
Abstract
The objective of the work is to use hand gesture interface for augmented reality applications. By introducing hand gestures
control through leap motion sensor we improve user experience in AR applications. It is first of its kind in augmented
reality to interface Leap with Augmented Reality.

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(7), 678–682, April 2015

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

An Augmented Reality Application with Leap and
Android

V. Meenakshi Sundaram, Shriram K. Vasudevan*, C. Santhosh, R. G. K. Barath Kumar and
G. Deepak Kumar

Amrita School of Engineering, Amrita Vishwa Vidyapeetham University, Coimbatore, India;
kv_shriram@cb.amrita.edu, msundarv@gmail.com, sansanthosh651@gmail.com, barath.rgk10@gmail.com,

gdeepakkumar@live.com

Keywords: Augmented Reality, Hardware, Operations, Software, Virtual Reality

1. Introduction

We aim at providing a system, apparatus, and methods are
provided for Aaugmented Reality (AR) glass that accom-
plishes virtual computing with gesture interface. It helps
the users to interact with real world environment using
digital information. This means that the view of personal
computing would be revolutionized into virtual com-
puting, which is an innovation in the area of computing
systems. The applications are built over the android plat-
form. The image tracking algorithm using AR SDK helps
to bring the digital content into the real world. The product
also comes with a camera for surface tracking. The output
is displayed with Field of View for each eye so that user
experience stereoscopic view of digital content in the real
world. The user interfaces are made with Leap motion tech-
nology so that the natural hand gestures are processed into
specific commands for interacting with the applications1.

2. Hardware Components

The glass consists of pair of Transparent OLED with see-
through display. It consists of binary layers on both edges
of the OLED,

which accommodates an emissive and conductive layer.
Electrical impulses travel through the conductive layer
and produce light at the emissive layer. The narrowness
of the screen as well as the clear cathodes within allows
the screens to be transparent. Two cameras are placed on
either side of Glass for surface tracking. Leap motion sen-
sor is placed on the glass which could track hands at lest
of about 1 cm accuracy. The glass constructed will look
something like as shown in Figure 1.

Figure 1. Hardware components.

DOI: 10.17485/ijst/2015/v8i7/69907

V. Meenakshi Sundaram, Shriram K. Vasudevan, C. Santhosh, R. G. K. Barath Kumar and G. Deepak Kumar

Indian Journal of Science and Technology 679
Vol 8 (7) | April 2015 | www.indjst.org

Figure 2. View level.

2.1 Camera

With the help of depth sense view of camera, the captured
frames are processed into grey scale and the edges in the
frames are recognized. Finally the required information is
embedded in user’s field of view.

2.2 Leap Motion Sensor
This sensor provides effective control over the applica-
tions. The APIs provided by the sensors can be modified
with our Android Kernel Driver so that the user could
experience effective Interface. Dotted lines indicate the
position of the sensor. (www.leapmotion.com can help
the reader and researchers to gather more information on
the same).

2.3 Transparent OLED
Transparent displays with OLED's are the most com-
monly produced forms of see-through displays on the
market. It provides stereoscopic view of output in front
of user eyes.

2.4 Snapdragon Processor

Snapdragon is one of the family members of mobile
Systems on a Chip (SoC) by the organization,
QUALCOMM. It has multiple topographies like to those
of the ARM Cortex-A8 core and it is based on the ARM
v7 instruction set, it has much higher performance for
multimedia-related SIMD operations.

3. Software Components

Applications are processed over the android platform.
The upper level of the software is completely based on
the camera and leap motion sensor. The surface is tracked
and each region gets separated into horizontal and verti-
cal scan lines of 5 pixels apart. The initial step is to convert
the frame into Grey scale so that the dark and white pixel
alternatively represents one and zeros. Then the Gaussian
derivative is used to detect black/white edges in the image.
The Gaussian derivative is based on the convolving the
image with a small, separable and integer values filter in
horizontal and vertical direction. After the detection of
the edges, RANSAC algorithm is used to construct line
segments in each region so that the co-ordinate of each
pixel could be mapped with any digital content. This pro-
vides the digital information to come live in the real world
with the same co-ordinate axis.
In the given figure (Figure 2), the camera and leap motion
sensor acts as the foremost view level of the invention.
The frame captured by the camera is processed into grey
scale. The black and white pixel is tracked as grid. Each
grid represents the line and the edges are detected. The
Leap motion sensor tracks the hand and correspondingly
the gesture is detected. The resultant final co-ordinate is
mapped with the edges of the grid and the digital infor-
mation is embedded over the grid layer and the final
result is displayed on an OLED.
Leap motion sensor provides various API’s for Hand
Tracking, each of which are pure java libraries. The
mapping co-ordinates of digital content could be made
intractable with these API’s. The Driver for Leap motion
sensor is also available on Android platform, So that the
developers can make the application in easier way.

4. Working Application

The applications are developed with the help of Unity
3D framework and final applications are built over the
android platform. Using the AR SDK’s the virtual objects
are placed over the surface with viewpoints and the ren-
dered objects are controlled using leap motion sensor. In
the Figure 3, the table is tracked with the help of a web-
cam and the virtual object (hockey game) is placed and
it is controlled using the leap motion sensor. The gesture
used here are Pinch and Grab.
1) The Pinch gesture is used to trigger the virtual object
on the table.

An Augmented Reality Application with Leap and Android

Indian Journal of Science and Technology
Vol 8 (7) | April 2015 | www.indjst.org

680

2) The grab gesture is used to get the control of the striker.
Finally, the movement of the striker is controlled with
the hands. JozeGuna et al2 Figure 4 has got the way the
Android is made fit for Leap. Figure 8 has got the screen-
shot of the application developed for air hockey.
The bird’s eye view of the proposed equipment is pre-
sented in Figure 7.

Figure 3. Glow Hockey game using laptop.

Figure 4. Leap motion with android.

Figure 5. Medical application [Nexus 5 screenshot].

Figure 6. Outdoor application [Nexus 5 screenshot].

Figure 7. Birds view of the product design.

5. Mode of Operations

The best suit of operation is by connecting the leap
motion sensor to the android mobiles (nexus 5) using the
USB to micro USB connector and the applications which
are build using the Unity 3D framework can be deployed
and controlled using the hands. One can have Figure 5 as
reference to understand the following architectural points
of the product.
1) Nexus 5 Smart Android phone is used to process all
the applications and also receives the data from leap
motion sensor.
2) USB to Micro USB connector which helps to send data
from sensor to mobile.
3) USB cable.
4) Leap Motion Sensor.

V. Meenakshi Sundaram, Shriram K. Vasudevan, C. Santhosh, R. G. K. Barath Kumar and G. Deepak Kumar

Indian Journal of Science and Technology 681
Vol 8 (7) | April 2015 | www.indjst.org

Figure 8. Air hockey or Glow hockey, AR air hockey.

6. Sample AR Game

To get an idea what the app is all about, the following
few lines are drafted. We have built the App which repli-
cates the game shown in Figure 6. The basic components
involved in this game are, a. Paddle, b. Coin and c. Board.
These are technically referred from the app point of view
as Unity Game Objects.
The following code is a unity JavaScript code that is being
added to the game scene to control the paddle object
present.
[C1]The function start will be called as soon as the script
is executed. And the initial position of the paddle will
be stored which also creates an object for leap control-
ler. [C2] The function change when called will find the
difference between the current and previous position of
the hand. [C3] Hand Get Front Hand function is used to
obtain the hand which is near to the LEAP. In order to
check whether the hand is detected by the LEAP or not,
we have made the color of paddle to change. If the color of
the paddle is red it means hand is not detected and if the
color of paddle turns blue, hand is detected. [C5] Update
function is called once per frame i.e., this function will
be called in regular time interval. [C6] first the current
frame is obtained from the controller object. [C7] Then
the front hand position is obtained and also the if no hand
is detected the program is not allowed to continue. [C8]
Change in hand position is calculated and the paddles
current position is obtained [C9]. From [C10] we get
the new position based on the change in hand position.
Paddle is translated depending on the change in hand
position. Paddle is restricted from leaving the board.
Board's width is set as 6 and length as 8 in this case. [C11]
In order to keep the paddle within the limits of the board
the following conditions have been used.

The conditions are that the paddle can move in the posi-
tive y direction by 3 units and the negative y direction by
1 unit since the length of the board is 8 and one half of the
board is 4. Similarly the direction in the x axis has been
restricted by 3 units in both positive and negative direc-
tions. The following snippet of the code is enough for the
understanding of above conveyed points.
usingUnityEngine;
usingSystem.Collections;
using Leap;
public class paddlecontroller : MonoBehaviour
{
publicGameObjectboard,paddle ;
Controller m_leapController;
[SerializeField] Transform m_parent; public Vector3 ini-
pos;
public static boolisSelected;
public Vector3 lasth;
publicboolinicheck ;
//[C1], Cited in text in the previous paragraph.
void Start ()
m_leapController = new Controller();
inipos = paddle.transform.localPosition; //Paddle object's
initial position
inicheck = true;
//[C2] Cited in text in the previous paragraph.
Vector3 change(Vector3 handPos)
if (inicheck)
inicheck= false;
return new Vector3(0,0,0) }
Vector3 ohandPos = lasth; lasth = handPos;
return new Vector3((handPos.x - ohandPos.x)*1.5f,
(handPos.y - ohandPos.y) * 1.5f,
handPos.z - ohandPos.z) ;
//[C3] Cited in text in the previous paragraph.

An Augmented Reality Application with Leap and Android

Indian Journal of Science and Technology
Vol 8 (7) | April 2015 | www.indjst.org

682

Currently all AR applications are using touch as primary
source for interaction which reduces immersive user
experience. By introducing hand gestures control through
leap motion sensor we improve user experience in AR
applications. We are the first in the world of augmented
reality to interface Leap with Augmented Reality. It has
now opened doors and avenues for lot of other applica-
tions in the same gaming sector and other arenas as well.

Hand GetFrontHand(Frame f)
floatzComp = -float.MaxValue; Hand candidate = null; if
(f.Hands.Count == 0)
 {
 //Paddle becomes red if hand is not
detected
 GameObject pad = GameObject.
FindGameObjectWithTag ("paddle");
 pad.renderer.material.color = Color.
red;
 }
 else
 {
 //Paddle becomes blue if detected
 GameObject pad = GameObject.
FindGameObjectsWithTag ("paddle");
 pad.renderer.material.color = Color.blue;
 }
 //[C4] Cited in text in the previous paragraph
 for(int i = 0; i<f.Hands.Count; ++i)
 {
 if (f.Hands[i].PalmPosition.
ToUnityScaled().y >zComp)
 candidate = f.Hands[i]; zComp=f.
Hands[i].PalmPosition.ToUnityScaled().y;
 }
if (inicheck)
lasth = candidate.PalmPosition.ToUnityScaled() ;
return candidate;
}
//[C5] Cited in text in the previous paragraph
void Update ()
{
Frame f = m_leapController.Frame();//[C6]
Hand h = GetFrontHand(f);//[C7]
if (h == null) return;
Vector3 handPos = h.PalmPosition.ToUnityScaled();
Vector3 ch = change (handPos);//[C8]
GameObject paddle = GameObject.
FindGameObjectWithTag ("paddle");
Vector3 curpos = paddle.transform.localPosition;//[C9]
Vector3 newpos = new Vector3 (curpos.x + ch.x, curpos.y +
ch.z, curpos.z);//[C10]
 //[C11]
if (Mathf.RoundToInt (curpos.y + ch.z) >= inipos.y - 1
&& Mathf.RoundToInt (curpos.y + ch.z) <= inipos.y +
3

&& Mathf.RoundToInt (curpos.x + ch.x) >= inipos.x -
3
&& Mathf.RoundToInt (curpos.x + ch.x) <= inipos.x
+3) {
 paddle.transform.localPosition = newpos;

7. Conclusion

8. References

1. Hull JJ, Erol B, Graham J, Ke Q, Kishi H, Moraleda J, Van
Olst DG. Paper-based augmented reality. 17th International
Conference on Artificial Reality and Tele existence; 2007.

2. Guna J, Jakus G, Pogacnik M, Tomazic S, Sodnik J. An
analysis of the precision and reliability of the leap motion
sensor and its suitability for static and dynamic tracking.
Sensors. 2014; 14(2):3702–3720.

