
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(21), DOI: 10.17485/ijst/2016/v9i21/90273, June 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

System Call Analysis of Android Malware Families
Sapna Malik* and Kiran Khatter

School of Engineering and Technology, Ansal University, Gurgaon – 122003,
Haryana, India; sapnadhankhar@gmail.com, kirankhatter@gmail.com

Keywords: Android Kernal, Android Malware Installation Methods, Malware Families, System Call Analysis

Abstract
Background/Objectives: Now a days, Android Malware is coded so wisely that it has become very difficult to detect
them. The static analysis of malicious code is not enough for detection of malware as this malware hides its method call in
encrypted form or it can install the method at runtime. The system call tracing is an effective dynamic analysis technique
for detecting malware as it can analyze the malware at the run time. Moreover, this technique does not require the
application code for malware detection. Thus, this can detect that android malware also which are difficult to detect with
static analysis of code. As Android was launched in 2008, so there were fewer studies available regarding the behavior of
Android Malware Families and their characteristics. The aim of this work is to explore the behavior of 10 popular Android
Malware Families focused on System Call Pattern of these families. Methods/Statistical Analysis: For this purpose, the
authors have extracted the system call trace of 345 malicious applications from 10 Android Malware Families named
FakeInstaller, Opfake, Plankton, DroidKungFu, BaseBridge, Iconosys, Kmin, Adrd and Gappusin using strace android tool
and compared it with the system calls pattern of 300 Benign Applications to justify the behavior of malicious application.
Findings: During the experiment, it is observed that the malicious applications invoke some system calls more frequently
than benign applications. Different Android malware invokes the different set of system calls with different frequency.
Applications/Improvements: This analysis can prove helpful in designing intrusion-detection systems for an android
mobile device with more accuracy.

1. Introduction
Being an open-source operating system, Android
Operating System is more vulnerable to attacks. In the
android market, the pervasion of malicious applications
is rampant, and it is on the rise like never before. The
intruders can develop malicious applications faster with
a tool like App Inventor and launch their malwares in the
market more quickly1. The Intrusion-Detection System
for mobile device should opt for a mechanism for detect-
ing the malicious and normal applications accurately. The
Intrusion-detection system for mobile devices is based on
two techniques of analysis – static and dynamic2. The static
analysis technique is based on the reverse engineering of
.apk(android application package) file of android applica-
tions. It includes the exploration of AndroidManifest.xml
and classes.dex files for malicious codes without installing
and executing the app. The dynamic analysis scrutinizes

the behaviors of the application during its execution. In
the work, the intrusion detection system for an android
device proposed3 which analyzed process lists, system call
traces, symbol table, a list of open files and network traffic
features for intrusion detection. The behavior graph of the
malicious application created4 by tracking dependencies
among system calls of six malware families Allaple, Bagle,
Mytob, Agent, Netsky. In research work System Call Short
Sequence Birthmark and Input Dependent System Call
Subsequence Birthmark, two systems call based soft-
ware birthmarks proposed for detection of malicious
application behavior of 1600 malicious applications5. The
diverse nature of system calls invoked by different appli-
cations has been identified and the research work has
proposed a system-centric approach for malware detec-
tion6. The analysis of the application log and system call
log of 230 applications has been done in the Research
Work7. CopperDroid8 analyzed low-level OS-specific

System Call Analysis of Android Malware Families

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 2

and high-level Android-specific behaviors. The authors9
analyzed the behavior of two malware families- Super
History Eraser and Task Killer Pro, in terms of the sys-
tem call generated by simulating the application with user
interfaces events. The approach10 of malware analysis is
based on two features- permission and system call. In this
work, the dataset of 400 applications, 200 benign appli-
cations, and 200 malicious applications has been taken.
The system calls features11 have been used for detection
of malicious web pages. In this proposed work, the indi-
vidual system calls invoked and sequence of the system
call invoked by malicious javascript have been analyzed.
A technique of hook system calls and binder driver func-
tion based malware detection has been proposed in the
work12. The comparison between security of Android OS
and IOS has been done in the work and it proposes the
UAS (User Access Security) framework for providing
the mobile user more control over his resources at the
execution time through permission13. Malware Detection
and Elimination using Bayesian Technique and Nymble
Algorithm has been proposed for securing the Delay
Tolerant Network14. The proposed work was the inte-
gration of Honeypot Technology, Intrusion Detection
Systems and Malware Analysis in Windows based plat-
form for Botnet research15. The system call, a dynamic
feature of the android application is an effective feature
for intrusion detection in the android device. We need to
analyze plenty of android applications to understand the
behavior of malicious applications.

In this paper, we have explored the system call pattern
of 10 malware families FakeInstaller, Opfake, Plankton,
DroidKungFu, BaseBridge, GinMaster, Iconosys, Kmin,
Adrd and Gappusin and compare it with the system call
pattern of normal application by extracting the events of
300 normal apps and 345 Malicious apps from different
malware families, using Android-based event analysis
tool, Strace.

2. Android Operating System
Architecture
Android, a popular Linux-based mobile operating sys-
tem developed by Android Inc. in 2005 which was
later bought by google. In 2007, Google, Open Handset
Alliance (OHA) and other device manufacturers such as
HTC, Sony and Samsung, wireless carriers and chip mak-
ers collaborated on Android design, development and

distribution and launched the first android based smart-
phone HTC Dream in October 2008. Android Operating
system is based on Linux 2.6 Kernel which was modified
to run effectively and efficiently on computational and
energy-constrained mobile device. Many Libraries and
drivers of Linux 2.6 kernel were modified, and newer ones
were added to enable android run on the mobile device.
Android Community had developed its own C library
named Bionic java and Android specific java runtime
engine Dalvik Virtual Machine and made a complete soft-
ware stack of operating system, middleware components
and application framework for mobile devices. Figure 1
shows Android Architecture where the lower layer is an
android operating system that provides all the operating
system functionality like process management, memory
management, network functionality and the device driv-
ers. The middle layer comprises of Bionic C library and
Android Runtime for providing most of the android
specific functionality. The Android Runtime has Dalvik
Virtual machine and core libraries for facilitating the exe-
cution of the android application by converting the java
bytecode of the application to the dex executable, a DVM
specific bytecode.

The application framework holds API (Application
Programming Interface) interface. In this layer, the activ-
ity manager governs the activities of android application
and monitors its life cycle. The Content Provider facili-
tates sharing of data among applications. The Resource
Manager manages non-code services of the android appli-
cation and Notification Manager raises the custom alerts.
The topmost layer is User and Built-in Applications.

2.1 Android Kernel and System Calls
To reiterate, the Android has modified Linux 2.6 Kernel
at the core. The modifications are done for adapting this
operating system for the mobile devices. The Android
Specific kernel enhancement includes power manage-
ment, shared memory drivers, alarm drivers, binders,
kernel debugger and logger and low memory killers.

Applications

Application Framework

Bionic C
library Dalvik Virtual machine

Linux Kernel

Core libraries

Android Runtime

Figure 1. Android operating system architecture.

Sapna Malik and Kiran Khatter

Indian Journal of Science and Technology 3Vol 9 (21) | June 2016 | www.indjst.org

The android application takes the services of the kernel
through the system calls. Whenever a user request for ser-
vices like call a phone in user mode through the phone
call application, the request is forwarded to the Telephone
Manager Service in the application framework. The
Dalvik Virtual Machine in Android runtime transforms
the user request passed by the Telephone Manager Service
to library calls, which results in multiple system calls to
Android Kernel. While executing the system call, there is
a switch from user mode to kernel mode to perform the
sensitive operations. When the execution of operations
requested by the system call is completed, the control is
returned to the user mode. The Kernel Invocation calls are
sub-grouped into three types of System Calls. 1) System
Call- used to invoke native operations of the kernel. 2)
Binder Call- for invocation of the binder drivers in the
kernel. 3) The Socket Call - allows the read/write/send/
receive operations of Linux socket. In this analysis, we
will consider all these subgroups as system calls. There are
250 types of System Calls in Android Operating system
for performing operations like allocating resources, per-
forming read/write operations, protecting critical data,
etc. As discussed above, the system calls are the interface
between the user and the kernel. This means all requests
from the applications will pass through the System Call
Interface before its execution through the hardware. So
capturing and analyzing the system call can give informa-
tion about the behavior of the application.

3. Categorization of Android
Malware
Android Malware is categories on the basis of how they
install themselves on the victim’s device, how they are
triggered, and what type of risks associated with them.
The following section will discuss their installation
method, their activation triggers and types of malicious
activity they perform.

3.1 Installation Method
Android malware families are categorized by their instal-
lation method on victim’s mobile. The following are the
methods used by the android malicious application for its
successful installation.

•	 Repacking – Repacking is the method of modi-
fying and repackaging the apk file of registered

android benign application of Android applica-
tion market and redistributing it. The modified
code contains code for stealing personal or finan-
cial information and causing damage to the
device, but this method is easy to be exposed just
by doing static analysis of code. e.g. GoldDream.

•	 Update attack- The technique is inspired by
the first technique but in this technique instead
of embedding the entire malware code, it just
includes update component and with this update
component, the entire malicious code is down-
loaded and installed on the host mobile phone
at the run time. This type of installation can-
not be exposed by static analysis of the infected
application. For e.g. Malware families like
BaseBridge, DroidKungFuUpdate, AnserverBot,
and Plankton are used this technique.

•	 Drive-By-Download attack- This is the tradi-
tional approach used by the malware families for
their successful installation on the host mobile
by luring the user through advertisements and
announcing their application as an interesting
and feature-rich application. e.g. GGTracker,
Jifake, Spitmo and ZitMo are malware families,
which use this installation method.

•	 Standalone- In this category the application
announces itself as a spyware but does some
malicious activities, or the application pretends
to be a benign application but having some
malicious code, or the application requires root
authorization for doing malicious activities.

3.2 Activation
In this category the application activates itself for doing
malicious activities. The authors16 found in their analysis
that the malicious applications activate themselves during
boot completion events, package removing or package
installation events, SMS received events, call phone, dur-
ing network connectivity events, during system events
and during the launch of some popular host applications’
main activity.

3.3 Malicious Payload
This category elaborates purpose of the malicious appli-
cation. There are four types of malicious payloads. The
first is Privilege Escalation in which malicious application
tries to take root access to exploit the root privilege. In

System Call Analysis of Android Malware Families

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 4

the second type, the malicious application uses victim’s
device as a bot by controlling it from a remote device. In
the third type of malicious payload, the malicious appli-
cation uses victim’s device for sending premium messages
without user’s knowledge in order to harm him with
financial loss. Collecting user’s information like SMS
received, phone call log, and device information is the
purpose of the fourth kind of malicious payload.

4. System Call Analysis of Android Malware
Families
For doing a system call analysis of android malware appli-
cations this experiment has taken the dataset of malicious
applications from Drebin project17 and from Androtracker
Project18 for the Normal application. First, we installed
the application on the android emulator then we simu-
lated the application with the monkey tool by passing the
package name as a parameter. The monkey tool enables
execution of the android application with raising the test
events. After successful running of the monkey tool, we
had recorded traces of the system call invoked by the
malicious and normal application through strace. After
executing strace command over the process of applica-
tions, we received log file of the system calls invoked by
the application under consideration. The log file has the
system call name, a time stamp at which it is invoked and
the signals of the process. We further processed the log
files to get the count of a particular system call invoked
by the process of malicious code. We have analyzed 345
malicious applications from 10 android malware families
named FakeInstaller, Opfake, Plankton, DroidKungFu,
BaseBridge, Iconosys, Kmin, Adrd, Gappusin and 300
Normal Applications. Table 1 shows the characteristics
of Malware Families and the no. of instances of each fam-
ily used for the analysis. Now we will discuss each family
one by one with its observation and findings during the
experiment.

4.1 FakeInstaller
FakeInstaller is the most common and hard to detect
malware family. FakeInstaller uses the method of
Repackaging for its installation by inserting their ran-
dom class and method names into malicious application
in the encrypted form. During the run time, it decrypts
the string that has the location of the method which it
wants to call. Fakeinsataller is hard to detect with static
analysis of infected application code. The intention of

Fake installer is to harm the user with a financial loss by
sending SMS to premium services owned by the malware
authors. During the analysis of the system call trace, the
behavior of its sending SMS to premium services comes
forth prominently. During the analysis, it is observed that
the system calls sendto(), recefrom() which are used for
sending and receiving data from the socket are heavily
invoked. Further, the process control related system call
like ptrace() is used for process tracing and controlling
the other processes, and the sigprocemask() is used for
blocking signal to the process, wait4(), futex, getpid()
for getting process id, getuid() for getting user id of the
owner of the process, prctl() for controlling execution of
the process, are also heavily used. In the observation, it is
also found that the malware also executes the system call
related to writing and reading data from the files stored
on phone and SD memory like write(), read(), ioctl(),
fcntl64(), stat64(), close(), open(), mmap(), munmap(),
lseek(), dup() etc.

4.2 Opfake
OpFake is the second most popular Trojan-SMS named
on Opera Mini Mobile Browser for being fake downloader
of it. Opfake uses the Repacking installation method and
sends SMS with SIM data, downloads other malicious
applications and stores them on the SD Card. The attacker
first creates a fake website to lure the customers to down-
load Opera Mini Browser and names their apk files similar
to opera. It heavily uses PTrace(), SigprocMask(), Futex(),
Clock(), GetUID(), GetPID() system calls for affecting
execution of other process and for successful execution
of their process. It also uses Recvfrom(), SendTo() sys-
tem calls for sending SMS to premium services owned by
malware author. It also invokes Write(), Read(), Close(),
Dup(), mkdir(), chmod() for writing and reading the data
of SD card.

4.3 Plankton
This malware family uses the update methodology for its
propagation. The malware uses the dynamic code loading
thus, they are difficult to trace with static code analysis
and manual introspection of code. This malware sends
device information to remote services enabling the mal-
ware author to control the device remotely. The malware
also installs supporting malicious codes by downloading
it through the HTTP and stores them on the SD card.
During dynamic analysis of the system calls it is observed

Sapna Malik and Kiran Khatter

Indian Journal of Science and Technology 5Vol 9 (21) | June 2016 | www.indjst.org

Table 1. No. of malware family samples and their Characteristics

Malware
Type

No. of
Sample
Application

Type year Installation
Method

Activation
methods

Privilege
Escalation

Remote
Control

Privacy
Leaks

Malicious
Activities

FakeInstaller 80 Trojan
SMS

2012 Repackaging - No Yes No Send SMS,
Process SMS,
Delete SMS

Opfake 67 Trojan
SMS

2011 Repackaging Boot
Complete

No Yes No Send SMS,
Delete SMS,
Process SMS,
Send Device
Data to
remote Server,
Download,
install, delete
package

Plankton 65 Trojan 2011 Update,
Repackaging

OnCreate() No Yes Yes Send device
information,
Check User
Internet
Browsing
activity

DroidKungFu 57 Trojan
Spy

2011 Repackaging Boot
Complete
, Bettery
Status, System
Events

Yes Yes Yes Send Device
Information
,Network
information,
Phone data, SD
card Data to
Remote Server

BaseBridge 30 Trojan
spy

2011 Repackeging,
Update

Boot
Complete

Yes Yes Yes Send SMS,
Delete SMS,
Process SMS,
Send Device
Data to
remote Server,
Download,
install, delete
package,
Dial Phone
Numbers,
terminate
process

GinMaster 28 Trojan
Spy

2011 Repackaging Boot
Complete

Yes Yes Yes Send Device
Information,
Installed Apps
Information
and Network
Information to
remote server.

System Call Analysis of Android Malware Families

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 6

that this malware family invokes the system calls socket(),
connect(), sendto(), recvfrom(), socketpair() heavily for
establishing a network connection and sending device
information to remote server and downloading mali-
cious code. It is also found that the malware of this family
also uses access(), umask(), chmod(), rename(), mkdir(),
read(), write() file operation related system calls for stor-
ing its malicious code on SD Card.

4.4 DroidKungFu
DroidKungFu is a dangerous malware family that aims to
take root privilege for controlling user device and sends
its confidential data to the remote server causing privacy
leaks of the user. The malware author takes control of the
device and uses it for malicious activities by making it a
BOT. This malware family bundles its code in the popu-
lar android application for spreading itself. The malware
of this family activates itself at boot complete and at bat-
tery status intents to do malicious activities craftily. The
malware of this family poses medium risk19. This malware
family was detected in 2011 and targeted the Chinese
market. The hazardous behavior is depicted in the system
call trace also as this malware can invoke the root autho-
rized system calls like fchown32() for changing the owner
of the files having the critical data, umask() for changing

the read, write and execute permission on executable files,
flock() for tinkering with lock on files, fork() for creating
new process and pipe() for doing inter-process commu-
nication. The experiment shows the heavy use of system
calls like ptrace(), write(), read(), futex(), recevfrom(),
sendto() etc. for controlling process, sending and receiv-
ing messages to remote server and reading and writing
data on the memory.

4.5 BaseBridge
BaseBridge, discovered in 2011 is one of the most hazard-
ous and difficult to control malware family. BaseBridge
damages the user mobile device from all possible direc-
tions and has a number of variants. This malware family
takes control of the device by taking root privileges and
sends critical data like IMSI, IMEI, OS version, phone
number, device information by invoking the read() system
call for reading critical files and sending it to the remote
server through HTTP connection by using sendto() sys-
tem call and acts as a scout for malware author. These
also have the permission of sending SMS, Blocking SMS,
deleting SMS and can do phone calls, thus harms the user
financially also. This malware silently installs a BOTNET
application for SMS charging. The different variants of this
malware family use both repackaging and update for their

Iconosys 13 Trojan
spy

2012 Standalone Boot
Complete

No Yes Yes Send
Confidential
Data to Remote
Server and
do SMS on
Designated No.

Kmin 13 Trojan Standalone Boot
Complete

No Yes Yes Send Device
Information to
Remote Server.

Adrd 10 Trojan
Spy

2011 Repackaging Boot
Complete,
Network
Configuration
Change, Call
phone

No Yes Yes Send Device
Information,
Network Status
to the Remote
Device, can
Install other
apps

Gappusin 10 Trojan 2012 Update - No Yes Yes Send Wi-Fi
,network related
Confidential
Data to Remote
Device to enable
the device easy
for hacking.

Sapna Malik and Kiran Khatter

Indian Journal of Science and Technology 7Vol 9 (21) | June 2016 | www.indjst.org

installation and get activated on Boot Complete, Battery
Status and on system events. In the experiment, this mal-
ware has been found spying by changing the permission
of memory protected region by invoking the mprotect()
system call and by changing the permission of critical
files by chmod() and umask() system call and by perform-
ing read() and write() operation on the files of user. This
malware also tries to get memory status and information
about other processes by invoking madvise(), getpid()
and getuid(). This malware also invokes the system calls
mmap(), munmap(), fdatasysc() for updating data of the
memory.

4.6 Ginger Master
Ginger Master is a Trojan spy malware which forges
SQLite database having information about user phone
number, IMEI number, Android version, List of installed
applications and Network information, and sends that to
the remote server. It has root access capability and can
install and uninstall the malicious application without
user permission. It uses the method of repackaging by
bundling it code into the popular application. During the
experiment, the spy nature of Ginmaster has prominently
surfaced. There are multiple calls to the system calls
like getuid(), getpid(), futex(), wait4(), ioctrl(), read(),
epoll(), cacheflush(), write() for the purpose of gathering
information about user process and files. There are also
multiple calls to the system calls sendto() and recefrom()
for sending and receiving data to/from malware remote
server.

4.7 Iconosys
Iconosys is another standalone Trojan spy discovered in
2012. This malware family triggers its methods on boot
complete and runs in the background silently to sniff the
online activities of the user, device location, text mes-
sages, user contact list, credit card details and sends this
confidential information to malware author. It has the
permissions to read, write and send sms to the designated
number. This also has phone call capability and can harm
the user financially also. This can write and read the device
storage. The analysis of system calls shows the malicious
activities of controlling user process by invoking ptrace(),
sigpromask(), futex(), ioctrl(), epoll() and wait4() mul-
tiple times. This also shows the multiple invocations of
system calls recevfrom(), sendto() for sending data to the
remote server.

4.8 Kmin, Adrd and Gappusin Malware
Families
Kmin, Adrd and Gappusin malware families were dis-
covered in 2011. Kmin is a standalone installation based
malware family which is activated at boot complete
event. This type of malware takes control of user device
and sends SMS to premium services, blocks user SMS
and sends user private data to the remote servers. Adrd,
a Trojan spy bundles its code in the benign application
for breaching the privacy of user by sending confidential
data to the remote server through HTTP connection. This
is activated on Boot complete and also has the capabil-
ity of calling phone. Gappusin is also an SMS Trojan who
sends device information like IMEI number, IMSI, OS to
the remote server and gives the control of the device to a
remote server. It also sends SMS, Blocks SMS. During the
experiment, this malware also shows the multiple times
invocations of system calls from the process-related calls,
file structure related calls and communication-related
system calls. Table 2 shows the frequency of different sys-
tem calls invoked by these malware families.

In this experiment, we have also observed the system
call traces of 300 benign applications of Androtracker13
project. In the experiment, we have observed that no. of
Malicious Applications that invoke a system, the call is
much more than the no. of benign applications. Figure
2 shows the comparison of system calls invoked by the
benign applications and malicious applications. Moreover,
there is a huge difference between the maximum fre-
quency of invoking a system call in the benign application
and malicious application. The malicious applications are
used to invoke the system call more frequently and mul-
tiple times than benign applications. Figure 3 shows the
maximum frequency of invoking a system call invoked by
the benign and malicious application.

5. Conclusion
System call analysis is an effective technique for detect-
ing the Android Malware as in this technique; we do not
require bytecode of the malicious application for doing
the analysis. In this paper, we capture the system call
traces of malicious applications during execution of the
malicious application and analyze it. It is observed that
the malware application invokes the system calls more
frequently than the benign android application. The
most frequently invoked system calls are trace(), sigproc-

System Call Analysis of Android Malware Families

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 8

Ta
bl

e
2.

 F
re

qu
en

cy
 o

f i
nv

ok
in

g
sy

st
em

 c
al

l b
y

m
al

w
ar

e
fa

m
ili

es

Ty
pe

 o
f s

ys
te

m
 c

al
l

D
es

cr
ip

tio
n

Fa
ke

In

st
al

le
r

O
pf

ak
e

Pl
an

kt
on

D
ro

id
Ku

ng
Fu

Ba
se

Br
id

ge
G

in
M

as
te

r
Ic

on
os

ys
K

m
in

A
dr

d
G

ap
pu

si
n

PT
RA

C
E

pr
oc

es
s t

ra
ce

39
38

4
43

56
1

19
15

12
01

5
29

57
30

8
31

48
50

86
18

8
0

SI
G

PR
O

C
M

A
SK

ex
am

in
e

an
d

ch
an

ge

bl
oc

ke
d

sig
na

ls
27

94
2

24
91

5
12

07
75

44
22

59
34

1
25

19
36

50
50

2
35

0

C
LO

C
K

de
te

rm
in

e
pr

oc
es

so
r

tim
e

66
17

47
53

10
34

9
46

50
82

3
83

88
81

80
12

60
8

12
60

8
17

60

RE
C

V
FR

O
M

re
ce

iv
e

a
m

es
sa

ge
 fr

om

a
so

ck
et

45
66

36
40

73
57

38
56

56
7

67
85

61
89

50
00

50
00

14
05

W
RI

TE
w

rit
e

to
 a

 fi
le

 d
es

cr
ip

to
r

41
67

19
73

18
07

37
96

12
21

25
14

18
99

40
06

21
59

59
4

W
A

IT
4

w
ai

t f
or

 p
ro

ce
ss

 to

ch
an

ge
 st

at
e,

BS
D

 st
yl

e
40

34
18

25
60

4
37

64
10

66
10

8
11

35
18

25
64

0

SE
N

D
TO

se
nd

 a
 sh

or
t m

es
sa

ge
 o

n
a

so
ck

et
27

62
20

53
44

67
24

51
30

8
42

14
37

26
26

82
26

82
86

3

M
PR

O
TE

C
T

se
t p

ro
te

ct
io

n
on

 a

re
gi

on
 o

f m
em

or
y

16
84

15
11

14
98

21
91

69
9

83
4

13
42

16
78

16
78

81
5

FU
TE

X
fa

st
 u

se
r-

sp
ac

e
lo

ck
in

g
56

43
14

53
4

29
05

21
57

51
25

28
99

13
30

58
07

58
07

45
76

IO
C

TL
co

nt
ro

l d
ev

ic
e

21
47

17
21

38
11

17
38

36
0

24
96

26
43

23
21

23
21

77
8

FC
N

TL
64

m
an

ip
ul

at
e

fil
e

de
sc

rip
to

r
10

8
70

13
6

15
25

17
7

10
0

25
4

67
93

7
25

G
ET

PI
D

ge
t p

ro
ce

ss
 id

en
tifi

ca
tio

n
17

96
11

81
12

21
13

87
27

2
20

61
12

04
25

46
25

46
54

8

G
ET

U
ID

32
ge

t u
se

r i
de

nt
ity

13
71

11
87

18
71

11
14

20
8

14
72

10
42

17
19

17
19

32
2

EP
O

LL
I/

O
 e

ve
nt

 n
ot

ifi
ca

tio
n

fa
ci

lit
y

13
14

11
90

15
43

10
06

21
6

14
74

11
71

16
61

16
33

29
1

C
A

C
H

EF
LU

SH
flu

sh
 co

nt
en

ts
 o

f
in

st
ru

ct
io

n
an

d/
or

 d
at

a
ca

ch
e

71
8

63
2

57
6

93
2

25
8

34
0

46
9

48
7

48
7

27
1

RE
A

D
re

ad
 fr

om
 a

 fi
le

de

sc
rip

to
r

45
17

12
61

13
31

90
4

17
3

14
11

97
1

13
47

11
54

33
3

ST
AT

64
ge

t fi
le

 st
at

us
86

14
2

20
0

77
8

70
26

9
11

3
16

0
22

2
54

FS
TA

T6
4

ge
t fi

le
 st

at
us

12
43

99
77

0
76

45
14

1
28

38
4

22

G
ET

TI
M

EO
FD

AY
ge

t /
 se

t t
im

e
32

96
46

5
76

5
14

0
50

26
1

47
35

4
5

Sapna Malik and Kiran Khatter

Indian Journal of Science and Technology 9Vol 9 (21) | June 2016 | www.indjst.org

A
C

C
ES

S
ch

ec
k

us
er

’s
pe

rm
iss

io
ns

fo

r a
 fi

le
26

42
93

42
6

45
42

71
51

17
6

37

PR
EA

D
re

ad
 fr

om
 o

r w
rit

e
to

 a

fil
e

de
sc

rip
to

r a
t a

 g
iv

en

off
se

t

10
6

10
8

25
9

40
8

74
15

7
13

4
86

23
7

62

W
RI

TE
V

re
ad

 o
r w

rit
e

da
ta

 in
to

m

ul
tip

le
 b

uff
er

s
44

3
47

9
64

8
38

4
52

43
1

51
7

51
9

51
9

27
1

U
M

A
SK

se
t fi

le
 m

od
e

cr
ea

tio
n

m
as

k
0

0
6

38
2

38
16

62
2

24
4

0

C
LO

SE
cl

os
e

a
fil

e
de

sc
rip

to
r

32
6

21
9

34
6

35
2

92
20

0
12

2
18

7
19

6
11

5

O
PE

N
op

en
 a

nd
 p

os
sib

ly
 cr

ea
te

a

fil
e

12
51

74
34

7
46

51
63

61
19

5
20

M
M

A
P2

m
ap

 fi
le

s o
r d

ev
ic

es
 in

to

m
em

or
y

23
4

36
3

32
0

29
8

98
30

8
11

2
34

9
34

9
23

9

M
U

N
M

A
P

m
ap

 o
r u

nm
ap

 fi
le

s o
r

de
vi

ce
s i

nt
o

m
em

or
y

22
1

33
1

26
3

22
7

68
21

7
87

31
0

31
0

19
9

M
A

D
V

IS
E

gi
ve

 a
dv

ic
e

ab
ou

t u
se

 o
f

m
em

or
y

15
9

23
9

23
6

22
6

44
14

1
42

27
2

22
6

16
3

FC
H

O
W

N
32

ch
an

ge
 o

w
ne

rs
hi

p
of

 a

fil
e

0
1

3
19

1
19

8
31

1
12

2
0

PR
C

TL
op

er
at

io
ns

 o
n

a
pr

oc
es

s
15

1
18

6
15

3
15

1
20

25
19

26
6

17
9

10
2

BR
K

ch
an

ge
 th

e
am

ou
nt

 o
f

sp
ac

e
al

lo
ca

te
d

fo
r t

he

ca
lli

ng
 p

ro
ce

ss
’s

da
ta

se

gm
en

t

13
5

76
17

0
13

9
12

6
38

17
1

23
0

23
0

14
1

LS
EE

K
re

po
sit

io
n

re
ad

/w
rit

e
fil

e
off

se
t

34
8

18
11

6
11

8
0

6
0

18
2

0

D
U

P
du

pl
ic

at
e

a
fil

e
de

sc
rip

to
r

16
6

10
7

13
7

71
33

89
61

12
3

12
3

51

G
ET

PR
IO

RI
TY

ge
t/s

et
 p

ro
gr

am

sc
he

du
lin

g
pr

io
rit

y
41

17
26

52
4

15
3

14
50

4

PI
PE

cr
ea

te
 p

ip
e

0
0

0
40

0
0

0
0

0
0

C
LO

N
E

cr
ea

te
 a

 ch
ild

 p
ro

ce
ss

8
16

41
36

15
45

13
14

17
17

FS
YN

C
sy

nc
hr

on
iz

e
a

fil
e’s

 in
-

co
re

 st
at

e
w

ith
 st

or
ag

e
de

vi
ce

2
0

43
23

5
8

0
1

9
0

System Call Analysis of Android Malware Families

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 10

G
ET

D
EN

TS
64

ge
t d

ire
ct

or
y

en
tr

ie
s

2
12

30
2

20
0

8
2

14
0

0

G
ET

TI
D

ge
t t

hr
ea

d
id

en
tifi

ca
tio

n
4

15
9

14
10

3
13

3
4

0

LS
TA

T6
4

ge
t fi

le
 st

at
us

2
9

45
13

12
7

7
10

9
2

FO
RK

cr
ea

te
 a

 ch
ild

 p
ro

ce
ss

0
0

0
10

0
0

0
0

0
0

N
A

N
O

SL
EE

P
hi

gh
-r

es
ol

ut
io

n
sle

ep
10

24
9

9
30

21
2

62
3

1

RE
C

V
M

SG
re

ce
iv

e
a

m
es

sa
ge

 fr
om

a

so
ck

et
2

6
0

8
0

2
0

8
0

0

C
H

M
O

D
ch

an
ge

 p
er

m
iss

io
ns

 o
f

a
fil

e
3

3
43

7
10

8
8

0
10

2

SE
N

D
M

SG
se

nd
 a

 m
es

sa
ge

 o
n

a
so

ck
et

1
8

4
7

0
5

0
9

0
0

FL
O

C
K

ap
pl

y
or

 re
m

ov
e

an

ad
vi

so
ry

 lo
ck

 o
n

an
 o

pe
n

fil
e

0
5

0
6

0
2

0
6

0
0

M
K

D
IR

cr
ea

te
 a

 d
ire

ct
or

y
1

6
1

6
3

3
1

6
1

2

C
O

N
N

EC
T

in
iti

at
e

a
co

nn
ec

tio
n

on

a
so

ck
et

1
1

1
4

0
1

0
3

0
0

PO
LL

w
ai

t f
or

 so
m

e
ev

en
t o

n
a

fil
e

de
sc

rip
to

r
0

2
1

4
0

1
0

3
0

0

RE
N

A
M

E
ch

an
ge

 th
e

na
m

e
or

lo

ca
tio

n
of

 a
 fi

le
1

0
43

4
5

8
0

2
9

0

SE
TP

RI
O

RI
TY

ge
t/s

et
 p

ro
gr

am

sc
he

du
lin

g
pr

io
rit

y
0

3
3

4
2

0
4

0
0

0

SE
TS

O
C

KO
PT

ge
t a

nd
 se

t o
pt

io
ns

 o
n

so
ck

et
s

20
4

1
4

0
4

0
7

12
0

SO
C

K
ET

cr
ea

te
 a

n
en

dp
oi

nt
 fo

r
co

m
m

un
ic

at
io

n
1

1
1

4
0

1
0

3
0

0

U
N

LI
N

K
ca

ll
th

e
un

lin
k

fu
nc

tio
n

to
 re

m
ov

e
th

e
sp

ec
ifi

ed

fil
e

1
0

43
4

7
7

2
1

9
0

G
ET

SO
C

KO
PT

ge
t a

nd
 se

t o
pt

io
ns

 o
n

so
ck

et
s

0
0

0
3

0
0

0
0

0
0

BI
N

D
bi

nd
 a

 n
am

e
to

 a
 so

ck
et

0
0

0
2

0
0

0
0

0
0

Sapna Malik and Kiran Khatter

Indian Journal of Science and Technology 11Vol 9 (21) | June 2016 | www.indjst.org

FT
RU

N
C

AT
E

tr
un

ca
te

 a
 fi

le
 to

 a

sp
ec

ifi
ed

 le
ng

th
0

0
0

2
0

0
0

0
0

0

G
ET

SO
C

K
N

A
M

E
ge

t s
oc

ke
t n

am
e

0
0

0
2

0
0

0
0

0
0

IN
O

TI
FY

m
on

ito
rin

g
fil

es
ys

te
m

ev

en
ts

0
1

1
2

0
1

0
1

0
0

RE
ST

A
RT

re
st

ar
t a

 sy
st

em
 c

al
l a

fte
r

in
te

rr
up

tio
n

by
 a

 st
op

sig

na
l

0
0

1
2

0
1

0
0

0
0

SC
H

ED
ov

er
vi

ew
 o

f s
ch

ed
ul

in
g

A
PI

s
2

2
3

2
2

7
1

2
1

1

G
ET

RL
IM

IT
ge

t/s
et

 re
so

ur
ce

 li
m

its
0

1
1

1
1

0
1

0
0

0

LG
ET

X
AT

TR
re

tr
ie

ve
 a

n
ex

te
nd

ed

at
tr

ib
ut

e
va

lu
e

0
1

0
1

0
0

0
1

0
0

RE
A

D
LI

N
K

re
ad

 v
al

ue
 o

f a
 sy

m
bo

lic

lin
k

0
1

1
1

0
0

1
0

0
0

SO
C

K
ET

PA
IR

cr
ea

te
 a

 p
ai

r o
f

co
nn

ec
te

d
so

ck
et

s
2

1
2

1
0

1
1

1
3

0

ST
AT

FS
64

ge
t fi

le
sy

st
em

 st
at

ist
ic

s
2

2
1

1
3

3
2

2
2

0

FD
AT

A
SY

N
C

sy
nc

hr
on

iz
e

a
fil

e’s
 in

-
co

re
 st

at
e

w
ith

 st
or

ag
e

de
vi

ce

0
0

0
0

35
6

15
0

19
0

0

G
ET

PP
ID

ge
t p

ar
en

t p
ro

ce
ss

id

en
tifi

ca
tio

n
0

0
1

0
0

0
1

0
0

0

K
IL

L
te

rm
in

at
e

a
pr

oc
es

s
1

0
0

0
0

0
0

0
0

1

PW
RI

TE
re

ad
 fr

om
 o

r w
rit

e
to

 a

fil
e

de
sc

rip
to

r a
t a

 g
iv

en

off
se

t

0
0

0
0

70
13

30
0

55
5

0

System Call Analysis of Android Malware Families

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 12

Figure 2. No. of Applications invoked a system call.

Figure 3. Maximum frequency of invoking a system call by malicious vs benign application.

Sapna Malik and Kiran Khatter

Indian Journal of Science and Technology 13Vol 9 (21) | June 2016 | www.indjst.org

mask(), futex(), recevfrom(), sendto(), write(), read(),
clock(), wait4(), ioctl(), mprotect(), getpid(), getuid().
We can combine the System Call Trace and other features
like Method call and API call for efficient and effective
Intrusion-Detection System for Android Mobile Device.

6 References
1.	 Kang H, Cho J, Kim H. Application study on android appli-

cation prototyping method using App inventor. Indian
Journal of Science and Technology. 2015 Aug; 8(18):1–5.
DOI: 10.17485/ijst/2015/v8i18/75919.

2.	 Jerlin MA, Jayakumar C. A dynamic malware analysis for
windows platform - a survey. Indian Journal of Science and
Technology. 2015 Oct; 8(27):1–5. DOI: 10.17485/ijst/2015/
v8i27/81172.

3.	 Schmidt AD, Schmidt HG, Clausen J, Yuksel KA, Kiraz O,
Camtepe A, Albayrak S. Enhancing security of Linux-based
android devices. Proceedings of 15th International Linux
Kongress; 2008. p. 1–16.

4.	 Kolbitsch C, Comparetti PM, Kruegel C, Kirda E, Zhou X,
Wang XF. Effective and efficient malware detection at the
end host. Proceedings of the 18th conference on USENIX
security Symposium; 2009. p. 351–98.

5.	 Wang X, Jhi V, Zhu S, Liu P. Detecting software theft via
system call based birthmarks. Proceedings of the Computer
Security Applications Conference; 2009. p. 149–58.

6.	 Lanzi A, Balzarotti D, Kruegel C, Christodorescu M, Kirda
E. Accessminer: using system-centric models for malware
protection. Proceedings of the 17th ACM conference on
Computer and Communications Security; 2010. p. 399–12.

7.	 Isohara T, Takemori K, Kubota A. Kernel-based behav-
ior analysis for android malware detection. Proceedings
of Seventh International Conference on Computational
Intelligence and Security(CIS), Hainan; 2011. p. 1011–15.

8.	 Reina A, Fattori A, Cavallaro L. A system call-centric analy-
sis and stimulation technique to automatically reconstruct
android malware behaviors. Proceedings of Euro Sec’13;
2013. p. 1–6.

9.	 Tchakounte F, Dayang P. System calls analysis of malware on
android. International Journal of Science and Technology.
2013; 2(9):1–6.

10.	 Canfora G, Mercaldo F, Visaggio CA. A classifier of
malicious android applications. Proceedings of the 2nd

International Workshop on Security of Mobile Applications,
in conjunction with the International Conference on
Availability, Reliability and Security, (ARES), Regensburg;
2013. p. 607–14.

11.	 Canfora G, Medvet E, Mercaldo F, Visaggio CA. Detection
of malicious web pages using system calls sequences.
Proceedings of the 4th International Workshop on Security
and Cognitive Informatics for Homeland Defense (SeCIHD
2014); 2014. p. 226–38.

12.	 Jeong Y, Lee H, Cho S, Han S, Park M. A kernel-based
monitoring approach for analyzing malicious behavior on
android. Proceedings of the 29th Annual ACM Symposium
on Applied Computing; 2014. p. 1737–38.

13.	 Ahmad DM, Javed P. Security comparison of android and
IOS and implementation of User Approved Security (UAS)
for Android. Indian Journal of Science and Technology.
2016 Apr; 9(14):1–7. DOI: 10.17485/ijst/2016/v9i14/87071.

14.	 Jeyaseelan WRS, Hariharan S. Malware detection and
elimination using Bayesian technique and nymble algo-
rithm. Indian Journal of Science and Technology. 2015 Dec;
8(34):1–7. DOI: 10.17485/ijst/2015/v8i34/85244.

15.	 Sathish V, Khader PSA. Deployment of proposed botnet
monitoring platform using online malware analysis for
distributed environment. Indian Journal of Science and
Technology. 2014 Jan; 7(8):1087–1093. DOI: 10.17485/
ijst/2014/v7i8/48583.

16.	 Zhou Y, Jiang X. Dissecting android malware: character-
ization and evolution. Proceeding of IEEE Symposium on
Security and Privacy, San Francisco: CA; 2012. p. 95–109.

17.	 Arp D, Spreitzenbarth M, Malte H, Gascon H, Rieck K.
Drebin: effective and explainable detection of android mal-
ware in your pocket. Symposium of Network Distribution
System and Security; 2014. p. 23–6.

18.	 Kang H, Jang J-W, Mohaisen A, Kim HK. Detecting and
classifying android malware using static analysis along with
creator information. International Journal of Distributed
Sensor Networks-Special issue on Advanced Big Data
Management and Analytics for Ubiquitous Sensors; 2015.
p. 7.

19.	 Grace M, Zhou Y, Zhang Q, Zou S, Jiang X. Risk ranker:
scalable and accurate zero-day android malware detec-
tion categories and subject descriptors. Proceeding of
10th International Conference Mobile System Application
Services; 2011. p. 281–94.

