,

()
() ()() () ()

 (6)
2

 + =
C G C CW C ASub ISup c C Isup c

MC c eq

Modifiability Dependency of a class c MD(c):
The dependency of a class in voting system is defined

as the product of dependency weight value and sum of
complexity of immediate sub class of dependency with
the complexity of all sub classes of generalization in
immediate sub class of dependency of a class is as follows,

()
() ()() () ()

 (7)
2

 + =
D G D DW C ASub ISub c C Isub c

MD c eq

Modifiability related to Common Association MCAss(c):
The common association of a class in voting system is

defined as the product of common association weight
value and sum of complexity of immediate sub class of
common association with the complexity of all sub
classes of generalization in immediate sub class of com-
mon association of a class is as follows,

()
() ()() () ()

 (8)
2

 + =
CAss G CAss CAssW C ASub ISub c C Isub c

MCAss c eq

Modifiability related to Association Class MAssC(c):
The association of a class in voting system is defined

as the product of association weight value and sum of
complexity of immediate sub class of association with
the complexity of all sub classes of generalization in
immediate sub class of association of a class is as follows,
	

()
() ()() () ()

 (9)
2

 + =
AssC G AssC AssCW C ASub ISub c C Isub c

MAssC c eq

Step 7: Validate the metrics by giving Priority, based on
stakeholders’ views

There are lots of quality attributes with metrics, but
modifiability attribute with design metrics is precise,
which is very significant during the designing phase of
Object Oriented System Development process. The modi-
fiability of voting system is measured with various metrics
of class diagram is revealed in later section.

Table 3. Modifiability Metrics

Metrics Weight
values
for
metrics

Definition

C(c) - Complexity of a class c
M(c) - Modifiability of a class c
AM(S) - Average Modifiability of a system
MG(c) 4 Modifiability Generalization of a

class c
MA(c) 5 Modifiability Aggregation of a class

c
MC(c) 6 Modifiability Composition of a

class c
MD(c) 3 Modifiability Dependency of a

class c
MCAss(c) 2 Modifiability related to Common

Association
MAssC(c) 1 Modifiability related to Association

Class
ASup(c) - Total(All) no. of super classes for a

given class c
ASub (c) - Total(All) no. of sub classes for a

given class c
ISup(c) - Immediate super class for a given

class c
ISub(c) - Immediate sub class for a given

class c
n - Total no. of classes

Figure 3. Design for Voting System according to the
stakeholders’ views.

Sudha Rajesh and A. Chandrasekar

Indian Journal of Science and Technology 7Vol 9 (21) | June 2016 | www.indjst.org

Table 4. Entire Super and Sub Classes for Voting System

CLASSES CLASS NAME ISup(c) ISub(c) ASup(c) ASub (c)
C1 Reg. Interface - C2 - C2
C2 Voter C1,C3,C5 - C1,C3,C5 -
C3 Poll Designer - C2 - C2
C4 Election Officer - - - -
C5 Election Domain - C2 - C2
C6 Poll - - - -
C7 Election C8 C12,C13 C8 C12,C13
C8 Selection - C7 - C7,C12,C13
C9 Poll item - C10,C11 - C10,C11,C14,C15,C16
C10 Branch Poll Item C9 C14,C15 C9 C14,c15
C11 Composite Poll Item C9 C16 C9 C16
C12 Election Result C7 - C7,C8 -
C13 Election Policy C7 - C7,C8 -
C14 Referendum C10 - C9,C10 -
C15 Candidate C10 - C9,C10 -
C16 Office C11 - C9,C11 -
C17 Voting Interface - - - -
C18 Voting Layout - - - -

Table 5. Design Metrics of Voting System

COMPLEXITY

C(C)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18
5 6 6 8 4 4 7 4 2 2 2 4 3 0 0 0 3 0

GENERALIZATION

MG(C)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18
12 0 12 0 12 0 14 28 8 0 0 0 0 0 0 0 0 0

AGGREGATION

MA(C)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.5 0

COMPOSITION

MC(C)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18
0 0 0 0 0 0 30 12 41.5 0 0 0 0 0 0 0 12 0

DEPENDENCY

MD(C)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18
0 0 0 0 12 18 0 0 0 0 0 0 0 0 0 0 0 0

COMMON ASSOCIATION

MCAss(C)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

ASSOCIATION CLASSES

MAssC(C)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MODIFIABILITY OF CLASS

M(C)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18
12 0 12 0 24 18 44 40 49.5 0 0 0 0 0 0 0 19.5 4

An Efficient Object Oriented Design Model: By Measuring and Prioritizing the Design Metrics of UML Class Diagram with
Preeminent Quality Attributes

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 8

4. Results
The entire super and sub classes are measured for voting
system25. Then the complexity and various relationships
among classes are considered in following Tables4 and
Table5 respectively,

From the above results the Average Modifiability
AM(S) (eq1) of Voting System is calculated as 12.39
%.The threshold value for AM(S) is set as Easy, Moderate
& Difficult to modify, and the range for AM(S) is shown
in Table 6. This establishes that if the stakeholders’ views
are analysed and the conflicts are managed, then a good
quality software system can be developed. Even though
the stakeholders’ views are not modified after the design-
ing phase, we were getting the Average Modifiability as
12.39%. It shows the attributes can be changed 50%, if it
crosses the range, it will difficult to modify the design.

5. Conclusion
Software quality is the key element of software develop-
ment life cycle. The quality can be maintained by the
notification of the changes due to stakeholders’ concerns.
So a model is proposed to measure the metrics of changes
in terms of modifiability.The proposed work is used to
calculate the average modifiability of system and thresh-
old value is defined as [AM(s) <50] AM(s)=12.39, so it is
easy to do modification. Since all the stakeholders’ views
are considered and managed the conflicts the AM(s) is
very less. If the modifications are less in the designing,
it will help the designer to evaluate the preeminent soft-
ware system.In future this average modification may be
reduced by minimizing inconsistency among classes and
their metrics. This work also brings out that,if any modi-
fication is done in any class it will affect the classes related
to it.

6. References
1.	 Malik H, Hneif M.Guideline-based approach for improving

the achievement of non-functional attributes of software.
University of Malaya, Kuala Lumpur, 2010 Nov; 1–134.

Table 6. Threshold Value for AM(S)

Range of AM(S) Modifiability level
AM(S) < 50 Easy to modify
> 50 AM(S) < 75 Moderate to modify
AM(S) > 75 Difficult to modify

2.	 Hneif M, Lee SP. Using Guidelines to Improve Quality in
Software Nonfunctional Attributes.University of Malaya.
IEEE Software | Published by The IEEE Computer Society.
2011 Nov.-Dec; 28(6):72 –7

3.	 Ameller D, Claudia P, Buschmann F, Ayala CJ, Franch X.
Architecture Quality Revisited. IEEE Software published by
the IEEE computer society. 2012 Jul-Aug; 29(4):22–4.

4.	 Zuhoor A, Salim A-K. Proposing a Systematic Approach
to Verify Software Requirements. Journal of Software
Engineering and Applications. 2014 Apr; 218–24.

5.	 Greene J, Stellman A,O’REILLY, Sebastopol. Applied
Software Project Management. 2005.

6.	 Abran A, Moore J, John Wiley Sons, Hoboken. Chapter 2:
Software Requirements. 2005.

7.	 Chidamber SR, Kemerer CF. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software
Engineering. 1994; 20(6):476–93.

8.	 Gupta D, Goyal VK, Mittal H. Comparative Study of
Soft Computing Techniques for Software Quality Model.
International Journal of Software Engineering Research
and Practices. 2011 Jan; 1(1):1–5.

9.	 Khan PM, Sufyan Beg MM. Extended Decision Support
Matrix for Selection of SDLC-Models on Traditional and
Agile Software Development Projects. International Journal
of Software Engineering Research and Practices. 2013Apr;
3(1):8–15.

10.	 Bosch J, Molin P, Mattsson M, PerOl of Bengtsson.
Object-Oriented Frameworks - Problems & Experiences.
Department of Computer Science and Business
Administration. Printed by PsilanderGrafiska, Karlskrona.
1997; 1–20.

11.	 Sheldon FT, Daley KM. Measuring the Complexity of Class
Diagrams in Reverse Engineering. Journal of Software
Maintenance and Evolution, Research and Practice. 2005
Jul; 1–14.

12.	 Gaur A, Punde A. Software metrics evaluation using vari-
ous lines of code and function point metrics. International
Journal of Engineering Sciences and Research Technology.
2012 Oct.

13.	 Rana ZA, Shamail S, Awais MM. Towards a Generic Model
for Software Quality Prediction. WoSQ’08. May 10 2008.
Germany. 2008 May; 35–40 .

14.	 Sarkar S, Avinash CKAK, Rama GM. Metrics for
Measuring the Quality of Modularization of Large-Scale
Object-Oriented Software. IEEE Transactions on Software
Engineering. 2008 Sep/Oct; 34(5).

15.	 Purao S, Vaishnavi V. Product Metrics for Object-Oriented
Systems. ACM Computing Surveys. 2003 Jun; 35(2):191–
221.

16.	 Genero M, Jimenez L, Piattini M. A Prediction Model for
OO Information System Quality Based on Early Indicators.
University of Castilla-La Mancha. 1–14.

Sudha Rajesh and A. Chandrasekar

Indian Journal of Science and Technology 9Vol 9 (21) | June 2016 | www.indjst.org

17.	 Ward WA, Venkataraman B Jr. Some Observations on
Software Quality. School of Computer and Information
Sciences. University of South Alabama. 1999.

18.	 AL-Badareen AB, Selamat MH, AJabar M,Jamilah
Din,SherzodTuraev , Software Quality Models: A
Comparative Study. University Putra Malaysia. Springer-
Verlag Berlin Hei delberg 2011Jun; 46–55 .

19.	 Chamoli S, Tenne G, Bhatia S. Analysing Software Metrics
for Accurate Dynamic Defect Prediction Models. Indian
Journal of Science and Technology. 2015 Feb; 8(S4):96–100.

20.	 Rashid E, Patnayak S, Bhattacherjee V. Estimation and
Evaluation of Change in Software Quality at a Particular
Stage of Software Development. Indian Journal of Science
and Technology. 2013Oct; 6(10):1–10.

21.	 Emadi S, Shams F. A new executable model for software
architecture based on Petri Net. Indian Journal of Science
and Technology. 2009 Sep; 2(9).

22.	 International IDEA Handbook on Electoral Management
Design-Stakeholder Relationships.2006; 201–21.

23.	 Moura H, Teixeira JC. Managing Stakeholders Conflicts.
2010; 286–316.

24.	 Bachmann F, Bass L, Nord R. Modifiability Tactics.
Technical Report -Software Architecture Technology
Initiative. 2007 Sep; 1–63.

25.	 Sudha Rajesh, Chandrasekar A. Software Quality Design
Model: By Measuring the Modifiability Metrics of UML
Class Diagram. TEQIP II sponsored International
Conference on Computational Intelligence. Anna
University. Triruchirapalli. 2015 Apr. p. 547–51.

