
Abstract
Background/Objectives: Node indexing has been developed to optimize query retrieval. Since its inception in the early
century, there are many node indexing techniques. Methods/Statistical Analysis: Node indexing can be group into four
major groups which is, subtree labeling, prefix-based labeling, multiplicative labeling and hybrid labeling. Each indexing
techniques has its advantages and disadvantages. However, there is an absence of literature reviews on the review of the
recent techniques; the latest one was in year 2009. As such, this research project aims to review on some of the latest
techniques for each node indexing group. Findings: Choosing a correct indexing is critical. For example, prefix-based
indexing scheme size grows too huge, while high computation cost is needed to annotate using multiplicative labeling. On
the other hand, the subtree group is weak in data updates, while a hybrid scheme combining various schemes with the
aim to create a scheme with the strengths of several schemes. Application/Improvements: Most important, this review
explores and identifies the trends which can be useful for new researcher.

*Author for correspondence

Indian Journal of Science and Technology Vol 8(32), DOI: 10.17485/ijst/2015/v8i32/92106, Nov 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

1.	 Introduction
eXtensible Markup Language or better known as XML in
short, is gaining its popularity since its inception in the
early 2000s. XML files are widely used to generate and share
common information on World Wide Web and intranet by
using standard ASCII text. It is used for human-readable
and machine-readable, due to its nature of self-describing.
In XML, tags, which are known as element, are enclosed
in angle brackets to describe the content it surrounds. For
instance, Figure 1 classifies the title for the book with id
‘0-1-13’ is ‘XML Overview’. Each XML file contains single
root. From Figure 1, publications is the root. Below publi-
cations, there are two sub-elements, which consist of two
books. Below the first book element, there are two sub-
elements consists of title and chapter and so on. The tree
representation of Publication List is shown in Figure 2.

Indexing1-3 is well-established to improve the query
processing speed by decreasing the search space. With
indexing, the input query is matched against the index
tree, which is usually much smaller instead of the docu-
ment itself.

Since XML is semi-structured data, in addition to the
text queries, the support for complex structural queries
is crucial4,5. A structural search is to retrieve matches on
the tree where it has the tags and structure (relationship)
specified in the query criteria. There are three main types
of relationships; namely, Parent-Child (P-C), Ancestor-
Descendant (A-D) and siblings (the order of the node).

Structural indexes are classified into three main
groups; Path indexing, Node indexing and Sequence-
based indexing. Nevertheless, the focus of this paper is on
Node indexing.

Node indexing can be group into four major groups
which is, subtree labeling, prefix-based labeling, multipli-
cative labeling and hybrid labeling6.

Among all, Subtree is the modest category. The label
of a given document node v in D encodes the position
and the extent of the subtree Dv of D that is rooted in v.
In another words, this means that by taking the offsets
in the sequence of nodes, we will be able to compute the
label in a specific order. In terms of determination on the
structural relationships, for the given nodes v, w, in D,

Keywords: Labeling Scheme, Node Indexing, Query Optimization, Query Retrieval, XML Database

Node Indexing in XML Query Optimization: A Review
Su-Cheng Haw* and Aisyah Amin

Faculty of Computing and Informatics, Jalan Multimedia, Cyberjaya - 63100, Malaysia;
sucheng@mmu.edu.my, tgaisyah.amin@gmail.com

Node Indexing in XML Query Optimization: A Review

Indian Journal of Science and TechnologyVol 8 (32) | Nov 2015 | www.indjst.org 2

their A-D and P-C relationships is always determined by
testing whether Dv contains Dw.

Interval encoding and region encoding are under the
Subtree grouping. These encoding technique is described
as below:

  •  In internal encoding, node is labeled with a couple of
unique integer assigned by the traversing the tree in
preorder and postorder manner.

  •  The region encoding is known as range encoding
schemes recognized by region coordinate. The region
coordinate is usually a pair of integers containing the
start position, and end position of the substring, from
the root of the XML document.

Being the most diverse class of labeling schemes, Prefix-
based is also known as path-based labeling scheme. Using
this group of labeling scheme, the node v in D usually car-
ries some prefix annotation from the ancestor of the same
path. We could easily determine the relationship precisely,
i.e., u is an ancestor of v iff label(u) is a prefix of label(v).

Multiplicative Labeling used atomic numbers to
identify nodes. This labeling scheme also used some of
arithmetic to figure the relationship between nodes.

On the other hand, Hybrid Labeling scheme uses
mixed grouping of the strengths of existing methods to
support faster query processing.

Some of the recent indexing methods are discussed in
the next section.

2.  Review on Existing Node
Indexing

2.1  Extended Inverted List (Interval encoding)
Extended Inverted List7 is an example of Interval encod-
ing. Basically, this labeling scheme uses the Nested Tree
structure to support dynamic update. In their definition7,
a Nested Tree is a subtree which has an

  •  interval-based number as a node of the containing
tree and

  •  Its own interval-based numbering as a tree.

Using this labeling scheme, each node is represented
as 4-tuple (DocID, sList, eList, Level), where by DocID is
the identifier of the document, sList and eList is the star-
tList and endList of the node respectively, and Level is the
depth of the node in the XML tree. The startList of any
tree node N is the list, s1,...,sn;sn+1, where the last Nested
Tree T of N is an nNested Tree, where si is the label of the
i-Nested Tree of the node N(i = 1, 2,...,n) and sn+1 is the
start position of N in the n-Nested Tree T. The endList
of node N is assigned similar to the startList of N except
that we used the end position instead. Figure 3 shows the
XML tree labelled with Extended Inverted List (except
DocID and Level).

Using this property, the relationships among the nodes
can be determined as illustrated in the 3 cases below.

publications

book

id id

book

title

section

text figure

title

titlechapter

caption

Figure 2.  PublicationList in tree representation.

<publications>
 <book id = “0-1-13”>
 <title> XML Overview</title>
 <chapter>
	 <title> Introduction </title>
	 <section>
	 <text>Queries</text>
	 <figure>
	 <caption> XML Overview</caption>
	 </figure>
	 </section>
 </chapter>
 </book>
 <book id = “0-1-13”>
 <title> Indexing</title>
 </book>
</publications>

Figure 1.  PublicationList: An example of XML
document.

Su-Cheng Haw and Aisyah Amin

Indian Journal of Science and Technology 3Vol 8 (32) | Nov 2015 | www.indjst.org

Case 1:
“If m = n = k, in other words the last Nested Tree of N1 and
N2 is (k 1)-Nested Tree, by the definition of startList and
endList, sk and ek are the start position and end position of
N1 in the (k 1)-Nested Tree, and tk and fk are the start posi-
tion and end position of N2 in the same (k 1)-Nested Tree.
Therefore N1 is the ancestor of N2 if and only if sk < tk and
fk < ek from the property of the interval-based numbering.”

Example: Let us assume that N1 is node (9, 35) and
N2 is node (19,29). According to the theorem, N1 is the
ancestor of N2 if and only if 9 < 19 (in this case, it is true)
and 29 <35 (in this case, it is true). As such, N1 and N2 is
having A-D relationship.

Case 2:
“If min(m,n) > k, N1 and N2 are included in kNested
Trees, and the k-Nested Tree of N1 is different from that
of N2. Therefore, there is not an ancestor–descendant
relationship between N1 and N2. Since, sk = ek and tk =
fk in this case, sk < tk and fk < ek is false. Consequently,
the theorem holds for this case.”

Example: Let N1 be node (39,39) and N2 be node (41,41).
To check whether the two nodes are in A-D relationship, 39
< 41 (in this case is true), but 41 < 39 (in this case is false). As
such, the two nodes does not have A-D relationship.

Case 3:
“If min (m,n) = k(suppose m = k), in other words the last
Nested Tree of N1 is (k 1)-Nested Tree and that of N2 is

not, then tk = fk and tk is the label of the k-Nested Tree
of N2. sk and ek are the start position and end position of
N1 in the (k 1)-Nested Tree. Therefore, sk < tk < ek if and
only if the k-Nested Tree of N2 is a descendant of N1, in
other words, N2 is a descendant of N1.”

Example: Let N1 be node (9,35) and N2 be node
(23,27). To check whether the two nodes are in A-D rela-
tionship, we need to figure out whether the following is
true: 9 < 23 < 35 (in this case is true). As such, the two
nodes are in A-D relationship.

The advantage of this labeling scheme is it also sup-
ports dynamic update, i.e., the insertion and deletion
processing take place with almost no node re-labeling
required. The process of insertion XML data is done by
adding a subtree into the XML tree. They proposed an
Insert algorithm to handle the space at the position of
the insertions, and labeling nodes in the inserted subtree
with integer numbers in the range of the space7. The new
inserted subtree could not be treated as Nested Tree if
there is no space at the position for the data insertion.
On the other hand, it can be treated as Nested Tree if the
size of the inserted subtree is larger than the size of the
space. Nevertheless, the scope of the new Nested Tree can
be extended such as Nested Tree that include the sub-
tree rooted by the parent of the inserted subtree. Figure
4 shows how the subtree is inserted between the node
(39,39) and node (41,41). The root of the newly inserted
subtree will be labeled with position in between 39 and
41, which will be 40. As such, the label for the subtree will
be (40:1, 40:5), and subsequently (40:2, 40:2) for its child.

(1,50)

(9,35)

(11,11) (39,39)

(37,43)

(13,13)

(19,29)

(21,21) (23,27)

(17,17)

(41,41)(15,31)

(25,25)

Figure 3.  Extended Inverted List.

(1,50)

(9,35)

(11,11) (39,39)

(37,43)

(13,13)

(19,29)

(21,21) (23,27)

(17,17)

(41,41)(15,31)

(25,25)

(1,5)

(2,2)

Figure 4.  Inserted node labeled with Extended Inverted List.

Node Indexing in XML Query Optimization: A Review

Indian Journal of Science and TechnologyVol 8 (32) | Nov 2015 | www.indjst.org 4

2.2  ReLab (Region encoding)
ReLab8 is an example of region encoding. Region encod-
ing uses less resource to label the nodes. Basically, the
labeling structure consist of [level, ordinal, rID], where
by level represent the number of edges between root node
to current node, ordinal is the unique ID that is assigned
using pre-order traversal, and rID is the ordinal right-
most sibling. An illustration of ReLab labeling is shown
in Figure 5.

Structural relationships are determined using the
region property of labeling scheme. For instance, A-D
relationship between [1,2,10] and [3,7,10] can be proven
by if descendant’s rID is within the range of ancestor’s
ordinal and rID.

Case 1: A-D relationship
“For two nodes n1 and n2 in XML tree, T, n1 is the ances-
tor of n2 in T if and only if n1(ordinal) < n2(rID) ≤
n1(rID)”.

To prove P-C relationship between [1,2,10] and
[3,7,10], the difference between the level of child node
and level of parent node must be one, and the rID of child
must be less or equal to rID of the parent node. As a result,
the following lemma is generated.

Case 2: P-C relationship
“For two nodes n1 and n2 in XML tree, T, n1 is the par-
ent of n2 in T if and only if (n1(level)+1 = n2(level) &&
(n2(rID) ≤ n1rID))”.

As for the support for dynamic update, the informa-
tion could not be found in the current paper 8.

2.3  Order based Scheme (Prefix-based)
OrderBased9 labeling scheme is based on combination
of alphabetical letters and integers describing the level,
node order, and parent node order. The label is in the
format of duplet with the level and order concatenated as
<level order, parentorder>, being (i) level is the distance
of any node relatively to the root, (ii) order is specified
in alphabetically, order of the node relative to the left-
most node, and finally (iii) parentorder is the order of
the parent.

Figure 6 shows the XML tree annotated with
OrderBased scheme. The level of the root is 0, the level of
the direct child of root is 1, and subsequently, increasing
by 1 until the end of hierarchy where the last leaf node is
found. As for the order, it is computed using the breath-
first traversal with letter ‘b’, followed by ‘c’, ‘d’, subsequently
until the 25th and 26th nodes (if present) will be ‘z’ and
‘zb’ respectively. The parentorder however, is assigned
based on tracing the order of the parent node.

Structural relationship can be determined as follows.
For example, in Figure 6, the node with label <1c, a> is the
parent of the nodes with labels <2e, c> and <2f, c>. This
parent to child relationship is provided because the par-
ent order of the three nodes is “c. As for the sibling, any
two nodes that have the same level information and with
the same parent order are siblings. For instance, <2e, c>

[0,1,13]

[1,2,10]

[2,3,10] [2,12,13]

[1,11,13]

[2,4,10]

[3,7,10]

[4,8,10] [4,9,10]

[3,6,10]

[2,13,13][2,5,10]

[5,10,10]

Figure 5.  Relab scheme.

<0a>

<1b,a>

<2b,b> <2e,c>

<1c,a>

<2c,b>

<3c,d>

<4b,c> <4c,c>

<3b,d>

<2f,c><2d,b>

<5b,c>

Figure 6.  OrderBased labeling scheme.

Su-Cheng Haw and Aisyah Amin

Indian Journal of Science and Technology 5Vol 8 (32) | Nov 2015 | www.indjst.org

and <2f, c> are siblings as they are within level 2 and have
the same parent order, which is ‘c’.

However, to find the ancestors /descendants of a given
node, first there is a need to move to the parent/children,
and then the parent of the parent/children recursively till
the intended level is reached. For example, to find whether
node1 <5b, c> have ancestor-descendants relationship
with node2 <3c, d>. Firstly, we obtain the parent order of
node1, which in this case is ‘c’. Then, we find the node in
a level higher (in this case, level 4), which have order ‘c’.
As such, node <4c, c> is retrieved. The process repeated
to obtain the parent order of node <4c, c>, which in this
case is ‘c’. Next, we search the node at a level higher (in
this case, level 3), which have order ‘c’. As such, node <3c,
d> is retrieved. Therefore, node1 <5b, c> and node2 <3c,
d> is of ancestor-descendant relationship.

This labeling scheme also supports the dynamic
update. For any newly inserted nodes, it works as follows.

1.	 “To insert a node before the first node of a given level,
get the order of the node then count down to the
preceding alphabet, if all characters are “b”, insert “a”
before the last “b”. (see Figure 7(a)).”

2.	 “To insert a node between two nodes, keep counting
from the code standing before it so that the code for
the new node will be greater than the code of its previ-
ous sibling and less than the code of its next sibling
(see Figure 7(b)).”

3.	 “To insert a node after the last node of a level, incre-
ment the order of the last order alphabetically (see
Figure 7(c)).”

In addition,9 also proposed optimization routine,
named Determine-size to minimize the label size for
every level. Using this routine, the optimal characters
needed to label the nodes at every level will be computed
first. They proved that using optimized method reduces
the storage requirement (see Table 1).

2.4  ME Labeling (Multiplicative)
Multiplicative labeling uses odd numbers and multipli-
cation operation to annotate the XML tree. The labeling
structure consist of (level, [selflabel, ordinal]), where by
level represent the node that is located in the tree, selflabel
is the value where parent * ordinal, parent is the selfLa-
bel of parent node, and ordinal is the unique number of
the current node10. The root node will always be labelled
as 1. 2n+1 are used to generate odd numbers for ordinal
where n represent the position of a node in the level. For

<0a>

<1b,a>

<2b,b> <2e,c>

<1c,a>

<2c,b>

<3c,d>

<4b,c> <4c,c>

<3b,d>

<2f,c><2d,b>

<5b,c>

<1ab,a>

<2ab,ab><2aab,ab>

(a)
<0a>

<1b,a>

<2b,b> <2e,c>

<1c,a>

<2c,b>

<3c,d>

<4b,c> <4c,c>

<3b,d>

<2f,c><2d,b>

<5b,c>

<1bb,a>

<2db,bb> <2dc,bb>

(b)
<0a>

<1b,a>

<2b,b> <2e,c>

<1c,a>

<2c,b>

<3c,d>

<4b,c> <4c,c>

<3b,d>

<2f,c><2d,b>

<5b,c>

<1d,a>

<2g,d> <2h,d>

(c)

Figure 7.  Insertion of subtree in (a) the leftmost part, (b)
between any nodes, (c) the rightmost part.

instance, the first node of ordinal at level 1 is 2(1)+1 equal
to 3, the second node of ordinal at level 1 is 2(2)+1 equal
to 5, the third node of ordinal at level 1 is 2(3)+1 equal to
7 (see Figure 8).

Node Indexing in XML Query Optimization: A Review

Indian Journal of Science and TechnologyVol 8 (32) | Nov 2015 | www.indjst.org 6

Parent-child relationship (P-C) is the parent label that is
inherited to the child label. It can be determine by using the
formula selfLabel / ordinal. Parent node is always one level
below the child node. For ancestor-descendant relationship
(A-D), it can be done using all four condition; condition 1
the node1(selfLabel) must be less than node2(selfLabel),
condition 2 the node is divided by node1(selfLabel),
condition 3 the Parent(selfLabel) of node2 is divided
with node1(selfLabel), and condition 4 the sibling of
node2(selfLabel) / node2(selfLabel). When all condition are
satisfied, then only A-D relationship is proved that it is valid.

  1.  Condition 1: node1(selfLabel) < node2(selfLabel).
  •  �Proof: The selfLabel of ancestor is lesser than the self-

Label of descendant: 3 < 525

  2.  Condition 2: node2(selfLabel) / node1(selfLabel).
  •  �Proof: The selfLabel of descendant , 525 is dividable by

the selfLabel of ancestor, 3 (525/3) and the remainder
is a 0.

  3. � Condition 3: Parent(selfLabel) of node2 /
node1(selfLabel).

  •  �Proof: The selfLabel of the parent node of descendant
(525/3) is 105 is dividable by the selfLabel of ancestor,
3 (105/3), and the remainder is 0.

  4. � Condition 4: Sibling of node2(selfLabel) /
node2(selfLabel).

  •  �Proof: The selfLabel of the sibling node of the parent
node, 63 is dividable by the selfLabel of ancestor, 3 and
the remainder is 0.

Sibling relationship can be proved by determine the
relationship between n1= [3,63,3] and n2 = [3,105,5], first
determine the parent of n1 is 63/3 = 21 and parent of n2
is 105/5 = 21. Therefore, sibling relationship is proved
between these nodes. On the other hand, there is no addi-
tional calculation to be determine for level relationship
as it encode in the label itself. For example, in order to
identify the level of node [2,15,5], we can simply derive
the information from the label which is 2 in this case.

Insertion of new node in ME labeling can be assume
that a new node is inserted in between NodeA and NodeB,
where the selfLabel of NodeA is indicated as selfA and
ordinal of NodeA is indicated as ordinalA. Also, selfLa-
bel of NodeB is referred as selfB and ordinal of NodeB is
indicated as ordinalB. Suppose that NodeC is the newly
inserted node with selfLabel newselfC and ordinal as
newordinalC. The generation of newselfC and newordi-
nalC for the NodeC is as follows:

a) newselfC = (selfB)(ordinalA) + (selfA)(ordinalB)
b) newordinalC = newselfC /parent of NodeA or NodeB

For instance, if Node C is inserted in between of Node A
(2,[45,9]) and Node B (2,[55,11]) based on Figure 2-13,
the generation of new label for Node C is shown as below:

a) newselfC = (55)(9) + (45)(11)
 = 495 + 45
 = 990
b) newordinalC = 990 / 5
 = 198
Thus, the new label for Node C is (2,[990,198]). Figure 9
shows the new inserted node of ME labeling.

As a result, ME labelling does not require relabel-
ing during dynamic updates. The structural relationship
between the nodes is maintain by ME labelling even the
dynamic update occurred.

2.5  Dynamic XDAS (Hybrid)
Dynamic XDAS11 is an example of hybrid labeling, which
uses binary digits to represent node labels. XDAS gener-
ates labels based on the masking technique as shown in

Table 1.  Analytical storage requirement9

1

(1,[3,3])

(2,[9,3]) (2,[45,9])

(1,[5,5])

(3,[105,5])

(4,[315,3]) (4,[525,5])

(3,[63,3])

(2,[55,11])(2,[21,7])

(5,[1575,3])

(2,[15,5])

Figure 8.  ME Labeling.

Su-Cheng Haw and Aisyah Amin

Indian Journal of Science and Technology 7Vol 8 (32) | Nov 2015 | www.indjst.org

Figure 10. This labeling scheme has two parts: the first
part is the level, and the second part is the unique ID gen-
erated using bits-masking.

The modified approach from improve binary string
labeling (IBSL)12 into XDAS labels has three main cases
as follows.

Case 1: Insert a node before the leftmost node
“In this case, the label of the inserted node is that the label
of leftmost node concatenated with the delimiter concat-
enated with 01.”

For instance, from Figure 10, the leftmost has the label
2,01001, so the label of the newly inserted node is going
to be 2,01001.01.

Case 2: Insert a node after the rightmost node
“In this case, the label of the inserted node is that the label
of rightmost node concatenated with the delimiter con-
catenated with 11.”

For instance, from Figure 10, the rightmost has the
label 2,10010, so the label of the newly inserted node is
going to be 2,10010.11.

Case 3: Insert a node between any two nodes
at any position
“In this case, the label of the inserted node depends on
the size of the labels of the two neighbour sibling nodes.”
Figure 11 shows the different cases could happen when-
ever a new node to be inserted at any position, as follows:

a) �“If the size of the left sibling node’s label is less than or equal
to the size of the right sibling node’s label, then the label
of the inserted node is the label of the right sibling node
concatenated with the delimiter concatenated with 01.”

  �For instance, from Figure 10, the left sibling node has
the label 2,01010 and the right sibling node has the
label 2,10010, so the label of the newly inserted node is
going to be 2,10010.01 (see Figure 11 (a)).

b) �“If the size of the label of the left sibling node is larger
than the size of the label of the right sibling node,
then the label of the inserted node is that the label of
left sibling node concatenated with “1”.” For instance,
from Figure 11(a), the left sibling node has the label
2,10010.01 and the right sibling node has the label
2,10010, so the label of the inserted node is going to be
2,10010.011 (see Figure 11 (b)).

Case 4: Insert a subtree at any position of the tree
“In this case, the root of the inserted subtree is labeled
according to the previous cases. The other nodes of the sub-
tree are labeled according XDAS bits-masking technique.”

1

(1,[3,3])

(2,[9,3]) (2,[45,9])

(1,[5,5])

(3,[105,5])

(4,[315,3]) (4,[525,5])

(3,[63,3])

(2,[55,11])(2,[21,7])

(5,[1575,3])

(2,[15,5]) (2,[990,198])

Figure 9.  Insertion of new node on ME labeling.

1,001

2,01001 2,01010

1,010

2,10001

3,1011001

4,011011001 4,101011001

3,0111001

2,100102,11001

5,01101011001

Figure 10.  XDAS labeling scheme.

1,001

2,01001 2,01010

1,010

2,10001

3,1011001

4,011011001 4,101011001

3,0111001

2,100102,11001

5,01101011001

2,10010.01

(a)
Figure 11.  Insertion node between any two node labels,
case (a) left sibling node <= right sibling node

Node Indexing in XML Query Optimization: A Review

Indian Journal of Science and TechnologyVol 8 (32) | Nov 2015 | www.indjst.org 8

suitable to label a huge XML document. However, they
support dynamic updates efficiently for any new possible
insertion of subtree/node.

On the other hand, the subtree group has the small-
est and usually fixed-length label size. Nevertheless, this
scheme is not persistent and robust as large numbers of
nodes may need to be relabeled for any update operation.

In recent years, several hybridization of the labeling
schemes have been proposed13-16. A hybrid scheme inte-
grates the approaches of different schemes with the aim of
developing a scheme with the strengths of several schemes.

Table 2 summarizes the advantages and disadvantages
of the node indexing mentioned above.

Labeling scheme Advantages Disadvantages
Extended Inverted List7 Good for structural join processing. Existing algorithm uses the same method will not

improve the query performance.
Reserved space is not enough for the data insertions.
Lengths of labels may grow huge.

ReLab8 Less complexity in label computations. Do not support for dynamic update
OrderBased9 The label size could be minimized in every

level using their proposed routine
(Determine-size).

To determine ancestor-descendant, need to recursively
trace-back until the intended nodes are compared.

Multiplicative10 Structural relationship of XML nodes can be
determined easily.
Supports dynamic updates without relabeling
the nodes.

It will not dynamic update the number of newly
inserted nodes that is larger than the reserved
numbers.

Dynamic XDAS11 Efficient in labeling as it separate node that
contain with and without update ID.

Number of bits increase as is goes further down in
XML tree.

Table 2.  Summarization on advantages and disadvantages of node indexing

1,001

2,01001
2,01010

1,010

2,10001

3,1011001

4,011011001 4,101011001

3,0111001

2,10010
2,11001

5,01101011001

1,010.0101
1,010.01 1,010.011

2,01010.0101 2,10010.0101

3,0101010.0101
3,1001010.0101 3,0110010.0101

Figure 12  Insertion of subtree at any position of the tree.

1,001

2,01001 2,01010

1,010

2,10001

3,1011001

4,011011001 4,101011001

3,0111001

2,10010

2,11001

5,01101011001

2,10010.012,10010.001 2,10010.011

(b)
Figure 11.  Insertion node between any two node labels,
case (a) left sibling node <= right sibling node, (b) left sibling
node > right sibling node.

Figure 12 shows an example of inserting a subtree into
XML tree.

2.  Summary and Conclusion
A proper node indexing is essential to enable quick deter-
mination of structural relationships such as P-C, A-D and
siblings (predecessor and successor) between any two
nodes. Choosing a correct indexing is critical. For exam-
ple, prefix-based indexing scheme size grows too huge as
the XML tree goes deeper. The multiplicative labeling suf-
fers from high computation cost. As such, they are not

Su-Cheng Haw and Aisyah Amin

Indian Journal of Science and Technology 9Vol 8 (32) | Nov 2015 | www.indjst.org

3. Acknowledgement
This work was partially supported by funding from FRGS,
Ministry of Education, Malaysia.

4.  References
1.	 Fang WK. Tree decomposition-based indexing for efficient

shortest path and nearest neighbors query answering on graphs.
Journal of Computer and System Sciences. 2016; 82(1):23–44.

2.	 Karthiga D, Gunasekaran S. Optimization of Query Processing
in XML Document Using Association and Path Based Indexing.
International Journal of Innovative Research in Computer and
Communication Engineering. 2013; 1(2):261–66.

3.	 Cheol-Joo C, Kiseok C, Kwang-Nam C. The XML based
Electronic Document Image Retrieval System. Indian
Journal of Science and Technology. 2015; 8 (S9):235–9.

4.	 Alghamdi NS, Rahayu W, Pardede E. Semantic-based
Structural and Content indexing for the efficient retrieval
of queries over large XML data repositories. Future
Generation Computer Systems. 2014; 37:212–31.

5.	 Hsu WC, Liao IE. CIS-X: A compacted indexing scheme for
efficient query evaluation of XML documents. Information
Sciences. 2013; 241:195–11.

6.	 Haw SC, Lee CS. Node Labeling Schemes in XML Query
Optimization: A Survey and Open Discussion. IETE
Technical Review. 2009; 26(2):89–01.

7.	 Yun JH, Chung CW. Dynamic interval-based labeling
scheme for efficient XML query and update processing.
Journal of Systems and Software. 2008; 81(1):56–70.

8.	 Samini S, Haw SC, Soon LK. ReLab: A Subtree based
Labeling Scheme for Efficient XML Query Processing.
IEEE International Symposium on Telecommunication
Technologies. 2014; 121–25.

9.	 Assefa BG, Ergenc B. OrderBased Labeling Scheme
for Dynamic XML Query Processing. Lecture Notes in
Computer Science. 2012; 7465:287–01.

10.	 Samini S, Haw SC. ME Labeling: A Robust Hybrid Scheme
for Dynamic Update in XML Databases. IEEE International
Symposium on Telecommunication Technologies. 2014;
126–31.

11.	 Ghaleb TA, Mohammed S. A Dynamic Labeling Scheme
Based on Logical Operators: A Support for Order-
Sensitive XML Updates. Procedia Computer Science. 2015;
57:1211–18.

12.	 Ko HK, Lee S. A binary string approach for updates
in dynamic ordered XML data. IEEE Transactions on
Knowledge and Data Engineering. 2010; 22(4):602–07.

13.	 Mirabi M, Ibrahim H, Fathi L. PS+Pre/Post: A novel
structure and access mechanism for wireless XML stream
supporting twig pattern queries. Pervasive and Mobile
Computing. 2015; 15:3–25.

14.	 Le TN, Ling TW, Jagadish HV, Lu J. Object Semantics for
XML Keyword Search. Lecture Notes in Computer Science.
2014; 8422:311–27.

15.	 Chen Y, Davidson SB, Zheng Y. A bi-labeling based XPath
processing system. Information Systems. 2010; 35(2):170–
85.

16.	 Liu J, Ma ZM, Yan L. Efficient labeling scheme for dynamic
XML trees. Information Sciences. 2013; 221:338–54.

