
Abstract 
This paper proposes to build up a rotary inverted pendulum; its state space model was derived using Euler-Lagrange 
equation. This model was highly nonlinear. Stabilization and Self erecting a rotary inverted pendulum from sliding position 
and assessment of the pendulum in a straight up position was achieved by designing a control techniques like minimum 
order model, dead bead controller and Linear quadratic Regulator (LQR) using MATLAB domain. This concept was used in 
JCB, GRAIN and entertainment instrument in park.
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1.  Introduction
The form of rotary inverted pendulum imitative the 
mechanical form by using Euler-Lagrange equation in state 
space form1. The Rotary Inverted Pendulum is a typical con-
trol problem that is explored often as a project in control 
courses due to its easily developed dynamics combined with 
its complexity of control design. The rotary inverted pendu-
lum was controlled by techniques in real time earlier2,3. The 
pendulum was stabilized by FLC in simulink environment4. 
A rotary inverted pendulum was stabilized using Sliding 
mode control, Minimum Time Swing Up5,6. Although, 
the problem can be solved using conventional control 
techniques like PD/PID controllers7, and soft computing 
techniques8,9,10, the pendulum was controlled by intelligent 
techniques11. One can use other powerful techniques involv-
ing state space analysis also. The system is composed of a 
pendulum fond of to the end of a rotary arm controlled by 
a motor. The control input is in the form of voltage input to 
the motor. Here our objective is to stabilize the pendulum.

2. � Experimental Setup and 
Modelling

This system contains a DC motor, an arm, controller and 
a pendulum as shown in Figure 1. The controller makes 

the pendulum stand at upright position on the rotary arm 
by moving the arm support of the base. The motor pro-
vides control to rotate the arm. 
Here,

q – motor angle.
Α – pendulum angle.
q  – Motor velocity.
a  – Pendulum velocity.

The principle of Lagrange and uses the Euler-Lagrange 
equation to calculate the non-linear equation of motion.

Let the potential energy be,

Vt =Mpgyp

Resulting in,

Vt = Mpg(h – 1p cos(a(t)))

The total kinetic energy includes the turning kinetic 
energy of the arm and pendulum and the translational 
kinetic energy of the pendulum COG.

Tt = Trot, arm + Trot, pend + Ttrans, pend

The rotational kinetic energy of the arm is

T J d
dtrot arm eq, (t)= 





1
2

2

q
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Rotational kinetic energy of the pendulum is,

T J d
dtrot pend p, (t)= 





1
2

2

q

T M d
dt

x d
dt

y tpend p p ptrans, (t) ( )= 



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+ 















1
2

2 2

The Lagrangian of a system is,

L = Tt – Vt

Where, 
Tt is the total kinetic energy of the system and Vt is 

the potential energy of the system.
On substituting q1 = q and q2 = a in kinetic and poten-

tial energy equation we get,
Lq is quadratic structure given as,

d q d
dt

q t d q d
dt

q t d
dt

q t11 1

2

2 1 12 1 2 2 12( ) ( ) ( ,q ) ( ) ( )



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


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+
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

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q t V qt output22 2
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2 2( ) ( ( )) ( ) τ

Where, d q J M req p11 1
2

1
2( ) cos(q )= +

d q M rlp p12 1 2
1
2

( ) cos(q ) cos(q )=

d q M lp p p22 2
2( ) J= +

V q M g h lt p p( ) ( cos(q ))2 2= −
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output

t m m
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K V K d
dt
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=

− 
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
 ( )



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



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(t)

The state model of time invariant linear continuous 
time dynamic system is

X(t) = AX(t) +Bu(t)

y(t) = CX(t) +Du(t)

The states the rotary inverted pendulum angles are

x x x
t

x
t1 2 3 4= = = ∂

∂
= ∂

∂
q a q a, , ,

A is real 4*4 matrix, B is 4*1 matrix
This rotary inverted pendulum is a single input and 

four outputs system. Where the outputs are pendulum 
angle, motor angle, pendulum velocity and motor veloc-
ity. The parameters of the rotary inverted pendulum are 
given below in Table 1.

The obtained state space matrix is,

A M gl r
t

K K
t

l M g M r J

p p t m p p p

p p p eq

= − −
+

− +

0 0 1 0
0 0 0 1

0 0

0

2 2 2

2
∆ ∆

∆

(J M l )

( )
tt

l

t
pM K rKp t m

∆
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












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
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B K
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pM K rp t
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Table 1.  Parameters of rotary inverted 
pendulum

Parameters Values

Mp (kg) 0.027

Lp (m) 0.153

r (m) 0.0826

g (m/s2) 9.81

Jp (kg.m2) 0.00017

Jeq (kg.m2) 0.00018

Rm (ohm) 8.7

Figure 1.  Experimental setup.
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C =







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Obtained transfer function,

num
den

s s s
s s

1 25 131 17 4949 5 2197 883 0695
0 58328 8

3 2

4 3=
− + + −

+ −
. . . .

. 33 9278 29 44152. .s s−
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s s s
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s s s
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3 2
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− −

+ − −
. . .
. . ..4415s

3.  Controller Design
Stabilization of pendulum by minimum order model, 
deadbeat controller technique and LQR:

3.1  Minimum Order Model
The minimum order can be designed by first portioning 
the state vector x(k) in/to two parts as follows:

X
X k
X k

a

b
( )

( )
( )

k =

Where
Xa (k) is that portion of the state vector.
Xb (k) is the unmeasurable portion of the state 

vector.
The partitioned state equation becomes as follows 

	
X k
X k

A A
A A

X k
X k

B
B

a

b

aa ab

ba bb

a

b

a

b

( )
( )

( )
( )

+
+

=


















 +






1
1 

 ( )k � (1)

	 X k A X k A X k B U ka aa a bb b a( ) ( ) ( ) ( )+ = + +1 � (2)

This equation relates measurable and unmeasurable 
quantities of the state.

The full-order observer can be given by 

	 X k G K C X Y ka e e( ) ( ) ( ) ( ) ( )+ = − + +1 k BU k K � (3)

Making following substitutions in equation (3)

	

X k X Bu A X k B u k

Y k X X

b bb ba a b

a aa a

( ) ( ), , ( ) ( ) ( ),

( ) ( ) (

= = = +

= −

k A A k

k + A1 kk B u k C Aa ab) ( ),− =

	

X k K A X k A X k B u k

K X k A X

b bb e ab b ba a b

e a aa a

( ) ( ) ( ) ( ) ( )

[ ( ) (

+ = − + +

+ + −

1

1

A

kk B u ka) ( )]− � (4)

Since, motor and pendulum angles are our output, 

	 Y k Xa( ) ( )= k � (5)

Sub eqn (5) in eqn (4) 

η( ) ( )( ) [( )

( ) ( )] (

k A K A k K A

K A K

bb e ab bb e ab

ba e aa b e

+ = − − −

+ − + −

1 A

A Y k B BB u ka ) ( )

This equation is minimum order observer.
The error equation can be written as

e k A k A e kbb e ab( ) ( ) ( )+ = −1
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Ackermanns formula is 

k A
A A
A Abb

ab bb

ab bb
= ∅









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


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−

( )
1 0

1

∅ = + +( )A A A Ibb bb bb
2

1 2a a

The characteristics polynomial equation of minimum 
order observer is given by

| |zI A k Abb e ab− + = 0

3.2  Deadbeat Controller
For the discrete time state space model, the state equation 
becomes u(k) = –kx(k),

State equation,

X A B k X kd d( ) ( ) ( )k + = −1

If the Eigen values of matrix (Ad-BdK) lies inside the 
unit circle, then the system is stable.

It follows that, by choosing all Eigen values of 
(Ad-BdK) to be zero, it is possible to get the deadbeat 
response, or since, our system is completely controllable, 
we can choose the desired Eigen values to be zero. 

This implies that,

( )( )( )( )z z z z z z

z z

− − − − = + +

+ + =

m m m m a a

a a
1 2 3 4

4
1

3
2

2

3 4
4

z

Which implies, 

a a a a1 2 3 40 0 0 0= = = =, , ,

Let the original system characteristic equation is given 
by 

| |ZI A z z z zd− = + + + +4
1

3
2

2
3 4a a a a

To achieve specified poles we define transformation 
matrix as follows:

T = MW

M B A B A B A Bd d d d d d d=  , , ,2 2

which is rank 4.

W =



















a a a
a a
a

3 2 1

2 1

1

1
1 0

1 0 0
1 0 0 0

Using x(k) = Tx(k), we get following state space 
matrices 

(Note: Any coordinate transformation of the state 
vector, yields the same Markov parameters of the system)

A T A Td d= =

− − − −







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
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

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
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
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




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
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0
0
0
1

K KT= =  d d d d4 3 2 1

The characteristic equation becomes as follows

| |ZI A B kd d− + = 0

Comparing equation 
Hence, for dead beat response

k KT T= = − − − − 
− −1

1 2 3 4
1a a a a, , ,

The obtained results for minimum order model,

4.  Result and Discussion
In Figure 1 shown the three dimensional diagram of 
inverted pendulum. The step response of motor pendu-
lum angle was obtained using minimum order observer 
model in figure 3. Figure 4 shows the error vectors between 
observed and actual states. The voltage input was given 
to the motor and that response was obtained using dead 
beat algorithm (Figure 5). Similarly, motor and pendulum 
angle response was obtained using dead beat algorithm 
(Figure 6). Finally, arm velocity and pendulum velocity 
was obtained using LQR (Figure 7).

5. Application
There are some application already been used in real life 
using pendulum principle such as some part of rides at 
amusement park, crane system and pendulum clock. 
Modelling and control of rotary inverted pendulum 
system is very useful to improve the application.
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