Defense IT Convergence in South Korea

Kim Songi¹, Sim Seungbae², Jung Hosang³ and Jeong Bongju^{1*}

¹Department of Information and Industrial Engineering, Yonsei University, Seoul, 120-749, South Korea; bongju@yonsei.ac.kr 2

²Center for Defense Acquisition, Korea Institute for Defense Analyses, Seoul, 130-729, South Korea ³Asia Pacific School of Logistics, Inha University, Incheon, 402-751, South Korea

Abstract

In recent decades, the role of Information Technology (IT) has grown across the globe in the area of national defense, yet the value of emerging technologies may sometimes be over- or underestimated. IT technologies are grafted onto national defense systems in order to improve the accuracy of weapon system or support decision making process, which is defined as defense IT convergence. This study analyses the status of defense IT applications and identifies the tendency toward defense IT convergence in emerging technologies. To do this, we investigated 89 systems in South Korea and other countries, classifying systems by military domain category, and identifying their underlying technologies. These underlying technologies were placed on Gartner's hype cycle, indicating the position of the identified defense IT applications on this long-term cycle. Most countries, including South Korea, have a high level of practical use in most proven-technology: complex-event processing, machine-to-machine communication services, and predictive analytics. Interestingly, the results show that South Korea has a risk-avoiding tendency in defense IT policy, which means that the country has fewer technologies in the trigger level of the hype cycle compared to the international average. Also we found that the average number of technologies used in defense IT systems in South Korea is smaller than the international average, which means that South Korea is comparatively weak in integrating multiple technologies into systems.

Keywords: Aoronary Artery Disease, Coronary Angiography, Right Bundle Branch Block

1. Introduction

As the patterns of warfare has changed from mass destruction to intellectual attack, the investment in IT technology applications for defense systems has been increasing all over the world1. Command and control systems have grown as wired and wireless communications and controlling techniques have made guided weapons more accurate. The U.S. armed forces concentrate on developing new IT technology and combining it with defense systems. However, in South Korea, IT technology has been developed by private interests rather than by military organisations2. In this environment, it is essential to analyse the current level of defense IT convergence and compare it with the international trend in order to understand the weak points and potential

According to the properties of a defense system, defense IT convergence cases are classified into 'inside weapon systems', 'between weapon and nonweapon systems', and 'inside nonweapon systems', as shown in Figure 1. Note that this study focuses on the first and the second cases.

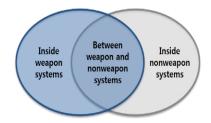


Figure 1. Classification of defense IT convergence.

development avenues.

^{*}Author for correspondence

This paper is arranged as follows: after introducing military domain category and our methodology, we firstly investigated both domestic and international defense IT convergence cases especially based on their underlying IT technologies. Then, we classified them by military domain category, used for classifying defense systems into their main purpose, and compared the domestic and international results. At the second step, we applied Gartner's Hype cycle for emerging technology to previous results in order to understand the South Korean tendencies in defense IT convergence and compare them with international trends.

2. Military Domain Category

To investigate the defense IT convergence case, we first classify defense systems into four use military domain categories. Figure 2 shows a military domain categorization, which is widely used in studies of defense IT convergence1. We next describe the four categories.

Figure 2. Military domain categorization.

First, command, control, communication and computer intelligence (C4I) systems concentrate on integrating and managing all the data and information in order to improve the effectiveness of command and control. C4I systems include information integration technology, data transmission and reception, and intelligent analysis of situations3.

Intelligence, Surveillance and Reconnaissance (ISR) systems gather information about targets, which are the basis for decision-making in C4I systems. ISR systems perceive the state of a battlefield environment and include detection radar, optical sensors, and acoustic sensors.

Precision-guided munition (PGM) systems are used to improve the accuracy of weapon system such as vehicle weapon systems, naval weapon systems, and aircraft weapon systems.

Modeling and simulation (M&S) systems use modeling and simulation techniques to analyse and evaluate the results of training, missions, or battles.

3. Methodology

To understand the weak points and suggest direction of improvement for South Korea's defense IT system, it is essential to analyse the current levels of defense IT convergence and compare them with the international trend. This study adopts Gartner's hype cycle for identifying the tendency of defense IT convergence. Each year, Gartner presents hype cycles for a number of IT technologies. The cycle shows the maturity, adoption and social application of specific technologies⁴.

As shown in Figure 3, the cycle consists of five maturity levels: 'technology trigger', 'peak of inflated expectations', 'trough of disillusionment', 'slope of enlightenment', and 'plateau of productivity'. From the 'technology trigger' level to the 'peak of inflated expectation' level, the media and public have an increasing interest in these technologies. However, after the 'trough of disillusionment' level, attention decreases rapidly as the media become disillusioned with these technologies.

Although various kinds of technologies are addressed within the framework of hype cycle, this study focuses on the hype cycle for emerging technology. Some emerging technologies have been overestimated by technologists5,6, such that their true value turns out to be less than expected, while others have been mainly underestimated 7. However, emerging technologies may result in exceptional benefits when they are used to develop radically new products^{8,9}. Due to these features, the acceptance level of emerging technologies can be considered as a measurement of the risk-taking tendency.

Figure 4 depicts Gartner's hype cycle for emerging technology reported in July 20124, which is used for our research. In this study, 37 systems for South Korea's defense IT convergence were referenced in the Agency for Defense Development website10 and 52 systems for world-wide cases were collected from the literature^{11-12.} Note that reports are published once a month, reflecting recent trend in a similar level as website. Afterwards, the underlying technologies of all 89 systems were analysed especially focusing on the emerging technologies in Figure 4.

Figure 3. The five levels of the hype cycle.

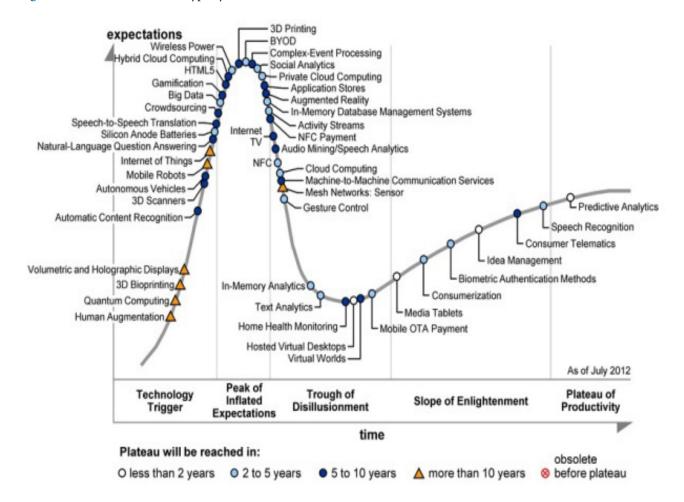


Figure 4. Hype cycle for emerging technology.

Table 1. Case study design

Defense Domain	Number of IT Systems					
Detense Domain	Domestic	International				
C4I	6	14				
ISR	4	12				
PGM	12	17				
M&S	15	9				
Total	37	52				

Table 1 represents the number of domestic and international defense systems, which are including IT technologies, classified in the defense domain. The result of analysing the underlying IT technologies for domestic and international cases is shown in Tables 2 and 3 respectively. Note that each IT system could contain one or more underlying IT technologies.

Table 4 summarises the domestic and worldwide IT maturity in national defense, respectively. Each level of IT maturity is connected to an individual level in the hype cycle. In the C4I and ISR areas, the number of defense

Table 2. Case study results for domestic defense IT systems

System	Underlying IT Technology	State	System	Underlying IT Technology	State
D_C4I_01	Complex-event processing M-to-M communication service Mesh networks: sensor	Operating	D_PGM_10	■ Other	Developed
D_C4I_02	■ Complex-event processing ■ M-to-M communication service	Operating	D_PGM_11	■ Other	Tested
D_C4I_03	■ Complex-event processing ■ M-to-M communication service	Operating	D_PGM_12	■ Other	Operating
D_C4I_04	Complex-event processing M-to-M communication service Mesh networks: sensor	Operating	D_M&S_01	Complex-event processing Predictive analytics	Operating
D_C4I_05	■ M-to-M communication service	Developed	D_M&S_02	Complex-event processing M-to-M communication service Predictive analytics	Operating
D_C4I_06	■ M-to-M communication service	Operating	D_M&S_03	Complex-event processing Predictive analytics	Operating
D_ISR_01	■ Complex-event processing	Operating	D_M&S_04	Complex-event processingPredictive analytics	Operating
D_ISR_02	■ Other	Developed	D_M&S_05	Complex-event processingPredictive analytics	Operating
D_ISR_03	■ Autonomous vehicles	Operating	D_M&S_06	Complex-event processingPredictive analytics	Operating
D_ISR_04	Autonomous vehicles M-to-M communication service	Developed	D_M&S_07	Complex-event processingPredictive analytics	Operating
D_PGM_01	Complex-event processing M-to-M communication service	Operating	D_M&S_08	M-to-M communication service Predictive analytics	Operating
D_PGM_02	Complex-event processing M-to-M communication service	Operating	D_M&S_09	Complex-event processing M-to-M communication service Predictive analytics	Operating
D_PGM_03	■ Other	Operating	D_M&S_10	Complex-event processing M-to-M communication service Predictive analytics	Operating
D_PGM_04	 Automatic content recognition Mobile robots Complex-event processing M-to-M communication service 	Developed	D_M&S_11	■ Complex-event processing ■ M-to-M communication service ■ Predictive analytics	Operating
D_PGM_05	■ Complex-event processing	Operating	D_M&S_12	Complex-event processingPredictive analytics	Operating
D_PGM_06	■ M-to-M communication service	Operating	D_M&S_13	M-to-M communication service Predictive analytics	Operating
D_PGM_07	■ M-to-M communication service	Operating	D_M&S_14	■ Complex-event processing	Operating
D_PGM_08	Autonomous vehicles	Testing	D_M&S_15	Complex-event processing Predictive analytics	Operating
D_PGM_09	■ Other	Operating			

IT convergence cases was more than that in the PGM and M&S area. However, in domestic results, there are 13 cases in the M&S area, which supports that South Korea has a high level of M&S systems. Based on these results, both the international and domestic defense

IT cases are largely focused on technologies in levels 2 and 3. . In the in ISR area, 14 international cases applied first-level emerging technologies in contrast to only two cases in South Korea.

Table 3. Case study results for international defense IT systems

System	Underlying IT Technology	Nation	State	System	Underlying IT Technology	Nation	State
I_C4I_01	Complex-event processing M-to-M communication service Mesh networks: sensor	U.S.	Operating	I_PGM_01	Automatic content recognition Mobile robots Complex-event processing	U.S.	Developed
I_C4I_02	 Complex-event processing M-to-M communication services Mesh networks: sensor 	U.S.	Operating	I_PGM_0 2	Complex-event processing Audio mining M-to-M communication services	U.S.	Developed
I_C4I_03	Complex-event processing M-to-M communication services Mesh networks: sensor	U.K.	Tested	I_PGM_03	■ Other	Iran	Developed
I_C4I_04	BYOD Complex-event processing	U.S.	Developed	I_PGM_04	Complex-event processing	U.S.	Developed
I_C4I_05	 BYOD Application stores Activity stream M-to-M communication services 	U.S.	Operating	I_PGM_05	■ Complex-event processing	France	Developed
I_C4I_06	 BYOD Application stores Audio mining/speech analytics M-to-M communication services 	U.S.	Operating	I_PGM_06	■ Complex-event processing	Russia	Tested
I_C4I_07	■ Complex-event processing	U.S.	Developing	I_PGM_07	■ Complex-event processing	Iran	Developed
I_C4I_08	M-to-M communication services	U.S.	Testing	I_PGM_08	■ Autonomous vehicles	U.S.	Tested
I_C4I_09	BYOD M-to-M communication services	U.S.	Developing	I_PGM_09	■ Other	U.S.	Developing
I_C4I_10	Automatic content recognition Complex-event processing M-to-M communication services	U.S.	Developing	I_PGM_10	■ Other	U.S.	Developing
I_C4I_11	M-to-M communication services Mesh networks: sensor	U.S.	Operating	I_PGM_11	■ Other	U.S.	Developing
I_C4I_12	■ Complex-event processing	U.S.	Operating	I_PGM_12	■ Other	South Africa	Operating
I_C4I_13	M-to-M communication services	Germany	Developed	I_PGM_13	■ Other	U.S.	Operating
I_C4I_14	M-to-M communication services	Germany	Developed	I_PGM_14	■ Other	China	Operating
I_ISR_01	 Automatic content recognition Complex-event processing M-to-M communication services Mesh networks: sensor 	U.S.	Developed	I_PGM_15	■ Other	U.S.	Tested
I_ISR_02	Automatic content recognition	U.S.	Testing	I_PGM_16	■ Complex-event processing	Russia	Developed
I_ISR_03	M-to-M communication services Mesh networks: sensor	U.S.	Testing	I_PGM_17	Automatic content recognition Complex-event processing	U.S.	Tested
I_ISR_04	■ Other	Australia	Developed	I_M&S_01	Complex-event processing Predictive analytics	U.S.	Operating
I_ISR_05	Automatic content recognition Complex-event processing	Italy	Tested	I_M&S_02	Complex-event processing Predictive analytics	U.S.	Operating

Table 3. Continued

		Y					
I_ISR_06	■ Other	U.S.	Tested	I_M&S_03	 Complex-event processing M-to-M communication services Predictive analytics 	U.S.	Operating
I_ISR_07	 Automatic content recognition Autonomous vehicles M-to-M communication services 	U.S.	Developed	I_M&S_04	 Complex-event processing M-to-M communication services Predictive analytics 	U.S.	Operating
I_ISR_08	 Automatic content recognition Autonomous vehicles M-to-M communication services 	U.K.	Operating	I_M&S_05	Complex-event processing M-to-M communication services Predictive analytics	U.S.	Operating
I_ISR_09	 Automatic content recognition Autonomous vehicles M-to-M communication services 	Israel	Tested	I_M&S_06	Complex-event processing M-to-M communication services Predictive analytics	U.S.	Operating
I_ISR_10	 Automatic content recognition Autonomous vehicles 	U.S.	Developed	I_M&S_07	■ Activity stream ■ Gesture control	U.S.	Operating
I_ISR_11	Automatic content recognition Autonomous vehicles	U.S.	Developed	I_M&S_08	■ Activity stream ■ Gesture control	U.S.	Operating
I_ISR_12	 Automatic content recognition Complex-event processing 	Germany	Developing	I_M&S_09	Activity stream Gesture control	U.S.	Operating
				I_M&S_10	Activity stream Gesture control	U.S.	Operating

Table 4. Case study summary for domestic and international cases

Defense Domain	IT Maturity Level in Domestic Case				IT Maturity Level in International Case					
	Level 1	Level 2	Level 3	Level 4	Level 5	Level 1	Level 2	Level 3	Level 4	Level 5
C4I	-	4	8	-	-	1	14	16	-	-
ISR	2	1	1	-	-	14	3	5	-	-
PGM	3	4	5	-	-	4	8	3	-	-
M&S	-	12	8	-	13	-	9	7	-	6
Proportion (%)	10	35	29	0	26	31	34	25	0	10

4. Results

Figure 5 summarises the domestic case studies: for each underlying IT technology, it indicates the number of domestic defense systems applying that technology. The emerging technologies used for defense systems are automatic content recognition, autonomous vehicles, and mobile robots in the first level and complex-event processing in the second level. In the third level, machineto-machine communication services, mesh networks, and gesture control are used. Finally, in the fifth level, predictive analytics is the only technology used.

As the amount of information collected and processed in a C4I system becomes diversified and huge, not only the C4I system, but also other systems such as complex-event processing and machine-to-machine communication services are actively applied. In addition, automatic content recognition, autonomous vehicles, and mobile robots are used since robot and automatic technology has had a high profile for a long time. Meanwhile, the number of cases of predictive analytics represents a high level of battlefield modeling and simulation technology in South Korea.

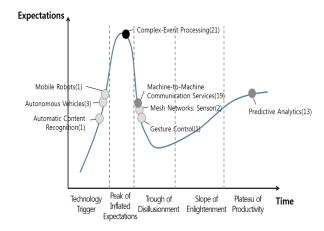


Figure 5. Maturity level of IT technologies adopted in domestic defense IT systems.

Figure 6. Maturity level of IT technologies adopted in domestic defense IT systems.

Figure 6 presents the results for the international cases. First of all, the results show that emerging technologies in the technology trigger level have been highly developed, including automatic content recognition and autonomous vehicles. It indicates that other countries tried to graft technologies in the first level onto the national defense system. Mobile robots are relatively rare as they require quite complex technology and greater investment.

In the international cases, the technologies used from the peak of inflated expectations level are complex-event processing, BYOD (Bring-your-own-device concept), application stores, and activity streams. Complex-event processing enables machines to process a massive amount of information that can be applied to various systems

regardless of the military domain category. As mobile technology has become widespread, applications such as BYOD and application stores have become more popular. Activity streams support processing real-time information of location and state from mobile devices carried by soldiers. In the trough of disillusionment level, machineto-machine communication services have already become widespread in defense systems. This has been developed and applied quickly; that is because to support C4I systems effectively, information must be exchanged from various machines or systems and communicated between reconnaissance equipment, combat equipment, and control systems1. To increase the analysis level of sound information, audio mining/speech analytics are applied to sonar systems in both C4I and ISR systems.

Predictive analytics, which is in the plateau of productivity level and already widely commercialised, is usually applied to M&S systems in order to help commanders make decisions in various situations.

First, compared with the international situation, the number of technologies in the technology trigger level is relatively lower in domestic cases. In particular, automatic content recognition has had low attention from South Korea in contrast to international defense IT systems. Also, although South Korea has a high level of mobile technology, which has been commercialised, there is no case related to mobile technology. Therefore, we can conclude that the defense policy of South Korea tends to wait until the value of newly emerging technology is proven, which is called a risk-avoiding tendency.

Second, the international cases show more variety in the kinds of technologies applied. In the domestic cases only 8 kinds of technologies are applied, compared to 12 kinds of technologies in the international cases. To analyse the diversity of the applied technologies, the average number of IT technologies applied to a single case is calculated for each result. For international case analysis, the value is 2.14, which is slightly higher than 1.97 calculated for the domestic case analysis, which means that South Korea is comparatively weak in integrating multiple technologies into systems.

6. Conclusion

As the patterns of warfare have changed from mass destruction to intellectual attack, it is essential to analyse the current level of defense IT convergence and compare it with international trends.

This study aims to analyse the defense IT convergence cases and find which emerging technologies play an important role in them. Also, this research identified the level of South Korea's defense IT convergence technology and then compared it with the international levels.

This study investigated 37 systems for South Korea's defense IT convergence case and 52 systems for the rest of the world. We analysed the underlying IT technologies used, especially focusing on emerging technologies on Gartner's hype cycle. The results of both the international and domestic defense IT cases are largely focused on technologies in the second and third level. In international cases, however, 14 cases were applied to first-level emerging technologies in the ISR area in contrast to South Korea's only two cases. The number of IT technologies applied in C4I and ISR area was more than that in the PGM and M&S area, while ISR has a lower number of technologies in the domestic case study results. On the other hand, there are 13 cases in M&S area in the domestic results, which supports that South Korea has a high level of technology advancement in M&S systems. Within the framework of hype cycle, both international and domestic results have a high number of systems using complex-event processing, machine-to-machine communication service, and predictive analytics. However, there are some differences between the two results. First, the number of technologies in the technology trigger level is relatively lower in the domestic cases. In particular, automatic content recognition and mobile technology have received comparatively little attention from South Korea in contrast to international cases, which indicates that South Korea has a risk-avoiding tendency in defense policy. Second, for the domestic case analysis, the average number of IT technologies applied to a single case is slightly lower than that in the international case analysis.

7. References

- Chung K, Chung M. IT-defense convergence technology for preparing future battlefield environment. Commun Korean Instit of Inform Scient and Engin. 2013; 31(1):97-
- Kye J, Lim D, Choi W, Song Y, Han S. National defense IT development direction based on interoperability. Commun Korean Instit of Inform Scient and Engin. 2013; 31(1):106-
- Kye J, Lee J, Lim D. Trends and strategies on defense information technology based IT convergence technology. Elect and Telecommun Trends. 2013; 28(2):132-44.
- Gartner. 2013; Available from: http://www.gartner.com/ technology/research/hype-cycles/.
- Groen AJ, Walsh ST. Introduction to the field of emerging technology management. Creat and Innov Manag. 2013; 22(1):1-5.
- Gillier T, Piat G. Exploring over: the presumed identity of emerging technology. Creat and Innov Manag. 2011; 20(4):238-52.
- Linton JD, Walsh ST. Acceleration and extension of opportunity recognition for nanotechnologies and other emerging technologies. Int Small Bus J. 2008; 26(1):83–99.
- Allarakhia M, Walsh S. Managing knowledge assets under conditions of radical change: the case of the pharmaceutical industry. Technovation. 2011; 31(2):105-17.
- Kassicieh SK, Kirchhoff BA, Walsh ST, McWhorter PJ. The role of small firms in the transfer of disruptive technologies. Technovation. 2002; 22(11):667-74.
- 10. Korean Agency for Defense Development. Available from: http://www.add.re.kr/.
- 11. Defense Agency for Technology and Quality. J Defen Sci and Technol Inform. 2013; 39.
- 12. Defense Agency for Technology and Quality. J Defen Sci and Technol Inform. 2013; 38.