DOI: 10.17485/ijst/2015/v8iS3/60311

Some Results on Fuzzy Hyper BCK-ideals of Hyper CK-algebras

Muhammad Aslam Malik* and Muhammad Tougeer

Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan; malikpu@math.pu.edu.pk, touqeer-fareed@yahoo.com

Abstract

The fuzzification of (weak, strong, reflexive) hyper BCK-positive implicative ideals in hyper BCK-algebras is considered. It is shown that every fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideal is a fuzzy (weak, strong, reflexive) hyper BCK-ideal. Relations among weak hyper BCK-positive implicative ideals, hyper BCK-positive implicative ideals, strong hyper BCK-positive implicative ideals and reflexive hyper BCK-positive implicative ideals are given. It is proved that the product of fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideals. Lastly the relations among fuzzy (weak, strong, reflexive) hyper BCK-(implicative, positive implicative, commutative) ideals are being discussed.

Keywords: Hyper Bck-Algebra, (Fuzzy) Hyper Bck-Positive Implicative Ideal, (Fuzzy) Reflexive Hyper Bck-Positive Implicative Ideal, (Fuzzy) Strong Hyper Bck-Positive Implicative Ideal, (Fuzzy) Weak Hyper Bck-Positive Implicative Ideal

1. Introduction

Imai and Iseki⁴ in 1966, introduced the notion of BCK-algebras. After the introduction of the concept of fuzzy sets by Zadeh¹¹, various researchers discussed the idea of fuzzification of ideals in BCK-algebras and their generalizations. Dudek et al³ discussed the properties of fuzzy BCC-ideals in BCC-algebras and their images.

Hyperstructure theory was introduced by Marty¹⁰ in 1934 at the 8th congress of Scandinavian Mathematicians. This theory has wide applications in many different fields. Jun et al⁸ in 2000, applied the hyperstructure theory to BCK-algebras and introduced the concept of hyper BCK-algebras, which is a generalization of BCK-algebras. Jun and Shim⁵ applied the fuzzy set theory to the strong implicative hyper BCK-ideals in hyper BCK-algebras and discussed the relations among fuzzy strong hyper BCK-ideals, fuzzy implicative hyper BCK-ideals and fuzzy strong implicative hyper BCK-ideals. Borzooei et al¹ introduced the concept of hyper BCC-algebras, as a generalization of BCC-algebras. In this paper, we

introduce the concept of fuzzification of (weak, strong, reflexive) hyper BCK-positive implicative ideals in hyper BCK-algebras and discuss some of their properties. The relations among fuzzy (weak, strong, reflexive) hyper BCK-(implicative, positive implicative, commutative) ideals will also be discussed.

2. Preliminaries

Let H be a non-empty set endowed with a hyper operation "o", that is, o is a function from $H \times H$ to PH, where PH is the collection of all non-empty subsets of H. For two subset A and B of H, denote by $A \circ B$ the set $\{a \circ b \mid a \in A, b \in B\}$. We shall use $x \circ y$ instead of $x \circ \{y\}$, $\{x\} \circ y$ or $\{x\}$ o $\{y\}$.

Definition 2.1.

By a hyper BCK-algebra we mean a non-empty set H endowed with a hyperoperation "o" and a constant 0 satisfying the following axioms⁸:

^{*} Author for correspondence

```
(HK1) (xoz)o(yoz) < xoy,
```

(HK2) (xoy)oz=(xoz)oy,

(HK3) $xoH << \{x\},$

(HK4) x << y and y << x imply x = y,

for all $x,y,z \in H$, where x << y is defined by $0 \in x \circ y$ and for every A, $B \subseteq H$, A<<B is defined by $\forall a \in A$, $\exists b \in B$ such that *a*<<*b*. In such case we call "<<" the hyper order in *H*.

Proposition 2.2.

In any hyper BCK-algebra *H*, the following hold⁸:

(i) $x = 0 = \{x\},$ (vii) $Ao\{0\}=\{0\}$ implies $A=\{0\}$,

(ii) *xoy*<<*x*, (viii) 0 << x, (iii) $0oA = \{0\}$, (ix) $00x = \{0\},\$ $(x) 000=\{0\},$ (iv) A << A,

(v) $A \subseteq B$ implies A << B, (xi) y << z implies xoz << xoy,

(vi) AoB << A,

For all $x,y,z \in H$ and for all non-empty subsets A and B of Н.

Let I be a non-empty subset of hyper BCK-algebra H and $0 \in I$. Then I is called a hyper BCK-subalgebra of H if $xoy\subseteq I$, for all $x,y\in I$, a weak hyper BCK-ideal of H if $xoy\subseteq I$ and $y \in I$ imply $x \in I$, for all $x, y \in H$, a hyper BCK-ideal of H if xoy << I and $y \in I$ imply $x \in I$, for all $x,y \in H$, a strong hyper BCK-ideal of H if $xoy \cap I \neq \emptyset$ and $y \in I$ imply $x \in I$, for all $x,y \in H$. *I* is said to be *reflexive* if $x \circ x \subseteq I$ for all $x \in H$.

Lemma 2.3.

In a hyper BCK-algebra^{6, 8}

- reflexive hyper BCK-ideal is a strong hyper BCK-ideal,
- strong hyper BCK-ideal is a hyper BCK-ideal,
- hyper BCK-ideal is a weak hyper BCK-ideal.

Lemma 2.4.

Let I be a reflexive hyper BCK-ideal of a hyper BCKalgebra H^6 . Then $xoy \cap I \neq \emptyset$ implies xoy << I, $\forall x, y \in H$.

Proposition 2.5.

Let A be a subset of a hyper BCK-algebra H^6 . If I is a hyper BCK-ideal of *H* such that $A \le I$ then $A \subseteq I$.

Definition 2.6.

Let H be a hyper BCK-algebra. A non-empty subset $I \subseteq H$ containing 0 is called

• a weak hyper BCK-positive implicative ideal of *H* if for all $x,y,z \in H$,

 $((xoz)oz)o(yoz)\subseteq I$ and $y\in I$ imply $(xoz)\subseteq I$.

- a hyper BCK-positive implicative ideal of H if for all $x,y,z \in H$,
 - ((xoz)oz)o(yoz) < I and $y \in I$ imply $(xoz) \subseteq I$.
- a strong hyper BCK-positive implicative ideal of H if for all $x,y,z \in H$,

 $((xoz)oz)o(yoz)\cap I\neq\emptyset$ and $y\in I$ imply $(xoz)\subseteq I$.

It is not difficult to see that the following proposition is true.

Propostion 2.7.

Every (weak, strong, reflexive) hyper BCK-positive implicative ideal of a hyper BCK-algebra H is a (weak, strong, reflexive) hyper BCK-ideal of H.

Theorem 2.8.

In any hyper BCK-algebra

- (i) Hyper BCK-positive implicative ideal is a weak hyper BCK-positive implicative ideal.
- (ii) Strong hyper BCK-positive implicative ideal is a hyper BCK-positive implicative ideal.
- (iii) Reflexive hyper BCK-positive implicative ideal is a strong hyper BCK-positive implicative ideal.
- **Proof.** (i) Suppose that I is a hyper BCK-positive implicative ideal of a hyper BCK-algebra H.

For any $x,y,z \in H$, let $((xoz)oz)o(yoz)\subseteq I$ and $y \in I$. Then $((xoz)oz)o(yoz)\subseteq I$ implies ((xoz)oz)o(yoz) << I (by Proposition 2.2(v)), which along with $y \in I$ implies $xoz \subseteq I$. Hence I is a weak hyper BCK-positive implicative ideal of H.

- (ii) Suppose that I is a strong hyper BCK-positive implicative ideal of a hyper BCK-algebra H. Let ((xoz)oz)o(yoz) << I and $y \in I$. Then for all $a \in ((xoz)oz)o(yoz)$, $\exists b \in I$ such that a << b. This implies $0 \in aob$ and thus $aob \cap I \neq \emptyset$. By Proposition 2.7, I is a strong hyper BCK-ideal of H. Therefore $aob \cap I \neq \emptyset$ along with $b \in I$ implies $a \in I$, that is $((xoz)oz)o(yoz)\subseteq I$. Therefore $(((xoz)oz)o(yoz))\cap I\neq\emptyset$, which along with $y \in I$ implies $xoz \subseteq I$. Hence I is a hyper BCK-positive implicative ideal of *H*.
- (iii) Suppose that I is a reflexive hyper BCK-positive implicative ideal of a hyper BCK-algebra H. For any $x,y,z \in H$, let $(((xoz)oz)o(yoz)) \cap I \neq \emptyset$ and $y \in I$. Being a reflexive hyper BCK-positive implicative ideal, I is also a reflexive hyper BCK-ideal of H (by Proposition 2.7), therefore by Lemma 2.4, from $(((xoz)oz)o(yoz))\cap I \neq \emptyset$, we obtain, ((xoz)oz)o(yoz) < I, which along with $y \in I$ implies $xoz\subseteq I$. Hence I is a strong hyper BCK-positive implicative ideal of *H*.

Definition 2.9.

Let H be a hyper BCK-algebra⁷. A fuzzy subset μ , i.e., the map $\mu:H\rightarrow[0,1]$, is called

- a fuzzy weak hyper BCK-ideal of *H* if for all $x,y \in H$, $\mu(0){\ge}\mu(x){\ge}\min\;\{\inf\nolimits_{a\in xoy}\;\mu(a),\,\mu(y)\}$
- a fuzzy hyper BCK-ideal of *H* if $x \ll y$ implies $\mu(x) \ge \mu(y)$ and for all $x,y \in H$,
 - $\mu(x) \ge \min \{ \inf_{a \in x_{OV}} \mu(a), \mu(y) \}$
- a fuzzy strong hyper BCK-ideal of *H* if for all $x,y \in H$, $\inf_{a \in x_{0x}} \mu(a) \ge \mu(x) \ge \min \{ \sup_{b \in x_{0y}} \mu(b), \mu(y) \}$
- a fuzzy reflexive hyper BCK-ideal of *H* if for all $x,y \in H$, $\inf_{a \in xox} \mu(a) \ge \mu(y)$ and $\mu(x) \ge \min \{ \sup_{b \in xoy} \mu(b), \mu(y) \}$ It is not difficult to see that the following theorem is true.

Theorem 2.10.

In any hyper BCK-algebra⁷

- Fuzzy hyper BCK-ideal is a fuzzy weak hyper BCK-ideal.
- Fuzzy strong hyper BCK-ideal is a fuzzy hyper BCK-ideal.
- Fuzzy reflexive hyper BCK-ideal is a fuzzy strong hyper BCK-ideal.

Definition 2.11.

Let H be a hyper BCK-algebra and let $t \in xo(yo(yox))$. A fuzzy set μ in H is called

- a fuzzy weak hyper BCK-implicative (resp. BCKcommutative) ideal of *H* if $\mu(0) \ge \mu(x)$ and $\mu(t) \ge \min$ $\{\inf_{a \in ((xoy)oy)oz} \mu(a), \mu(z)\}, (\text{resp. } \mu(t) \ge \min \{\inf_{a \in ((xoy)oz)} \mu(a), \mu(a)\}\}$ $\mu(z)$) for all $x, y, z \in H$.
- a fuzzy hyper BCK-implicative (resp. BCKcommutative) ideal of H if x<<y implies $\mu(x) \ge \mu(y)$ and $\mu(t) \ge \min \{\inf_{a \in ((xoy)oy)oz} \mu(a), \mu(z)\}$, (resp. $\mu(t) \ge \min$ $\{\inf_{a \in ((x \circ y) \circ z} \mu(a), \mu(z)\}\)$ for all $x, y, z \in H$.
- a fuzzy strong hyper BCK-implicative (resp. BCKcommutative) ideal of *H* if $\inf_{a \in x \cap x} \mu(a) \ge \mu(x)$ and $\mu(t) \ge \min \{ \sup_{b \in ((xoy)oy)oz} \mu(b), \ \mu(z) \}, \ (resp. \ \mu(t) \ge \min \}$ $\{\sup_{b\in(x\circ y)\circ z}\mu(b), \mu(z)\}\)$ for all $x,y,z\in H$.
- a fuzzy reflexive hyper BCK-implicative (resp. BCKcommutative) ideal of H if $\inf_{a \in xox} \mu(a) \ge \mu(y)$ and $\mu(t) \ge \min \{\sup_{b \in ((xoy)oy)oz} \mu(b), \ \mu(z)\}, \ (\text{resp. } \mu(t) \ge \min \}$ $\{\sup_{b\in(x\circ y)\circ z}\mu(b), \mu(z)\}\)$ for all x,y,z \in H.

3. Fuzzy Hyper BCK-positive Implicative Ideals

Now we introduce the notions of fuzzy (weak, strong,

reflexive) hyper BCK-positive implicative ideals in hyper BCK-algebras and discuss some of their properties.

Definition 3.1.

Let *H* be a hyper BCK-algebra and let $t \in xoz$. A fuzzy set μ in H is called

- · a fuzzy weak hyper BCK-positive implicative ideal of $H ext{ if } \mu(0) \ge \mu(x) ext{ and } \mu(t) \ge \min \left\{ \inf_{a \in ((xoz)oz)o(yoz)} \mu(a), \, \mu(y) \right\}$ for all $x, y, z \in H$.
- a fuzzy hyper BCK-positive implicative ideal of H if $x << y \text{ implies } \mu(x) \ge \mu(y) \text{ and } \mu(t) \ge \min \left\{\inf_{a \in ((x \circ z) \circ z) \circ (y \circ z)} \right\}$ $\mu(a), \mu(y)$ for all $x, y, z \in H$.
- · a fuzzy strong hyper BCK-positive implicative ideal of H if $\inf_{a \in xox} \mu(a) \ge \mu(x)$ and $\mu(t) \ge \min \{\sup_{b \in ((xoz)oz)o(yoz)} \{\sup_{t \in (xoz)oz)o(yoz)} \{\sup_{t \in (xoz)oz)o(yoz)} \{\sup_{t \in xoz} \mu(a) \ge \mu(x)\}\}$ $\mu(b)$, $\mu(y)$ } for all $x,y,z \in H$.
- a fuzzy reflexive hyper BCK-positive implicative ideal of H if $\inf_{a \in xox} \mu(a) \ge \mu(y)$ and $\mu(t) \ge \min \{\sup_{b \in ((xoz)oz)o(yoz)} \{\sup_{b \in ((xoz)o(yoz)o(yoz)} \{\sup_{b \in ((xoz)o(yoz)o(yoz)} \{\sup_{b \in ((xoz)o(yoz)o(yoz)} \{\sup_{b \in ((xoz)o(yoz)o(yoz)o(yoz)} \{\sup_{b \in ((xoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz)o(yoz$ $\mu(b)$, $\mu(y)$ } for all x,y,z \in H.

Theorem 3.2.

Let H be a hyper BCK-algebra. Then every fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideal of H is a fuzzy (weak, strong, reflexive) hyper BCK-ideal of

Proof. Let μ be a fuzzy hyper BCK-positive implicative ideal of H. Then for any $x,y,z \in H$ and for all $t \in x \circ z$ we

```
\mu(t) \ge \min \left\{ \inf_{a \in ((x \circ z) \circ z) \circ (y \circ z)} \mu(a), \mu(y) \right\}
Putting z=0 we get,
       \mu(t) \ge \min \left\{ \inf_{a \in ((x \circ 0) \circ 0) \circ (y \circ 0)} \mu(a), \, \mu(y) \right\}
which gives,
       \mu(x) \ge \min \{ \inf_{a \in x_{0}} \mu(a), \mu(y) \}
```

Thus μ is a fuzzy hyper BCK-ideal of H.

Let μ be a fuzzy set in a hyper BCK-algebra H. Then the set defined by $\mu_t = \{x \in H : \mu(x) \ge t\}$, where $t \in [0,1]$, is called a level subset of *H*.

The transfer principle for fuzzy sets described in 9 suggest the following theorem.

Theorem 3.3.

Let μ be a fuzzy set in a hyper BCK-algebra H. Then μ is a fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideal of *H* if and only if for all $t \in [0,1]$, $\mu t \neq \emptyset$ is a (weak, strong, reflexive) hyper BCK-positive implicative ideal of H.

Proof. Suppose that m is a fuzzy hyper BCK-positive implicative ideal of H. Since $\mu t \neq \emptyset$, so for any $x \in \mu$, $\mu(x) \ge t$. Since a fuzzy hyper BCK-positive implicative ideal is a fuzzy hyper BCK-ideal (by Theorem 3.2) and a fuzzy hyper BCK-ideal is a fuzzy weak hyper BCK-ideal (by Theorem 2.10), so μ is also a fuzzy weak hyper BCKideal of *H*. Thus $\mu(0) \ge \mu(x) \ge t$, for all $x \in H$, which implies 0∈μ,.

Let $((xoz)oz)o(yoz) << \mu$, and $y \in \mu$, for some $x,y,z \in H$. Then for all $a \in ((xoz)oz)o(yoz)$, $\exists b \in \mu$, such that a << b. So $\mu(a) \ge \mu(b) \ge t$, for all $a \in ((xoz)oz)o(yoz)$. Thus $\inf_{a \in ((xoz)oz)} f(xoz)oz = t$ $_{o(yoz)} \mu(a) \ge t$. Also $\mu(y) \ge t$, as $y \in \mu_t$. Therefore for all $v \in xoz$, μ satisfies

$$\Rightarrow \nu \in \mu_{t} \Rightarrow xoz \subseteq \mu_{t}$$

Hence μ_i is hyper BCK-positive implicative ideal of H. Conversely suppose that $\mu \neq \emptyset$ is a hyper BCK-positive implicative ideal of *H* for all $t \in [0,1]$. Let x << y for some $x,y \in H$ and put $\mu(y)=t$. Then $y \in \mu$. So $x << y \in \mu t \Rightarrow x << \mu$. Being a hyper BCK-positive implicative ideal, μ, is also a hyper BCK-ideal of H (by Proposition (2.7)) therefore by Proposition 2.5, $x \in \mu$. Hence $\mu(x) \ge t = \mu(y)$. That is $x << y \Rightarrow \mu(x) \ge \mu(y)$, for all $x,y \in H$.

Moreover for any $x,y,z \in H$, let $d=min \{inf_{c \in ((xoz)oz)o(yoz)} \mu(c),$ $\mu(y)$ }. Then $\mu(y) \ge d \Rightarrow y \in \mu_d$ and for all $e \in ((xoz)oz)o(yoz)$, $\mu(e)inf_{c \in ((xoz)oz)o(yoz)} \mu(c) \ge d$, which implies that $e \in \mu_d$.

Thus $((xoz)oz)o(yoz)\subseteq \mu_d$.

By Proposition 2.2(v), $((xoz)oz)o(yoz)\subseteq\mu_d\Rightarrow((xoz)oz)$ $o(yoz) << \mu_d$, which along with $y \in \mu_d$ implies $xoz \subseteq \mu_d$. Hence for all $u \in xoz$, we get

$$\mu(u) \ge d = min\{inf_{c \in ((xoz)oz)o(yoz)}\mu(c), \mu(y)\}$$

Thus μ is a fuzzy hyper BCK-positive implicative ideal of

The following corollary is a simple consequence of Theorem 3.3.

Corollary 3.4.

For any subset A of a hyper BCK-algebra H, let μ be a fuzzy set in *H* defined by:

$$\mu(\mathbf{x}) = \begin{cases} t & \text{if } \mathbf{x} \in A \\ 0 & \text{if } \mathbf{x} \notin A \end{cases}$$

for all $x \in H$, where $t \in (0,1]$. Then A is a (weak, strong, reflexive) hyper BCK-positive implicative ideal of H if and only if μ is a fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideal of *H*.

4. Product of Fuzzy Hyper BCKpositive Implicative Ideals

Definition 4.1.

Let (H_1, o_1, o_1) and (H_2, o_2, o_2) are hyper BCK-algebras² and $H=H_1\times H_2$. We define a hyperoperation "o" on H by:

$$(a_1,b_1)\circ(a_2,b_2)=(a_1\circ a_2,b_1\circ b_2)$$

for all (a_1,b_1) , $(a_2,b_2)=H$, where for $A\subseteq H$ and $B\subseteq H$ by $A\times B$ we mean,

 $A \times B = \{(a,b): a \in A, b \in B\}.$

and 0=(0,0) and a hyperorder "<<" on H by:

$$(a_1,b_1) << (a_2,b_2) \Leftrightarrow a_1 << a_2 \text{ and } b_1 << b_2.$$

Thus (H,0,0) is a hyper BCK-algebra.

Let μ and ν be fuzzy sets in hyper BCK-algebras H, and H_{λ} respectively. Then $\mu \times \nu$, the product of μ and ν of $H=H_1\times H_2$ is defined as:

 $(\mu \times \nu)((x,y)) = \min \{\mu(x), \nu(y)\}.$

From now on, let H_1 and H_2 are hyper BCK-algebras and let $H=H_1\times H_2$.

Definition 4.2.

Let μ be a fuzzy set in H. Then fuzzy sets μ_1 and μ_2 on H_1 and H_2 respectively, are defined as:

$$\mu_1(x) = \mu((x,0)), \ \mu_2(y) = \mu((0,y)).$$

Theorem 4.3.

Let μ be a fuzzy set in H. If μ is a fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideal of *H*, then $\mu = \mu_1 \times \mu_2$, where μ_1 and μ_2 are fuzzy sets on H_1 and H_2 respectively.

Proof. Suppose that μ is a fuzzy hyper BCK-positive implicative ideal of *H*. Then for any (x,u), (y,v), $(z,w) \in H$, where $x,y,z \in H$, and $u,v,w \in H$, and for all $(a,b) \in (x,u)$ o(z,w)=(xoz, uow), we have

Putting d=y=z=w=0 and v=u, we get

Thus,

this implies, $\mu((x,u)) \ge \min \{\mu_1(x), \mu_2(u)\}$ that is, $\mu((x,u)) \ge (\mu_1 \times \mu_2)((x,u))$ Therefore we get, $\mu_1 \times \mu_2 \subseteq \mu$ (1)Conversely, since (x,0) << (x,u) and (0,u) << (x,u).

This gives, $\mu((x,0)) \ge \mu((x,u))$ and $\mu((0,u)) \ge \mu((x,u))$ Therefore,

 $\min \{\mu(x,u), \mu(x,u)\} = \mu(x,u).$

Which implies, $(\mu_1 \times \mu_2)((x,u)) \ge \mu(x,u)$,

(2)that is, $\mu \subseteq \mu_1 \times \mu_2$

Hence from (1) and (2) we have, $\mu_1 \times \mu_2 = \mu$

Theorem 4.4.

Let m be a fuzzy set in H. Then μ is a fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideal of H if and only if and are fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideals of and respectively.

Proof. Let μ be a fuzzy hyper BCK-positive implicative ideal of *H* and let $x_1 << x_2$ for some $x_1 x_2 \in H_1$. Then $(x_1,0) < (x_2,0)$ which implies $\mu((x_1,0)) = \mu_1(x_1) \ge \mu((x_2,0)) =$ $\mu_1(x_2)$, that is, $\mu_1(x_1) \ge \mu_1(x_2)$

Moreover for any $x_1y_1z_1 \in H_1$,

Let $t=\min\{\inf_{a\in((x_1oz_1)oz_1)o(y_1oz_1)}\mu_1(a), \mu_1(y_1)\}$ Then for all $b\in((x_1oz_1)oz_1)o(y_1oz_1)$,

 $\underline{\mu_1}(b){\geq} \inf_{a\in((x_1\circ z_1)\circ z_1)\circ(y_1\circ z_1)}\mu_1(a){\geq} t \text{ and } \mu_1(y_1){\geq} t.$

This implies, $\mu((b,0)) \ge t$ and $\mu((y,0)) \ge t$,

for all $(b,0) \in (((x_1,0)\circ(z_1,0))\circ(z_1,0))\circ(y_1,0)\circ(z_1,0))$

Therefore, $(b,0) \in \mu_{\iota}$ and $(y_{\iota},0) \in \mu_{\iota}$,

that is, $(((x,0)o(z,0))o(z,0))o((y,0)o(z,0))\subseteq \mu$ $(y_1,0)\in\mu_{\ell}$

Since by Theorem 3.3, $\mu \neq \emptyset$ is a hyper BCK-positive implicative ideal of H and so is a weak hyper BCKpositive implicative ideal of H (by Theorem 2.8(i)). Thus $(((x_1,0)\circ(z_1,0))\circ(z_1,0))\circ((y_1,0)\circ(z_1,0))\subseteq\mu_t$ and $(y_1,0)\in\mu_t$ imply $(x_1,0)$ o $(z_1,0)\subseteq \mu_t$

Therefore $\mu((s,0)) \ge t$, for all $(s,0) \in (x,0) \circ (z,0) = (x,0z,0)$, that is, $\mu_1(s) \ge t = \min \{ \inf_{a \in ((x_1 \circ z_1) \circ z_1)(y_1 \circ z_1)} \mu_1(a), \mu_1(y_1) \}$, for all Hence μ_1 is a fuzzy hyper BCK-positive implicative ideal of H_1 .

Similarly we can prove that is a fuzzy hyper BCK-positive implicative ideal of H_2 .

Conversely suppose that μ_1 and μ_2 are fuzzy hyper BCKpositive implicative ideals of H_1 and H_2 respectively.

For any $(x,u),(y,v)\in H$, where $x,y\in H$, and $u,v\in H$, let (x,u) << (y,v)

Since $(x,u) << (y,v) \Leftrightarrow x << y$ and u << v

Thus $\mu_1(x) \ge \mu_1(y)$ and $\mu_2(u) \ge \mu_2(v)$

So, min $\{\mu_1(x), \mu_2(u)\} \ge \min \{\mu_1(y), \mu_2(v)\}$

this implies, $(\mu_1 \times \mu_2)((x,u)) \ge (\mu_1 \times \mu_2)((y,v))$

that is, $\mu((x,u)) \ge \mu((y,v))$ (by Theorem 4.3, $\mu = \mu_1 \times \mu_2$)

Therefore, (x,u) << (y,v) implies $\mu((x,u)) \ge \mu((y,v))$

Moreover for any (x,u), (y,v), $(z,w) \in H$, where $x,y,z \in H_1$ and $u,v,w \in H$, and for all $(a,b) \in (x,u) \circ (z,w) = (x \circ z, u \circ w)$, we have

 $\mu((a,b)) = (\mu_1 \times \mu_2)((a,b)) = \min{\{\mu_1(a), \mu_2(b)\}}$ this implies,

Hence µ is a fuzzy hyper BCK-positive implicative ideal of H. Relationship between fuzzy (weak, strong, reflexive) hyper BCK-(implicative, positive implicative, commutative) ideals

Now we discuss the relationship among fuzzy (weak, strong, reflexive) hyper BCK-(implicative, positive implicative, commutative) ideals of a hyper BCK-algebra and show that a fuzzy set μ in a hyper BCK-algebra H is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of H if and only if μ is both a fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideal and a fuzzy (weak, strong, reflexive) hyper BCK-commutative ideal of *H*.

Theorem 4.5.

A fuzzy set μ in a hyper BCK-algebra H is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of H if and only if μ is both a fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideal and a fuzzy (weak, strong, reflexive) hyper BCK-commutative ideal of *H*.

Proof. Let μ be a fuzzy hyper BCK-implicative ideal of a hyper BCK-algebra H. Then for any $x,y,z \in H$ and for all $t \in xo(yo(yox)),$

 $\mu(t) \ge \min \{ \inf_{a \in ((x\circ y)\circ y)\circ z} \mu(a), \mu(z) \}.$

Since $((xoy)oy)oz = ((xoy)oz)oy \ll (xoy)oz$ (by (HK2) and Proposition 2.2(vi))

Then for all $a \in ((xoy)oy)oz$, $\exists b \in (xoy)oz$ such that $a \ll b$. This implies, $\mu(a) \ge \mu(b)$ for all $a \in ((x \circ y) \circ y) \circ z$ and for some $b \in (x \circ v) \circ z$,

that is, $\inf_{a \in ((xoy)oy)oz} \mu(a) \ge \mu(b) \ge \inf_{c \in (xoy)oz} \mu(c)$. Thus for all $t \in xo(yo(yox))$,

Hence μ is a fuzzy hyper BCK-commutative ideal of H. Moreover, $yo(yox) \ll y$ implies $xoy \ll xo(yo(yox))$ (by Proposition 2.2 (vi, xi))

Then for all $s \in xoy$, $\exists t \in xo(yo(yox))$ such that $s \ll t$.

Thus $\mu(s) \ge \mu(t)$ for all $s \in xoy$ and for some $t \in xo(yo(yox))$. Also, $zoy \ll z$ implies, $((xoy)oy)oz \ll ((xoy)oy)o(zoy)$.

Then for all $a \in ((xoy)oy)oz$, $\exists b \in ((xoy)oy)o(zoy)$ such that $a \ll b$.

Therefore $\mu(a) \ge \mu(b)$ for all $a \in ((x \circ y) \circ y) \circ z$ and some $b \in ((x \circ y) \circ y) \circ (z \circ y),$

that is, $\inf_{a \in ((xoy)oy)oz} \mu(a) \ge \mu(b) \ge \inf_{c \in ((xoy)oy)o(zoy)} \mu(c)$. Thus for all $s \in xoy$,

which gives, $\mu(s) \ge \min \{ \inf_{c \in ((xoy)oy)o(zoy)} \mu(c), \mu(z) \}.$ Hence µ is a fuzzy hyper BCK-positive implicative ideal of H.

Conversely suppose that μ is both a fuzzy hyper BCKcommutative ideal and a fuzzy hyper BCK-positive implicative ideal of *H*.

Then for any $x,y,z \in H$ and for all $t \in xo(yo(yox))$, $\mu(t) \ge \min \{ \inf_{c \in (xoy)oz} \mu(a), \mu(z) \}.$

Since μ is also a fuzzy hyper BCK-positive implicative ideal of H, thus for any $x,y,z \in H$ and for all $a \in (x \circ y)$ oz=(xoz)oy

 $\mu(a) \ge \min \left\{ \inf_{b \in (((xoz)oy)oy)o(0oy)} \mu(b), \mu(0) \right\}.$ This implies, $\mu(a) \ge \inf_{b \in ((xoz)oy)oy} \mu(b)$, for all $a \in (xoy)oz$ that is, $\inf_{a \in (xoy)oz} \ge \inf_{b \in ((xoy)oy)oz} \mu(b)$ (since ((xoz)oy)oy = ((xoy)oy)oz)

Therefore for any $x,y,z \in H$ and for all $t \in xo(yo(yox))$,

Which gives, $\mu(t) \ge \min \{\inf_{b \in ((xoy)oy)oz} \mu(b), \mu(z)\}.$ Hence μ is a fuzzy hyper BCK-implicative ideal of H.

5. Conclusion

Every (fuzzy) (weak, strong, reflexive) hyper BCKpositive implicative ideal of a hyper BCK-algebra H is a (fuzzy) (weak, strong, reflexive) hyper BCK-ideal of H. The product of two fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideal. A fuzzy set μ in a hyper BCK-algebra H is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of H if and only if μ is both a fuzzy (weak, strong, reflexive) hyper BCK-positive implicative ideal and a fuzzy (weak, strong, reflexive) hyper BCK-commutative ideal of *H*.

6. References

- Borzooei RA, Dudek WA, Koohestani N. On hyper BCC-algebras. Internat J Math Math Sci. 2006; 49703.
- Borzooei RA, Hasankhani A, Zahedi MM, Jun YB. On hyper K-algebras. Math Japon. 2000; 52(1):113-21.
- Dudek WA, Jun YB, Stojakovic Z. On fuzzy ideals in BCC-algebras. Fuzzy Set Syst. 2001; 123:251-8.
- 4. Imai Y, Iseki K. On axioms of propositional calculi. XIV Proceedings of Japan Academy. 1966; 42:19-22.
- Jun YB, Shim WH. Fuzzy strong implicative hyper BCK-ideals of hyper BCK-algebras. Inform Sci. 2005; 170:351-61.
- Jun YB, Xin XL, Zahedi MM, Roh EH. Strong hyper BCK-ideals of hyper BCK-algebras. Math Japon. 2000; 51(3):493-8.
- 7. Jun YB, Xin XL. Fuzzy hyper BCK-ideals of hyper BCK-algebras. Sci Math Jpn. 2001; 53(2):415-22.
- Jun YB, Zahedi MM, Xin XL, Borzooei RA. On hyper BCK-algebras. Ital J Pure Appl Math. 2000; 8:127–36.
- Kondo M, Dudek WA. On the transfer principle in fuzzy theory. Mathware Soft Comput. 2005; 12:41-55.
- 10. Marty F. Sur une generalization de la notion de groupe. 8th Congress Mathematics Scandinaves. Stockholm; 1934. 45-
- 11. Zadeh LA. Fuzzy sets. Inform and Control. 1965; 8:338-53.