
Indian Journal of Science and Technology, Vol 8(S2), 23-28, January 2015

* Author for correspondence

1. Introduction

According to Fowler1, design problems appear as “bad
smells” at code or design level and the process of removing
them is called refactoring where the software structure is
improved without any modification in the behavior. It can
be briefly defined as “Restructuring of internal structure
of object oriented software to improve the quality while
the software’s external behavior remains unchanged” -
Fowler1.

Refactoring improves the design of software and
makes software easier to understand. It also helps us to
find bugs. Bad smells can be detected using various kinds
of automated tools. When the smell is refactored due to
dependency there is high possibility of increasing other
kind of smell which in turn results in increased effort and
time. A smell being resolved may affect the presence of an
existing smell or introduces some more conflicts into the
system. The design of software systems can exhibit several

problems which can be either due to inefficient analysis
and design during the initial construction of the software
or due to software ageing since quality degenerates with
time.

1.1 Proposed Work
In our approach single tool is used for calculating the
metrics. We use metrics of the given source code to detect
the defects in the source code and refactoring list elements
are stored based on the detected smell. This sequence is
given as input to an algorithm which gives the proper
ordered sequence to perform refactoring which reduces
human effort. Complexity of the current approach lies in
finding the fitness function based on which the crossover
and mutation in the genetic algorithm are done. It is
suggested that often manual refactoring will be the most
effective one among all the others. Since it increases the
time factor, we detect the smells using different strategy
and finally apply the sequence of refactoring methods to

Abstract
The process of removing the bad smell results in introduction of new smells due to dependency between the codes in
the program. This process increases human effort and time. Automated tools are used for detecting the bad smells in the
program. This problem is called as ripple effect and we aim in reducing and removing this effect in the program. We apply
refactoring process for reducing the amount of bad smells in the code. Since there exist more number of code smells in
the program, we generate a sequence in which the refactoring has to be applied by which the evolution of new bad smells
is enormously decreased. The refactoring methods that have to be applied to the source code are also ordered using a
heuristic algorithm.

Keywords: Code Smells, Heuristic Algorithm, Refactoring, Ripple Effect

Sequential Ordering of Code Smells
and Usage of Heuristic Algorithm

T. Pandiyavathi 1* and T. Manochandar 2

1Anna University, Chennai, India; pands1991@gmail.com
2VRS College of Engineering & Technology, Arasur, India

ISSN (Online) : 0974-5645
ISSN (Print) : 0974-6846

DOI: 10.17485/ijst/2015/v8iS2/57796

Vol 8 (S2) | January 2015 | www.indjst.org Indian Journal of Science and Technology24

Sequential Ordering of Code Smells and Usage of Heuristic Algorithm

the code which involves manual checking along with the
defect resolution.

2. Literature Survey

Bad smells are detected using various tools. But only
limited methods are available for removing them.

2.1 Code Smells
The key issue can be solved by a kind-level scheme
that arranges the detection and resolution sequences
of different kinds of bad smells. Arranging detection
and resolution sequences5 can be done by analyzing the
relationship among different bad smells. Based on the
analyzed sequence, smells are detected and resolved using
several kind of automated tools like JDeodorant(Feature
envy), PMD(duplicate code) based on the type of smell.
This greatly minimizes human effort but the tool may
miss some bad smells in some cases. Since there exists
only 8 important code smells being analyzed, in the
proposed system some more smells can be introduced
and sequencing is done to improve the quality of the code.
Metrics can also be calculated to look into the results of
the proposed system. This approach can be evaluated on
application in future work for validation. In the proposed
system smells namely move method, move field and dead
code can be added as additional smell detection and
evaluation.

Fowler1 proposed the concept of bad smells. He
proposed and described 22 bad smells in object-oriented
systems. They also associated refactoring rules with these
bad smells, suggesting how to resolve these bad smells.
Bad smells in specific domains have also been proposed.
Srivisut and Muenchaisri defined some bad smells in
aspect-oriented software, and proposed approaches
to detect them. Van Deursen Test Smells indicating
problems in test code. The impact of bad smells has also
been analyzed.

Lozano5 assessed the impact of bad smells, i.e., the
extent to which different bad smells influence software
maintainability. They argued that it is possible to
analyze the impact of bad smells by analyzing historical
information. With the impact in mind, it is possible to

assess code quality by detecting and visualizing bad smells.
Van Emden and Moonen6 implemented a code browser
for detecting and visualizing code smells, and assessed
the quality of code according to the visual representation.
Detecting bad smells is critical and time-consuming.
Therefore, automating detection is essential. Tsantalis7
proposed an approach to identifying and removing
type-checking bad smells which is implemented in an
prototype tool named JDeodorant. Fokaefs8 proposed
an Eclipse plug-in to identify and resolve feature envy
bad smells. Clones, one of the most common bad smells,
have been investigated for a long time, and dozens of
detection algorithms have been proposed to detect them.
Mohamed2 proposed a language for formalizing bad
smells, and a framework for automatically generating
detection algorithms for the formalized bad smells.

2.2 Dependency among Bad Smells
Wake classified bad smells into two categories: bad smells
within classes and bad smells between classes. Meszaros10
classified test smells into code smells, behavior smells,
and project smells. Mantyla11 analyzed the correlations
among bad smells by investing the frequency with which
each pair of bad smells appears in the same module. They
found that bad smells within the same category are more
likely to appear together. The work aimed to simplify
the comprehension of bad smells, instead of refactoring
activities.

Pietrzak and Walter12 investigated the intersmell
relationships to facilitate the detection of bad smells. They
argued that detected or rejected bad smells might imply
the existence or absence of other bad smells.

2.3 Heuristic Algorithm
Genetic algorithm was first proposed by Goldberg et
al in 1989. In the computer science field of artificial
intelligence, a genetic algorithm is a search heuristic
that mimics the process of natural selection. This
heuristic is routinely used to generate useful solutions to
optimization and search problems. To insure the detection
of maintainability defects, several automated detection
techniques have been proposed by Mohamed2. The vast
majority of these techniques rely on declarative rule. In

T. Pandiyavathi and T. Manochandar

Vol 8 (S2) | January 2015 | www.indjst.org Indian Journal of Science and Technology 25

these settings, rules are manually defined to identify the
key symptoms that characterize a defect. These symptoms
are described using quantitative metrics, structural, and/
or lexical information.

Beside the previous approaches, one notices the
availability of defect repositories in many companies,
where defects in projects under development are manually
identified, corrected and documented. However, this
valuable knowledge is not used to mine regularities about
defect manifestations, although these regularities could
be exploited both to detect and correct defects.

2.4 Detailed Work
We propose a method to overcome some of the above-
mentioned limitations with a two-step approach based
on the use of defect examples generally available in defect
repositories of software developing companies:

1.	 Detection-identification of defects, and
2.	 Correction of detected defects.

Instead of specifying rules manually for detecting each
defect type, or semi automatically using defect definitions,
we extract these rules from instances of maintainability
defects. This is achieved using Genetic Programming.
We generate correction solutions based on combinations
of refactoring operations, taking in consideration two
objectives:

1.	 Maximizing code quality by minimizing the number of de-
tected defects using detection rules generated

2.	 Minimizing the effort needed to apply refactoring opera-
tions.

This is a multi-objective approach. In all previous
works discussed above, discussion is done based on
resolution sequences of bad smells, but no evaluation or
discussion is presented.

3. Refactoring

The steps involved in refactoring are as follows,
1.	 Perform pair wise analysis among each selected code

smells

2.	 Draw directed graph based on the analysis made
above

3.	 Apply topological sorting to obtain ordered code
smells

4.	 Generate detection rules using combinations of met-
rics and thresholds

5.	 Collect refactorings methods to be processed after the
defect detection

6.	 Generate/ frame list of possible refactoring methods
like pull up, move method, extract method

7.	 Apply natural evolution techniques like genetic algo-
rithm with input as the outcomes of steps 4,5,6

8.	 Perform crossover and mutation along with the elit-
ism property in the above algorithm

9.	 Obtain Optimal solution with sequenced refactoring
plans
a.	 Sequencing Code Smells

Study of smells selected for the problem and ana-
lyzing its complexities, Pair wise analysis, Gen-
erate DAG and Sequence the code smells using
topological sorting algorithm.

b.	 Detection of Smells Using Automated Tools
Select fragments of code, Inject smells into the
code, Use automated tools to detect the smells in
the code where PMD detects dead code, dupli-
cate code, long method, long parameter list and
Checkstyle detects feature envy.

c.	 Metric Calibration and Refactoring Plans
It aims on implementing our current ideas on
detecting the code smells. We use a tool named
“metrics” which is an eclipse plugin to find the
metrics in the code which is followed by metrics
calibration where the detected/calculated metrics
is compared against the threshold values. Initially
generate Design defects rules and then generate
list of refactoring plans.

d.	 Extracting Optimal Refactoring Solution
Encoding involves conversion of Array to a fea-
sible input value in which the processing is going
to be done and Selection involves selecting indi-
viduals for the population and finally evaluates the
individuals through fitness function.

Vol 8 (S2) | January 2015 | www.indjst.org Indian Journal of Science and Technology26

Sequential Ordering of Code Smells and Usage of Heuristic Algorithm

Figure 1. Architecture Diagram.

Figure 2. Genetic Algorithm.

Sequenced Code Using Sorting Algorithm:	

Dead codeà Duplicate codeàFeature envyàlong
methodà god classà long parameter list

4. �Refactoring with Automated
Tools

Inject smells into the code and use automated tools to
detect the smells in the code. Tools used here can find the
code smells that exist in the code. But not all the code
smells are detected using a single tool. There are more
than 22 code smells as proposed by Fowler1 and plug-in
can detect not more than 5 smells in a code. The smells
taken for study are 5 important code smells and detecting
them using tool gives an idea about the code which
facilitates in reusing of the code.

5. Optimal Solution

Genetic Algorithms (GAs) are an iterative approach which
is described as analogous to evolutionary processes for
solving search and optimization problems. We find the
individuals and combine them to create a population
with higher fitness.

5.1 Crossover Complexity
Problem exists in the algorithm since the input is
converted to binary strings, after the computation of the
algorithm on the bit strings, due to crossover and mutation
the number of strings and the sequence is changed. Illegal
results are produced which has been found on latter stage.
To avoid this issue partially mapped crossover is used.

6. Discussion

6.1 Amended Techniques
Topological sorting algorithm for sequencing the major
selected code smells.

Automated tools to define that the usage of tools has
many flaws which has to be solved.

Metric calibration where the metrics calculated from
the source code is used for detecting the defects and
finding their related refactoring methods from the list of
refactoring methods stored in an array list.

Genetic algorithm will encode, select individual, do
crossover and mutation and finally produces the optimal
solution to the problem.

T. Pandiyavathi and T. Manochandar

Vol 8 (S2) | January 2015 | www.indjst.org Indian Journal of Science and Technology 27

6.2 Limitations
We have encountered a problem with the illegal child
generation in the genetic algorithm. During study it is
found that for optimal solution generation using binary
encoding is the better way. But this condition holds
badly for our solution domain. This resulted in rework
of the genetic algorithm by assigned some char values or
numbers to the refactoring methods. Problem is therefore
analyzed and the crossover technique which produce
legal children is found to be partially-mapped crossover
technique and later on this technique is been implemented
and results are obtained along with the fitness values.

Future work can be done using multi-objective
evolutionary algorithm that adapts non-dominated
sorting genetic algorithm (NSGA-II)2. If smells are
introduced, monitoring by itself invokes smell detection
tools to inform the developer to resolve the smells. This
facilitates instant refactoring decisions being made as
soon as the smell is been detected. This solution can
reduce the total number of smells by 51 percent.

6.3 Accuracy
71.428.

7. Conclusion

Our work uses genetic algorithm to find an optimal
solution to the problem. Some problem exists while doing
Encoding and Crossover in genetic algorithm. In previous
work, scheduling of the code smell is done. Refactoring
of the code smells solely depends on the tool and in case
of existence of code smells ever after refactoring leads in
increasing the human effort.

Figure 3. Output of Genetic Algorithm.

Table 1. Accuracy Measures
tp(correct result) fp(unexpected)

6 3
fn(missing) tn(correct absence of result

1 4

7.1 Graph Representation

Figure 4. Cause of Illegal Children.

Figure 5. Time Vs Restructuring.

8. References
1.	 Fowler M, Beck K, Brant J, Opdyke W, Roberts D. Refactor-

ing: Improving the Design of Existing Code. 2002.
2.	 Ouni A, Kessentini M, Sahraoui H, Hamdi MS. The use of

development history in software refactoring using a multi-

Vol 8 (S2) | January 2015 | www.indjst.org Indian Journal of Science and Technology28

Sequential Ordering of Code Smells and Usage of Heuristic Algorithm

objective evolutionary algorithm. Proceedings of GEC-
CO’13. ACM; 2013. p.1461–8.

3.	 Liu H, Guo X and Shao W. Monitor-Based Instant Software
Refactoring. IEEE Transactions of Software Engineering.
2013; 39(8):1112–26.

4.	 Liu H, Niu Z, Ma Z, Shao W. Identification of generalization
refactoring opportunities. Automated Software Engineer-
ing. 2013; 20(1):81–110.

5.	 Lozano A, Wermelinger M and Nuseibeh B. Assessing the
Impact of Bad Smells Using Historical Information. Pro-
ceedings of Ninth International Workshop on Principles of
Software Evolution: In Conjunction with the Sixth ESEC/
FSE Joint Meeting; 2007. p. 31–4.

6.	 van Emden E and Moonen L. Java Quality Assurance by
Detecting Code Smells. Proceedings of Ninth Working
Conference Reverse Engineering; 2002. p. 97–106.

7.	 Tsantalis N, Chaikalis T and Chatzigeorgiou A. Jdeodorant:
Identification and Removal of Type-Checking Bad Smells.
Proceedings of 12th European Conferenced Software Main-
tenance and Reengineering; 2008 Apr. p. 329–331.

8.	 Fokaefs M, Tsantalis N and Chatzigeorgiou A. Jdeodorant:
Identification and Removal of Feature Envy Bad Smells.
Proceedings of IEEE International Conference Software
Maintenance; 2007 Oct. p. 519–20.

9.	 Mantyla M, Vanhanen J and Lassenius C. Bad Smells - Hu-
mans as Code Critics. Proceedings IEEE 20th International
Conference Software Maintenance; 2004 Sept. p. 399–408.

10.	 Meszaros G. xUnit Test Patterns: Refactoring Test Code.
Addison-Wesley; 2007.

11.	 Mantyla M, Vanhanen J and Lassenius C. A Taxonomy and
an Initial Empirical Study of Bad Smells in Code. Proceed-
ings International Conference Software Maintenance; 2003.
p. 381–4.

12.	 Pietrzak B and Walter B. Leveraging Code Smell Detection
with Inter-Smell Relations. Proceedings of Seventh Inter-
national Conference Extreme Programming and Agile Pro-
cesses in Software Engineering; 2007 Jun. p. 75–84.

13.	 Mens T, Taentzer G and Runge O. Analysing Refactoring
Dependencies Using Graph Transformation. Software Syst
Model. 2009 Sept; 6(3):269–285.

14.	 Liu H, Yang L, Niu Z, Ma Z and Shao W. Facilitating Soft-
ware Refactoring with Appropriate Resolution Order of
Bad Smells. Proceedings of Seventh Joint Meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium the Foundations of Software Engi-
neering; 2009. p. 265–8.

15.	 Available from: http://www.eclipse.org/downloads
16.	 Horstmann CS and Cornell G. Core Java Fundamenals. 8th

ed. 1.
17.	 Available from: http://www.Sourceforgenet.com- pmd,

checkstyle.
18.	 Liu H, Ma Z, Shao W and Niu Z. Schedule of Bad Smell

Detection and Resolution: A New Way to Save Effort.
IEEE Transactions on Software Engineering. 2012 Jan-Feb;
38(1):220–35.

19.	 Nongpon K. Integrating Code Smells Detection with Refac-
toring Tool. 2012 Aug.

20.	 Griffith ID. Automated refactoring: a step towards enhanc-
ing the comprehensibility of legacy software systems.

