
Abstract 
Objectives: Finding the integral solutions of ternary quadratic equation and the relation between parameters/solutions.
The ternary quadratic Diophantine equation is studied for it’s non-trivial distinct integral solutions. Findings: Employing
the integral solutions of the equation under consideration infinitely many Pythagorean triangles are obtained where each
of which satisfies the relation “Hypotenuse-4(area/Perimeter) is a Nasty number”.
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1. Introduction
The problem of  finding nonzero integral solutions for
the quadratic homogeneous or non-homogeneous
Diophantine equations have been an interest to many
mathematicians since antiquity as can be seen from1,2. In 3,
infinitely many Pythagorean triangles in each of which
the hypotenuse is four times the product of the generator
added with unity are obtained by employing the non-
trivial integral solutions of the binary quadratic equation
y2 = 3x2 + 1. In4, the binary quadratic equation y2 = 10x2 +
1  is considered and by employing the nontrivial integral
solutions of the equation, infinitely many Pythagorean
triangles satisfying the relation(2k2  + 3k – 4) Hypotenuse–
(2k2 + 2k – 5) one of the leg = (2k + 1) other leg + 1 are
obtained. For other choices of Pythagorean triangles
obtained through the integral solutions of correspond-
ing ternary quadratic equations are given in5–13. Also14–16

deals with the higher degree Diophantine equations and
properties among their solutions. In this communica-
tion, we consider yet another ternary quadratic equation 
x2 = 22k+1 (3z2  – y2) and illustrate a few properties among
its solutions. Further making use of the integral solutions,
patterns of Pythagorean triangles each with the property
that “Hypotenuse - 4(Area/Perimeter) is a Nasty number”
are obtained.
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2.  Method of Analysis
The equation to be solved is 

	 x z yk2 2 1 2 22 3= −+ ( ), k ∈ z+

which is rewritten as 

	 x y zk k2 2 1 2 2 22 2 6+ =+ � (1)

Assuming z = z (k,a,b) = a bk2 2 1 22+ + � (2)

in(1), it is written in the factorizable form as 
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Equating real and imaginary parts the values of x and 
y are given by 
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Thus (2) and (3), represent non-zero distinct integral 
solutions of (1). A few properties among the solutions are 
given below. 

1.	 Each of the following expressions represents a Nasty 
number

    (i) 2 2 21k y k b b x k b b+ −( , , ) ( , , )

    (ii) 2 3 2 21k k kz k a b y k a b x k a b+ ∗ − +[ ( , , ) ( ( , , ) ( , , ))]

    (iii) 21 [ 2y(1,1,2) – x(1,1,2)]
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3. 2 2 2 2 2 2 2k z k a a y k a a x k a a[ ( , , ) ( , , ) ( , , )]+ − = 

  sum of 2 perfect squares

4. x a b y a b z a b( , , ) ( , , ) ( , , )0 0 0+ +  
=

 

  difference of 2 perfect squares

6. x b b z b b( , , ) ( , , )1 2 4 1 2 0+ =

7. xz a t Pa a a( , , ) Pr (mod ),1 1 24 11 1 36
2 5− + − ≡

3.  Remarkable Observation 

Taking y = n, and x m nk= −2 ( ), we get

	 m a bk k= − ++ +3 2 22 2 2 1 2( )

	 n a b abk k= − ++ +2 2 1 2 22 2

Considering m and n as the generators of the 
Pythagorean triangle, the sides of the triangle (p,q,r) are 
represented by
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in which ( ) ( )a b bk k k− > ++2 2 22 2 1 2 .

Here the Pythagorean triangle (p,q,r) satisfies the 
relation “Hypotenuse - (Area/Perimeter) is a Nasty num-
ber”.As the expressions representing the sides of the 
Pythagorean triangle are cumbersome, we present below 
the properties satisfied by the sides of the Pythagorean 
triangle for the case k=0. For this case, the sides of the 
Pythagorean triangle are given by
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where in ( )b a b− >2 23
A few interesting properties satisfied by the above 

sides (4) are as follows:

1. � Each of the following expressions represents a Nasty 
number:
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4.  Conclusion
In conclusion one may search for other patterns of 
Pythagorean Triangles and their properties for different 
values of k.
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