
Abstract
Background: Random forest algorithms tend to use a simple random sampling of observations in building their decision
trees. The random selection has the chance for noisy, outlier and non informative data to take place during the  construction
of trees. This leads to inappropriate and poor ensemble classification decision. This paper aims to optimize, the  sample
selection through probability proportional to size sampling (weighted sampling) in which the noisy, outlier and non
informative data points are down weighted to improve the classification accuracy of the model. Methods: The weights of
each data point is determined in two aspects, finding each data point influence on the model through  Leave-One-Out  method
using a single classification tree and measuring the deviance residual of each data point using logistic regression model,
these are combined as the final weight. Results: The proposed Finest Random Forest (FRF) performs  consistently better
than the conventional Random Forest (RF) in terms of classification accuracy. Conclusion: The classification  accuracy is
improved when random forest is composed with probability proportional to size sampling (weighted sampling) for noisy
data with linear decision boundary. 
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1. Introduction

Random Forest (RF) builds a classification ensemble with
a set of decision trees that grow using randomly selected
subspaces of data1–4. There are many studies showing that
RFs have impressive predictive performance in regression
and classification problems in various fields, including
financial forecasting, remote sensing, and genetic and
biomedical analysis5–13.

It is common that noise and outliers exist in real
world datasets due to errors such as, typographical errors
or measurement errors. When the data is modeled using
machine learning algorithms, the presence of noise and
outliers can affect the model that is generated. Improving
how learning algorithms handle noise and outliers can 

produce better models14. Outlier problem could be traced
to its origin in the middle of the eighteenth century, when
the main discussion is about justification to reject or
retain an observation. “It is rather because of the loss in
the accuracy of the experiment caused by throwing away
a couple of good values is small compared to the loss
caused by keeping even one bad value”15.

Handling noise and outliers has been addressed in
a number of different ways, beginning with prevent-
ing overfit. A common approach to prevent overfit is
adhering to Occam’s razor which states that the simplest
hypothesis that fits the data tends to be the best one. Using
Occam’s razor, a trade off is made between accuracy on
the training set and the complexity of the model, prefer-
ring a simpler model that will not overfit the training set. 
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Another technique to prevent overfit is to use a validation 
set during training to ensure that noise and outliers are 
not learned16.

In a dataset all the observations are not equally 
informative to build a model. Some observations are 
highly informative and some are not. The performance 
of the model is improved while neglecting or giving 
less importance for the non informative observations 
during the model construction17. In random forest, ran-
dom selection has the chance for noisy, outlier and non 
informative data to take place during the construction 
of trees. This will decrease the classification accuracy 
of the individual tree in the forest. This paper aims to 
optimize, the sample selection through probability pro-
portional to size sampling (weighted sampling) in which 
the noisy, outlier and non informative data points are 
down weighted, to improve the classification accuracy of 
the model.

2.  Random Forest Algorithm
Random forest is an ensemble prediction method by 
aggregating the result of individual decision trees. In the 
past decade, various methods have been proposed to grow 
a random forest1–3,18. Among these methods, Breiman’s 
method1 has gained increasing popularity because it has 
higher performance against other methods19. 

Let D be a training dataset in an M-dimensional space 
X, and let Y be the class feature with total number of c 
distinct classes. The method for building a random forest1 
follows the process including three steps18:

Step 1: Training data sampling: use the bagging method 
to generate K subsets of training data {D1, D2,..., DK} by 
randomly sampling D with replacement;

Step 2: Feature subspace sampling and tree classifier 
building: for each training dataset Di (1≤ i ≤ K), use 
a decision tree algorithm to grow a tree. At each node, 
randomly sample a subspace Xi of F features (F << M), 
compute all splits in subspace Xi, and select the best split 
as the splitting feature to generate a child node. Repeat 
this process until the stopping criteria is met, and a tree 
hi(Di, Xi) built by training data Di under subspace Xi is 
thus obtained.

Step 3: Decision aggregation: ensemble the K trees {h1(D1, 
X1), h2(D2, X2), ... , hK(DK, XK)} to form a random forest and 
use the majority vote of these trees to make an ensemble 
classification decision.

The algorithm has two key parameters, i.e., the number of 
K trees to form a random forest and the number of F randomly 
sampled features for building a decision tree. According to  
Breiman1, parameter K is set to 100 and parameter 
F is computed by F = [log2 M + 1]. For large and high 
dimensional data, a large K and F should be used.

3. � Weight Calculation of Training 
samples Based on the 
Influence and the Deviance 
Residual 

In the proposed approach, before constructing a random 
forest with many trees, a single classification tree is used 
to measure the influence, and the logistic regression 
model is used to measure the deviance residual of each 
data point, which will be used to train the Random Forest 
model.

The weights of each data point is determined in two 
aspects, which are (i) finding each data point influence on 
the model through Leave-One-Out method using a single 
classification tree (ii) measuring the deviance residual 
of each data point using logistic regression model. The 
AUC accuracy is used to measure the performance of the 
classification tree. 

If a data point has high negative influence (degrade 
the performance) on the model (a classification tree) 
and has high deviance residual, then it will be treated 
as a noisy or outlier data point. These, data points will 
be down weighted to maximize the overall classification 
accuracy during the construction of Random  
Forest model.

3.1. � Measuring the Influence of Training 
Samples using Leave-One-Out Method

Leave-one-out is a method where in each iteration, all the 
data except for a single observation are used for training 
the model. Using this method each observation’s influence 
on the model can be measured. A single classification tree 
is used to measure the influence of each data point. The 
model (a tree) trained without a single observation is 
called Reduced Model and a model (a tree) trained with 
full set of training observations is called Full model. The 
influence of a data point is the difference between these 
two models performance, which is as follows

Influencei = ηFull – ηReduced



Improving Classification Accuracy based on Random Forest Model through Weighted Sampling for Noisy Data with Linear 
Decision Boundary

Indian Journal of Science and TechnologyVol 8 (S8) | April 2015 | www.indjst.org616

Where, ηFull is the AUC accuracy of the full model and 
ηReduced is the AUC accuracy of the reduced model17.

Likewise, each data point’s influence on the model is 
estimated. The estimated influence of each data point is 
normalized using min-max normalization and it is used 
as a part of weight calculation to perform the probabil-
ity proportional to size sampling (weighted sampling) in 
random forest construction.

3.2 � Measuring the deviance residual of 
Training Samples

The logistic regression is a linear model, works well for the 
dataset with linear decision boundary. A decision bound-
ary is the region of a problem space in which the output 
label of a classifier is ambiguous. If the decision boundary 
is a hyper plane, then the classification problem is linear, 
and the classes are linearly separable. 

The logistic regression model is used to measure the 
standardized deviance residual of each data point. The 
raw residual for observation i is the difference between 
the observed and predicted value, i.e.

	 r y yi i i= - ˘

These are difficult to interpret, as they will have dif-
ferent levels of natural variation, if we spot what seems 
to be a large residual, compared with the rest, it may sim-
ply be caused by natural variation rather than a problem 
with the model. This issue can be resolved by calculating 
a standardized deviance residual as follows,

	
r sign r
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where sign(ri) is the sign of ri, and Di is the contribution 
to the deviance made by the ith observation.

Similarly, each data point’s standardized deviance 
residual is estimated. The absolute deviance residual of 
each data point is normalized and used as a part of weight 
calculation to perform the probability proportional to size 
sampling (weighted sampling) in building the random 
forest.

3.3  Combining the Weights 
The measured Influence and the deviance residual are 
combined as a weight for each data point in the training 
sample and these are used to carry out the probability 

proportional to size sampling for building a random 
forest. 

Weighti = Influencei ∗ (1 - Deviancei)
2, i = 1, 2, 3, ... , n

Thus, the combined weight of each data point in the 
training sample is calculated and the same is used for 
weighted sampling to train the Random Forest. 

Based on the range of Influence and deviance residual 
the weights may vary for each data point. If a data point 
has high negative Influence and also has high deviance 
residual, then it is highly down weighted to optimize the 
Random Forest through weighted sampling.

4. � Proposed Finest Random 
Forest Algorithm

Let D be a training dataset in an M-dimensional space X, 
and let Y be the class feature with total number of c distinct 
classes. The method to build a Finest Random Forest from 
X with probability proportional to size sampling (weighted 
sampling) based on the weight calculated for each data 
point mentioned in section3 follows the following steps.

Step 0: Weight Initialization: Assign the weight for each 
Training sample based on the Influence and deviance 
residual of the sample;

Step 1: Training data sampling: use the bagging method 
to generate K subsets of training data {D1, D2, ..., DK} 
by Probability Proportional to size sampling (weighted 
sampling) D with replacement;

Step 2: Feature subspace sampling and tree classifier 
building: for each training dataset Di (1≤ i ≤ K), use 
a decision tree algorithm to grow a tree. At each node, 
randomly sample a subspace Xi of F features (F << M), 
compute all splits in subspace Xi, and select the best split 
as the splitting feature to generate a child node. Repeat 
this process until the stopping criteria is met, and a tree 
hi(Di, Xi) built by training data Di under subspace Xi is 
thus obtained.

Step 3: Decision aggregation: ensemble the K trees {h1(D1, 
X1), h2(D2, X2), ... , hK(DK, XK)} to form a random forest and 
use the majority vote of these trees to make an ensemble 
classification decision.

The algorithm has two key parameters, i.e., the number 
of K trees to form a random forest and the number of F 
randomly sampled features for building a decision tree. 
For large and high dimensional data, a large K and F 
should be used.

ŷi
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5.  Data Source
Detailed information of the Wisconsin Prognostic Breast 
Cancer (WPBC) dataset is available in the UCI Machine 
Learning Repository20. The Blood Transfusion Service 
center dataset21 and Mammographic Mass dataset22 
information is obtained from UCI Machine Learning 
Repository. The SPECTF heart dataset is also obtained 
from UCI Machine Learning Repository23. In all the dataset 
70% of the data used as a training sample, remaining 30% 
of the sample used for testing the model.

6.  Results and Discussion
A series of experiments were conducted on four datasets 
such as, Breast cancer, Blood transfusion, Mammographic 
and Heart datasets. In each dataset, it is concluded that 
the proposed Finest Random Forest (FRF) performs con-
sistently better than the conventional Random Forest 
(RF). The AUC accuracy is used as a metric to evaluate 
the performance of the algorithms.

6.1  Performance Analysis 
The proposed finest random forest method is compared 
with Breiman’s method, the average accuracy of 10 results 
were computed by performing 10 rounds of experiments on 
each dataset. The weight of each data point of the training 
sample is calculated based on the influence and deviance 
residual of the same. In each round, probability propor-
tional to size sampling (weighted sampling) is performed 
to construct the Finest Random Forest. The random forest 
also builds by Breiman’s method by selecting the training 
samples randomly. The average AUC accuracy of different 

random forest consisting different number of trees 
(ranging from 10 to 100 trees with increments 10) gener-
ated by the finest random forest method (corresponding 
to column FRF) and Breiman’s method (corresponding to 
column RF) from four datasets are shown in Table 1. The 
proposed method achieves high classification accuracy by 
improving the AUC accuracy on the four datasets.

6.2  Comparison of Classification Accuracy 
The preceding section has shown that the Finest Random 
Forest (FRF) outperforms the conventional random for-
est. The AUC accuracy of the random forest is increased 
by performing probability proportional to size sampling 
(weighted sampling) based on the weights calculated 
for each data point in the training samples. In the above 
mentioned four datasets, increasing the AUC accuracy 
ranging from 2% to 11% has achieved with the finest ran-
dom forest than the original random forest.

Based on the complexity pattern of the dataset in 
terms of noise and outlier, the percentage of improve-
ment in AUC accuracy of the random forest may vary. 
The proposed finest random forest method increase the 
classification accuracy on the four dataset is shown in  
Figure 1. The dotted blue curves represent the AUC accuracy 
obtained with random forest and the red curves represent 
the AUC accuracy obtained with Finest Random Forest.

7.  Conclusion
This paper presents an evaluation method to identify 
the noisy, outlier and non informative data points in the 
training sample, and proposed a finest random forest 

Table 1.  Comparison of Classification accuracy between Random Forest (RF) and Finest Random Forest (FRF)
          Dataset 
Trees

Mammographic Blood Transfusion Breast Cancer Heart Disease 

RF FRF RF FRF RF FRF RF FRF
10 0.8701 0.90056 0.637559 0.672575 0.550725 0.603261 0.76801 0.774948
20 0.891015 0.903158 0.640306 0.702403 0.549215 0.602959 0.771899 0.784238
30 0.89144 0.903571 0.636469 0.700353 0.551932 0.60087 0.78876 0.813372
40 0.884917 0.905077 0.657444 0.707352 0.583937 0.618357 0.79509 0.815439
50 0.891116 0.914256 0.640917 0.711909 0.547403 0.632778 0.80155 0.814664
60 0.896576 0.916913 0.639884 0.71023 0.558877 0.632246 0.80084 0.813954
70 0.897078 0.913518 0.658992 0.713043 0.574879 0.626739 0.800388 0.821641
80 0.894303 0.910811 0.646956 0.713261 0.566703 0.621413 0.805039 0.824339
90 0.899174 0.913932 0.650889 0.720105 0.557669 0.639191 0.810659 0.821895
100 0.90245 0.914315 0.643947 0.724267 0.582428 0.644626 0.816085 0.830911
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algorithm which replaces the existing random sampling 
with probability proportional to size sampling (weighted 
sampling) in the construction of random forest model. The 
classification accuracy is improved when a random forest 
is composed with probability proportional to size sampling 
(weighted sampling) in which the data points has high 
deviance residual and also negatively influence the model 
are down weighted. As a result, the prediction accuracy of 
the random forest is improved in classification problems.
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