
Abstract
We presented the results of polynomial piece-wise approximations of discontinuous Galerkin (DG) for a Volterra integral
equation of the first kind with kernel convolution where the kernel K is smooth and applies to the K(0) ≠ 0 condition. We 
show that a DG approximation of m-th degree results in the total convergence of m degree if m is an odd number and
when m is an even number, it gives a m + 1 degree. There is also a local hyper-convergence of one level higher order (For
example, when m is odd, it is of m + 1 order and when m is even, it is of m + 1 order). But in the cases with even order, the
hyper-convergence exists only when the exact solution u of the equation applies to u(m + 1)(0) = 0. We have also provided the
numerical tests results that show that the theoretical convergence is optimal.
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1. Introduction 
Given the increasing development of sciences in many
fields, we observe the manifestation and application of
integral equations in many engineering problems, phys-
ics, etc. For example, for the implementation of the single
layer potential equations for the dispersion of sound of a
surface, we are faced with Volterra integral equations of
the first kind that for the development of its higher-order
stepwise techniques, we need a simple approximation with
simple analysis. Therefore in this context, we consider the
discontinuous Galerkin approximation of piecewise poly-
nomials for this type of equations with convolution kernel
and evaluate its convergence1.

Numerical tests also show that the approximations
based on Discontinuous Galerkin (DG) has better stabil-
ity than the one based on the conditions with the same
locality. In this paper, first in Part 2 we derive discontinu-
ous Galerkin approximation (DG) based on the matrix
of the coefficients (We have discussed the properties of
the matrices in Lemma 1). In Part 3, a fault equation is
obtained for the approximations. In order to get an idea 

and use the easier method in Part 4, the convergence and
hyper-convergence of the approximation for Volterra
integral equation with special kernel of K(t) ≡ 1 was
evaluated. Then, Part 5 analyzes the convergence of and
hyper-convergence of approximations is general condi-
tions. In Part 6, we presented the numerical tests results
that show that the convergence is optimal and in Part 6,
conclusions and discussions are provided2–5.

2.  Discontinuous Galerkin
Approximation

In this research, we found new convergence results for
piecewise polynomial discontinuous Galerkin approxima-
tions of a convolution kernel Volterra integral equation.
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that K(0) ≠ 0.
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We want to find solutions u(t) of the convolution 
kernel. For, this matter we used d ≥ 0 to be specified. 
Brunner1 considered that the equation (1) have a unique 
solution u ∈ Cd[0, T]. Also, we only satisfied approxima-
tions of equation (1) based on a ∆t = T/N for N > 0. Also, 
we can consider this equation:
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and Pk is the Legendre polynomial of degree. For each 
subinterval Im we can defined m +1 basis functions by:

	 jk
m

m
kt q t

P q if q T
otherwise

( )
( ) ( , ]

+ =
− ∈




∆
2 1 0

0
� (3)

for k = 0 : n. Hence,

	 U t U t for t Tk
m

k
m

k

n

m

N

( ) ( ) [ , ].= ∈
==

−

∑∑ j
00

1

0 � (4)

We considered that the approximate result U(t) for  
t ∈ [0, T] has been achieved, the DG approximation 
of equation (1) in the next subinterval Im is found by 
substituting U given by equation (4) for u. We have:
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Also we can showed the complexity form of the 
equation (1) and the uniform mesh spacing imply that:

< >=< >=− −j kj j kj bj
m

k j
m

k j k
mt, , ,

  0 2∆

That  ≤ m and j, k ≥ 0, so,

β j k

j k

s

j

P s K s s t P s ds ds when

P s
,

( ) (( ) ) ( )

(

 =
− − ′ ′ − ′ =

−

∫ ∫2 1 2 1 0

2

0

1

0
∆ 

11 2 1 0
0

1

0
) (( ) ) ( )∫ ∫ + − ′ ′ − ′ >







 K s s t P s ds ds whenk

s
 ∆

If we consider:

z
t

z
t

P s z t s t dsj
m

j
m

j n= < >= − +∫1 1 2 12 0

1

∆ ∆
∆j , ( ) ( )

for j ≥ 0 gives the complexity sum:

	 Βm m
m

U z−

=

=∑  

 0

� (5)

for U, where ( )a am
j j

m=  for j = 0 : m and Βm m m− + × +∈ℜ ( ) ( )1 1 .  
For Um in

	 Β Β0

0

1

0 1U z U m Nm n m
m

= − = −−

=

−

∑  



, : � (6)

That B0 is nonsingular the complete approximation. 

3. � An Equation for Discontinuous 
Galerkin Approximations Error

If we considered the approximate and exact results U(t) 
and u(t) convince the similar weak form of the VIE.
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Also, the approximation error, convinces the orthogo-
nally equation
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So, we can be rewritten in the Legendre basis 
functions:
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that j = 0 : n; m = 0 : N – 1. If u ∈ Cp + 1[0, T]; m ≤ N – 1, 
then
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This result is the good L2 degree p polynomial 
approximation of u(tm + s∆t), s ∈ (0.1). The other term 
is achieved by
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The ŭk
m^  as a Legendre coefficient convince below 

relation:
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Now we can show that:
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For the special case P = n + 1, we have:
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However, substituting equation (17) into equation (1) 
and rearranging gives:
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Also, If equation (2) preserve with d = p + 1, that  
p ≥ n + 1, then
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4. � Convergence and Super 
Convergence for Special  
Case: K(t) ≡ 1

Here, we study the optimal convergence order of the DG 
method for Volterra integral equations with constant 
Kernel to get the main idea of convergence analysis.

When K(t) ≡ 1, the coefficient matrices in the error 
equation (18) simplify greatly and are given by (10) and, 
B0 = A1 for all  ≥ 1 and so (18) becomes
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In next step, we have
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When k(t) ≡ 1 by bounding the approximation error 
e(t) = u(t) – U(t), the basic result of this subsection is 
to show that the Discontinuous Galerkin scheme for 
equation (1) converges.

5.  Result
In this research, we investigate the test of conditions that 
we presented and various results obtained by convergence 
and hyper-convergence for t ∈ [0,1].
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where J0 is the zeroth-order Bessel function of the first 
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J1 is the first-order Bessel function. We can show for 
very high accuracy by numerical quadrature in the especial 
cases shown in Table 1. Also, all the required derivatives 
of k and z exist in the Table 1, um + 1(0) can be showed from 
the linear equations (3) with p = 1 : m + 2.

We show results in Figure 1 for data of Table 1. 
Comparing with the L∞ error in the approximate result 
with the maximum error at the super convergence points. 

6.  Conclusion
If K and Z are appropriately flat, then the nth degree 
Discontinuous Galerkin method for equation (1) con-
verges to the exact solution. If n is odd, O(∆tn) as the 
order of convergence, and for each subinterval, O(∆tn + 1) 
as the local super convergence at the zeros of ′+Pn 1. If n is 
even, O(∆tn + 1) is convergence of order. Also, if the exact 
solution satisfies un + 1(0) = 0, O(∆t m + 2) as an order of local 
super convergence at the zeros of ′+Pn 2. The numerical 
results that we found in this study certify the divination 
of the theory and also determined that convergence rates 
are optimal.
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Figure 1.  Solutions for data of Table 1 for approximations 
of degree n = 0 : 5.

Table 1.  Especial cases and characteristics of the exact 
solution of at t = 0.

No z(t) ω α u(1)(0) u(3)(0) u(5)(0)

1 te tt− +α 2
1 2/ ( ) 24 24a − 1 5+ 0 0 0

2 te tt− +α 2
1/ ( ) 24 24a − 1 5+ –2 0 0

3 t e tt3 2
1− +α / ( ) 120 3 0 –24 0

4 te tt− +α 2
1/ ( ) 24a − +3 19 –2 –24 0

5 t e tt5 2
1− +α / ( ) 120 3 0 0 –720


