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Abstract
Blowfish Algorithm (BA) is a symmetric block cipher that uses Feistel network to iterate simple encryption and decryption 
functions. The BA key varies from 32 to 448 bits to ensure a high level of security. However, S-boxes in the BA have a high 
percentage of memory. A new cryptography algorithm based on BA is designed to overcome this problem. This algorithm 
adapts a new function (F-function) into a Cylindrical Coordinate System (CCS). The F-function is known as Cylindrical 
Coordinate System with Dynamic Permutation Box (CCSDPB). The study involved three phases: design, implementation, 
and verification. In the first phase, dynamic 3D S-box, dynamic P-box, and F-function were designed. The second phase 
involved performing key expansion, data encryption, and data decryption. Verification includes evaluating the output of the 
new design using the National Institute of Standard and Technology (NIST) randomness statistical test and cryptanalysis. 
Results of the statistical tests show that the new design is suitable with any data stream, including a long string of identical 
bytes. The combination of a dynamic permutation box with a dynamic 3D S-box is an effective approach that strengthens 
the design resistance against attacks such as differential, linear, and short attacks, as well as and increase the randomness 
of outputs.

1. Introduction
Blowfish Algorithm (BA) is a symmetric block cipher 
that uses a Feistel network and iterates simple encryp-
tion and decryption 16 times. BA can be divided into key 
expansion and data encryption1-3. Schneier designed BA 
in 1994 to replace Data Encryption Standard (DES). The 
56-bit key size of DES makes the algorithm vulnerable 
to brute-force attack, and recent advances in differential 
cryptanalysis and linear cryptanalysis indicate that DES is 
vulnerable to other attacks as well4.

Key expansion of BA starts with the P-array and 
S-boxes that use numerous subkeys, which have to be 
precomputed before data encryption or decryption. The 
P-array consists of 18 32-bit subkeys (i.e., P1, P2… P18) 
and four 32-bit S-boxes have 256 entries. 

A key with a maximum of 448 bits is converted into 
several subkey arrays up to a total of 4168 bytes. 

The steps in calculating these subkeys are explained as 
follows. 

•	 The P-array is first initialized, followed by initializing 
the four S-boxes with a fixed string that has the hexa-
decimal digits of Pi.

•	 P1 XOR is conducted on the first 32 bits of the key, 
whereas P2 XOR is conducted on the second 32 bits. 
This condition is repeated up to P14. The cycle is iter-
ated through the key bits until XOR has been per-
formed on the entire P-array with key bits.

•	 BA is used to encrypt the all-zero strings by employing 
the described subkeys in step 1. 

•	 P1 and P2 are replaced with the output of step 3.
•	 The output of step 3 is encrypted using modified 

subkeys. 
•	 P3 and P4 are replaced with the output of step 5. 
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•	 The procedure is continued until all of the elements 
of the P-array are replaced, followed by all four 
S-boxes being replaced with the output continuously 
changing.

Schneier1, Hashim et al5 and Mahdi6 stated that key 
expansion procedure preserves the entire entropy of the 
keys and distributes the entropy uniformly throughout 
the subkeys. This procedure is designed to distribute the 
set of subkeys randomly throughout the domain of pos-
sible subkeys. In BA, the algorithm itself generates the 
S-boxes without additional requirements or algorithms7. 
The same procedure was used in this study to perform key 
expansion in cryptographic design.

1.1 Data Encryption
Data encryption begins with a 64-bit block element of 
plaintext transforming into a 64-bit ciphertext. The input 
is a 64-bit (X) divided into two 32-bit halves: XL and XR. 
XOR is then implemented between the first 32-bit block 
segment (XL) and the first P-array (P1). The resulting 
32-bit data are moved to the F-function that permutes 
the data to form a 32-bit block segment, which is XORed 
with the second 32-bit segment (XR). Then, segments XL 
and XR are then swapped. This process is repeated for 16 
rounds. Segments XL and XR are then swapped. XR is 
next XORed with P17, whereas XL is XORed with P18. 
Figure 1 illustrates the encryption process in BA with 16 
rounds.

The F-function of BA is the most complex part of 
the algorithm, which is the only part that employs the 
S-boxes. The input of the F-function is 32 bits and its out-
put is 32 bits. The input splits into four equal quarters. 
Every quarter (8 bits) is substituted into 32 bits in a cor-
responding S-box. These 32 bits are then combined (XOR 
or addition modulo 232). Figure 2 describes the architec-
ture of the F-function3,8-10.

Decryption is similar to encryption, but P1, P2... P18 are 
used in reverse order. BA is significantly faster than DES 
when implemented on 32-bit microprocessors with large 
data caches, such as Pentium and powered PC4. How-
ever, BA does not fulfill all the requirements for a new 
cryptographic standard and is suitable only for applica-
tions in which the key is not often changed, such as in a 
communication link or an automatic file encryptor. BA is 
inappropriate for devices that have small memory3,8,11-14. 
Four S-boxes require large memory space (4096 bytes); 
thus, they are not feasible for small devices. Despite the 
dynamic structure of the S-box in BA, the S-box is not 
changeable in every round. This condition allows an 
attacker to build relations between rounds15,16. Thus, this 
study modified the S-box in BA, such that its dynamic 
properties are enhanced in terms of security and its mem-
ory requirements are decreased.

Previous studies that attempted to modify the S-box in 
BA includein5,6,13. Hashim et al5 proposed improving BA 
to encrypt 16 bytes with the use of a variable key length 
that varies from 8 bytes to 144 bytes. The improved algo-
rithm can decrease the memory requirement by using a 
single S-box of 259 bytes (64 bits) and 65543 bytes (128 
bits) instead of four S-boxes with 4096 bytes (64 bits) and 
2097152 bytes (128 bits) without compromising secu-
rity. However, the results of the randomness test are not 

Figure 1. Encryption process in BA.

Figure 2. F-function architecture.
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presented. The 65543 bytes (128-bits) still have a large 
memory requirement. Meanwhile, Mahdi6 proposed a 
128-bit block cipher (B-R algorithm) that combines BA 
with the RC6 algorithm to increase security and enhance 
performance. BR used two S-boxes, each having a size of 
259 bytes, instead of four S-boxes in BA. However, the 
results of the randomness test were not presented. Chan-
drasekaran et al13 proposed a new method for the design 
of S-boxes based on chaos theory to decrease the time 
complexity of S-box and P-array generation. The results 
reveal that the modified design of key generation contin-
ued to offer the same level of security as the original BA, 
but with reduced computational overhead in key genera-
tion. Despite the decreased time complexity of the origi-
nal algorithm, the memory requirement increases where 
the modified design requires a memory of 17179869184 
bytes to tabulate all key possibilities. The results of the 
randomness test are also not presented. Based on these 
previous studies, the attempts to improve security and 
decrease memory have been unsuccessful. Several studies 
are related to the 3D designs of a new block cipher, instead 
of the common 2D approach to design a new block cipher 
that does not compromise security.

Nakahara17 and Ariffin18 designed a 3D block cipher 
based on the AES algorithm. Nakahara17 improved the 
security of the 3D block cipher by providing good diffu-
sion in three rounds, but speed was not improved. The 
AES algorithm still required 22 rounds to encrypt one 
block of plaintext, which increased the rounds of the AES 
block cipher by 57%. This condition decreases the speed 
performance of the block cipher, and has not been tested 
for randomness.

Considering these limitations Nakahara17, Ariffin18

successfully designed a 3D block cipher with byte per-
mutation. This block cipher required only 10 rounds and 
provided good diffusion in three rounds. The author also 
tested for randomness and attacks, and obtained good 
results. Based on the aforementioned studies, the 3D 
array can be used to generalize a block size of plaintext 
up to 512 bits with the AES algorithm. The 3D array with 
byte permutation also provided good diffusion in three 
rounds without compromising the security of the original 
algorithm. In another study, Suri and Deora19 success-
fully designed a 3D block cipher with good diffusion, but 
encountered a problem with speed. The method required 
64 rounds to encrypt one block of plaintext. The reliabil-
ity of this method was questionable because the research-
ers did not conduct a comprehensive test, but conducted 

only four NIST statistical tests for randomness. These 
studies Ariffin18 and Suri and Deora19 presented a 3D 
block cipher in Cartesian Coordinates System (X, Y and 
Z) and conducted byte permutation using a rotation 3D 
array (cubic). This 3D array can be rotated by ,

2

 and 

3
2
  only to perform byte permutation. The rotation in 

the CCS can be conducted by 3 5 3, , , , , ,
4 2 4 4 2
    

  only 

to perform byte permutation in this study. The cubic is 
not suitable to present the S-box (256 bytes) in 3D array. 
These conditions indicate that CCS is more suitable than 
Cartesian Coordinates System in this study. The idea of 
a 3D array with byte permutation has been incorporated 
in the present study to design a dynamic 3D S-box that 
can decrease the BA memory requirement. In this study, 
a 3D array was used to design a 3D S-box. Byte permu-
tation was employed to permute the values of the 3D 
S-box. A 3D array was constructed using the CCS struc-
ture, and byte permutation was performed using the CCS 
transformation.

This paper is organized as follows. The first section 
presents the background. The second section describes 
the dynamic S-box. The third section includes coordinate 
systems, and the fourth section presents a detailed expla-
nation of the methodology. The fifth section presents the 
results, the sixth section concludes this paper, and the 
seventh section presents suggestions for future research.

2. Dynamics S-Box
S-boxes are lookup tables that map n bits to m bits. Sev-
eral ways can be employed to construct and test good 
S-boxes for ciphers. Numerous block ciphers depend on 
the traditional Shannon idea of confusion and diffusion. 
Typically, confusion results from certain forms of substi-
tute “S-boxes”39.

A fixed or static S-box has no relation with a cipher key, 
and their contents are not related to that of the secret key. 
The function of the secret key is to make changes only on 
the address of such S-boxes. Thus, the structure of the key 
generator is mainly fixed. The only changeable parameter 
is the secret key. Therefore, a static or fixed S-box indicates 
that the same S-box would be used in every round. The 
main problem in implementing any block cipher system 
concerns the elements of the fixed structure of S-boxes. 
An example of a fixed S-Box is that used in DES. A fixed 
S-box allows attackers to study the S-box properties and 
locate its weak points.
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Dynamic substitution is a type of extended substitu-
tion that is similar to simple substitution but has a sec-
ond data input that rearranges the contents of the S-box. 
The S-box can be changed under the control of a separate 
data stream, typically originating from a pseudo random 
sequence generator. This process can be performed after 
each element is substituted. The substitution of random 
elements is based on the permutation algorithm20.

A dynamic S-box changes every round depending on 
the key. An S-Box translates each data value into a sub-
stituted value; after each substitution, the S-box is reor-
dered. Compared with fixed S-boxes, dynamic S-boxes 
are more resistant to differential and linear cryptanalysis. 
Given that the structure of the dynamic S-box is com-
pletely hidden from the cryptanalyst, the attacker faces 
difficulty in conducting any offline analysis of an attack 
of a particular set of S-boxes. A dynamic S-box is also 
easier to implement and is less susceptible to arguments 
of “hidden” properties. However, the overall performance 
of S-boxes in terms of security and speed has not been 
sufficiently investigated1,20-23.

According to the Elkamchouchi  and Makar24, ciphers 
with dynamic S-boxes are more secure than those with 
fixed S-Boxes. A dynamic S-box may be considered as a 
block box with two inputs (i.e., data in and random in) 
and one output20,22. The S-box starts out as completely 
unknown. When data are translated through the S-box, 
the particular substitution is potentially known. However, 
this substitution value is immediately changed, thereby 
making the S-box completely unknown again. The S-box 
arrangement is complicated and makes cryptanalysis 
more difficult20,27. Numerous studies23,25,26,28-30 have 
attempted to modify the AES S-box to make it dynamic 
instead of fixed to increase algorithm security.

 These studies show that most attempts are based on 
the application of different byte permutation mechanisms 
by rearranging the location of the elements in the S-box 
using Secret Keys (SKs) to achieve a dynamic S-box, 
which increases the security of the original algorithm. A 
dynamic S-box is protected against differential and linear 
attacks because its structure is completely hidden from 
the cryptanalyst1,21-23. In this study, a dynamic S-box in 
BA has been improved by using byte permutation based 
on SKs. A dynamic S-box is achieved by rearranging the 
location of the elements in the 3D S-box after each substi-
tution at each round with every block of plaintext. Thus, 
any trail from cryptanalysis to build relations between 
rounds leads to failure. In addition, the randomness of 

the algorithm is enhanced. Random SKs with byte per-
mutation are proven to be good mechanisms; thus, this 
method is adopted in our study.

3. Secret Key Generation
SKs can be generated through various methods. Krish-
namurthy and Ramaswamy25 generated SKs using four 
methods. The first method used the last byte from the 
round keys. The second used XOR among the values of all 
bytes in round keys. The third used another set of round 
keys, which are generated using a key expansion algo-
rithm similar to the AES key expansion algorithm, and 
then takes the last byte of the round keys. The fourth is 
similar to the third, except that it performs XOR between 
the values of all bytes in round keys. Mohammad, Rohiem 
and Elbayoumy26 generated SKs for relocation by divid-
ing SK mod 256, and the result was added to the index to 
obtain the new location of the element. Stoianov28 gen-
erated keys by dividing pre-selected bytes of the SK and 
dividing them by four. Juremi et al23 generated keys by 
applying XOR to all bytes of the round keys. Mahmoud 
et al30 generated SKs using Linear Feed Back Shift Reg-
ister (LFSR). Suri  and Deora19,31 used the random num-
ber generator of Turbo C to generate random numbers. 
The random number generator is a pseudo-random gen-
erator that can return a pseudo-random integer between 
zero and the maximum value. Methods such as LFSR 
and random number generator are used to generate vari-
ous random multiple SKs. LFSR requires additional time 
(overhead time), which makes random number generator 
faster and easier to implement than LFSR. 

In this study, random numbers between 0 and 3 in five 
sets are required, making the random number generator 
more suitable than LFSR in generating multiple random 
numbers without adding overhead time. These multiple 
random numbers can be used as random SKs for the per-
mutation of the values of the 3D S-box. 

4. Coordinate Systems
Coordinate systems can be classified into two catego-
ries: orthogonal and non-orthogonal coordinate systems. 
When coordinates are mutually perpendicular, they are 
said to be orthogonal; otherwise, they are non-orthogo-
nal. Non-orthogonal systems are difficult to handle and 
have limited or no significant use. Thus, this study focuses 
on orthogonal systems. Examples of orthogonal systems 
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include the Cartesian or rectangular, cylindrical, spheri-
cal, elliptical cylindrical, parabolic cylindrical, conical, 
prolate spheroidal, and ellipsoidal. However, the most 
common coordinate systems are the Cartesian, cylindri-
cal, and spherical systems. 

The Cartesian coordinate system is the most com-
monly used coordinate system. However, in applications 
where rotation is considered, a special form of Cartesian 
coordinate based on a circle is used32-34.

4.1 Cylindrical Coordinate System
A cylindrical coordinate system can conveniently solve 
problems related to cylindrical symmetry. A Point (P) in 
a cylindrical coordinate system is represented as (r, Ø z), 
where r is the radius of the cylinder passing through P or 
the radial distance from the z-axis, Ø is the angle between 
the x-axis, and the projection of the point (r, Ø z) onto 
the xy-plane, and z is the same as that in a Cartesian sys-
tem (Figure 3)34.

Figure 3. Cylindrical coordinate system.

The ranges of the variables are as follows:
0 ≤ r	< ¥ 
0 ≤ Ø	< 2p 
–¥	< z ¥
The level surface of points, such as z = zp, defines a 

plane. A few contours that have constant values of r can 
be drawn. These “level contours” are circles. By contrast, if 
z is not restricted to z = zr, as shown in Figure 4, then the 
level surfaces for constant values of r would be cylinders 
that are coaxial with the z-axis.

Figure 4. Level surfaces for the coordinate.

In Figure 4, all points that lie on a ray from the origin 
to infinity passing through P have the same value of Ø. 

For any random point, Ø can take on values from 0 < Ø < 
2p 2. In Figure 5, “level surfaces” for the angular coordi-
nates are drawn. The coordinates (r,	Ø) in the plane z = 
zr are called plane polar coordinates35.

Figure 5. Level surfaces for the angle coordinate.

5. Methodology
This study was conducted in three phases: design, imple-
mentation, and verification.

5.1 Phase 1: Design
Phase 1 was conducted in three steps:(1) Design of the 
dynamic 3D S-box, (2) Design of the dynamic P-box and 
(3) Design of a new F-function. The following sections 
explain these steps.

5.1.1 Dynamic 3D S-Box
The process of designing a 3D S-box consists of three 
parts: 1. Generating random SKs, 2. Defining the trans-
formation of the right cylinder and 3. Conducting byte 
permutation (byte relocation and byte transformation). 
The 3D S-box structure is initially prepared by converting 
the right cylinder (Figure 6.) into a 3D S-box using the 
following matrix:

A=[aijk]884  where aijk is related with point P(ri, Øj, zk)  
such that 

 

 
 

1,2,3, 8 , i = 0,1,2 7.
3 5 3 70, , , , , , , , j 0,1,2, 7.

4 2 4 4 2 4
z 1,2, 4 , 0,1,2,3.

j

k k





 

     
  

 

 





Figure 7 shows the cross-section of the right cylinder.
The output of this step is presented in Figure 8. The 3D 

array has an 8-bit input and 8-bit output.
Figure 8 illustrates the representation of the right cyl-

inder in 3D array. Each square (array 8×8) is a set of 64 
bytes that represent a section of the cylindrical coordi-
nate system for the right cylinder. Each row in the array 
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represents one circle from eight nested circles in the sec-
tion of the right cylinder. Each individual byte in the sec-
tion consists of three indices: the first index represents a 
row number (ρ), the second represents a column num-
ber (ϕ), and the third represents a section number (z). 
Therefore, any point in the right cylindrical coordinate is 
referred to as aijk.

In BA, each quarter (8 bits) is used as an entry point 
to one of the S-boxes, thereby requiring four S-boxes. 
In the new design, all four quarters (each one consisting 
of 16bits) are used as entry to the same 3D S-box. Two 
procedures of byte permutation were applied to permute 
the elements of the 3D S-box after each entry. Every sec-
tion in the 3D S-box (right cylinder) can be divided into 
four sets of elements called quarters (Q0, Q1, Q2, and Q3). 
These quarters represent circles, half circles, tracks, and 
set of random points in the right cylinder.

Once the structure of the 3D S-box is prepared, the fol-
lowing activities are conducted:

5.1.1.1 Generating Random SKs
The rand function in C++ is used to generate a random 
SK. The seed of the rand is computed as follows:

Seed = (XL XOR round subkey) + block sequence of 
the plaintext (1)

Based on Equation (1), the seed of the rand function is 
the left side of the round input (XL) that was XORed with 
a round subkey. The result is added to the block sequence 
of the plaintext. Thus, every block has a different seed in 
the encryption process. Five sets of SKs are generated 
using the rand function in C++. The random SKs are in 
the interval [0,3] and are given as follows.

SKi=kij, where i=0, 1, 2, 3, 4 and j=0, 1, 2, 3. 
SK0={ k00, k01, k02, k03},
SK1={ k10, k11, k12, k13},
SK2={ k20, k21, k22, k23},
SK3={ k30, k31, k32, k33},
SK4={ k40, k41, k42, k43}.

In every set, the SKs were generated without repeti-
tion to ensure that all sections would be chosen and that 

Figure 7. Cross-section of the right cylinder.

Figure 6. Right cylinder.

Section0 (8×8) bytesSection1 (8×8) bytes                   Section2 (8×8) bytesSection3 (8×8) bytes

Figure 8. Representation of the right cylinder in 3D array.
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all elements of the quarters in the 3D S-box would be 
swapped.

The numbers of the first set of SKs represent the four 
sections of the 3D S-box and are used to choose every two 
sections. For example, the numbers 1, 2, 0, 3 in the first 
set (SK0), the second and third sections, as well as the first 
and fourth sections, are selected together.

The last four sets of SKs (SK1 to SK4) represent the four 
quarters of sections. Table 1 presents an example of five 
sets of SKs. The SKs in SK1 represent the quarter number 
in the first section and the SKs in SK2 represent the quar-
ter numbers in the second section. The SKs in SK3 repre-
sent the quarter numbers in the third section. Finally, the 
SKs in SK4 represent the quarter numbers in the fourth 
section.

5.1.1.2  Defining the Transformations of the Right 
Cylinder

The right cylinder is used in the design defined in the 
cylindrical coordinate as follows:
S = {(ρ, Ø ,z): 1≤ ρ ≤ 8, 0 ≤ Ø < 2π, 1 ≤ z ≤ 4}

The transformation of the right cylinder can be 
expressed as follows:

   0 0 0ρ,Ø,z ,Ø Ø ,z zf     

where

 

 
 

0

0

0

0,1, ,7 ,

3 5 3 7Ø 0, , , , , , , ,
4 2 8 4 2 4

z 0,1,2,3

 

     
 





This transformation converts point P(r, Ø z) ϵ S to point 
Pʹ(r, Ø z), which also belongs to S. The eight types of 
transformations on the right cylinder S in Table 2 are con-
ducted as follows:

1. In this study, the right cylinder is divided into four 
sections, as shown in Figure 7, which is indexed to 

 k0, k1, k2, k3, Î K = {0, 1, 2, 3}.
2. In every section of the right cylinder, we have eight 

nested circles (contours), as shown in Figure 6.

In mathematical notation, we consider Sk={Qjk: Qjk as 
a circle or half circle or track or a set of random points   
j=1,2,3,4 } for k ∈ K.  

5.1.1.3 Byte Permutation
Two procedures of byte permutation based on SKs are 
conducted in every round to permute the elements of the 
3D S-box. The first procedure is known as Byte Relocation 

Table 1. Five sets of SKs

Table 2. Eight transformations of the right cylinder
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(BR), which is used to generate one dynamic 3D S-box. 
The second procedure of byte permutation is called Byte 
Transformation (BT), which is used to generate three 
dynamic 3D S-boxes. 

5.1.1.4 Byte Relocation
BR is used in four procedures, namely, D0, D1, D2, and 
D3, to swap between the elements of the quarters in the 
sections. Every number from the last four sets of random 
SKs is used to determine one quarter of the section of 3D 
S-box. D0, D1, D2, and D3 are conducted on the elements 
of the quarters of the sections in the first, second, third, 
and fourth rounds, respectively. This process is repeated 
in a cyclical manner from D0…D3 until 10 rounds are 
completed. D0…D3 are conducted on the quarters of the 
3D S-box in the key expansion part.

BR is conducted in two steps. The first step is choosing 
two sections from four sections depending on the first set 
of random SKs. The second step is swapping between the 
elements of the quarters in the selected sections depend-
ing on the last four sets of SKs. The four procedures D0, 
D1, D2, and D3 are conducted in a manner that corre-
sponds to T5 when swapping the elements of the quarter 
in the selected section with the elements of the quarter in 
another selected section correspondingly. Otherwise, the 
swapping corresponds to T6 to T8.

The process of dividing into quarters differs for D0, D1, 
D2 and D3. Figure 9 illustrates the division process of the 

sections with each BR on the first section (section0) only. 
The following algorithms are conducted to perform BR: 

Algorithm 1: Byte relocation
Input: Section0, Section1, Section2, and Section3 of the 

key expansion part of the algorithm; five sets of random 
SKs.

Output: Section0, Section1, Section2, and Section3 after 
application of BR.

Each section is divided into four quarters with D 
(i-thround mod 4).

Two sections are selected depending on the first SK set.
Swapping between the elements of the quarters in the 

selected section depends on the last four SK sets.
Swapping between the elements of the main diagonals 

with the elements of the second diagonals is performed in 
the sections with D0 only.

Swap (L0, L1)
Swap (L2, L3)
Swap (S0, S2)
(S1, S3)
// L0, L1, L2, L3, S0, S1, S2, and S3 are the main and sec-

ond diagonals of the sections, respectively.
An Example of the BR Process is presented as Follows;

Using the SKs shown in Table 1, the elements of the 
second quarter of the first section are swapped with 
the elements of the second quarter of the third section, 
whereas the elements of the third quarter of the first sec-
tion are swapped with the elements of the fourth quarter 

Q0

Q1

Q2 Q2 Q3

Q3

Q2

Q1

Q0
Q0 Q1 Q0 Q1 Q2 Q3

Figure 9. Quarters in the first section with D0, D1, D2 and D3.

(a) Before D0 process (b) After D0 process

Figure 10. D0 process for the first section. (a) Before D0 process. (b) After D0 process.
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of the third section. The elements of the first quarter of 
the first section are swapped with the elements of the 
third quarter of the third section, and the elements of 
the fourth quarter of the first section are swapped with 
the elements of the first quarter of the third section. The 
same procedure is followed by the second and the fourth 
sections depending on the SKs. Figure 10 illustrate the 
D0 process for the first section using only the SKs in 
Table 1.

5.1.1.5 Byte Transformation
BT was conducted on elements of the sections of the 
3D S-box (right cylinder) after every two bytes (16 
bit) were substituted. T8 was conducted after the first 
two bytes were substituted from the 3D S-box. T4 was 
performed after the second two bytes were substituted. 
Finally, T6 was conducted after the third two bytes were 
substituted. The T6 was conducted on the elements of 
the sections of the 3D S-box from T4 and T4 was con-
ducted on the elements of the sections of the 3D S-box 
from T8. Meanwhile, T8 was conducted on the elements 
of the sections of the 3D S-box from the first procedure 
(BR). BT was used to permute the elements of sections 
of the 3D S-box after every two bytes were substituted. 
T8, T4 and T6 are secret. Figure 11 illustrates the rota-
tion of a single circle of any section in the cylinder, 
where ϕ0 = π/4.

Figure 12 explains the rotation by ϕ0 on the elements of 
the first section, whereϕ0 =π/4. 

5.1.2 Dynamic P-Box
The following steps were used to design the dynamic 
P-box:

•	 Inputting the seed of the rand function using the out-
put of the 3D S-box (8 bytes).

•	 Generating 64 random numbers between 0 and 63 
from the rand function and storing these numbers in 
vector n.   

•	 Initializing the P-box (vector) with values from 0 to 
63.

•	 Swapping the values of the index P-box [i] with 
P-box[n[i]],where i=0...63.

5.1.3 Designing a New F-Function
The most complex part is designing the F-function, 
known as Coordinate Cylindrical System with Dynamic 
Permutation Box (CCSDPB), and which includes a 
dynamic 3D S-box as well as a dynamic P-box in every 
round of plaintext block.

In CCSDPB, the XL was divided into four 16-bit quar-
ters with each quarter split into two 8-bit parts. Each 8-bit 
part, in turn, is further subdivided into three parts that are 
used as indices to the aijk, where the first subpart, used as 
an index to the row number of aijk, represents the first three 
even bits of the byte; the second subpart, used as an index 
to the column number of aijk, represents the first three odd 
bits of the byte; and the third subpart, used as an index to 
the section number, represents the last two bits of the byte.

Figure 11. Rotation of a circle (ϕ0 =π/4).

Figure 12. Rotation of the first section (ϕ0 = π/4).
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The output of each quarter from the 3D S-box was 
multiplied by the previous quarter after rotating them, 
except for the first quarter, and the result was added to 
the round subkey part. Then, the result is modulo 216, 
which means that the round subkey part is 16 bits. The 
multiplication result for the second quarter with the first 
quarter was added to the first 16 bits from the round sub-
key, whereas the multiplication result for the third quarter 
with the second quarter was added to the second 16 bits 
from the round subkey. This procedure was the same for 
the multiplication result of the fourth quarter with the 
third quarter. The number of rotations (right and left) dif-
fers for each 3D S-box output (output of quarter) because 
of the truncated four bits from different positions. If two 
or more different inputs (quarters) of the same output in 
the 3D S-box are present, the resulting output is not the 
same. Then, the outputs of the four quarters are combined 
based on the values from the dynamic P-box. Figure 13 
illustrates the diagram of the CCSDPB function.

The steps taken to perform the CCSDPB are shown as 
follows:

Algorithm 2: CCSDPB function
Input: XL, subkey round P[i], 3D S-box   //  XL is the 

left side of the 64-bit plaintext 
Output: z1      //   64-bit      
Apply BR (i-th mod 4).
Divide XL into four 16-bit quarters B [1], B [2], B[3], 

and B [4], respectively.
Divide B [1] into two 8-bit B1 and B2, respectively.
Set tx=subkey (P[i]).
Set r=first three even bits of B1.
Set c= first three odd bits of B1. 

Set p=two last bits of B1.
Set r1=first three even bits of B2.
Set c1= first three odd bits of B2.
Set p1=two last bits of B2.
Byte 1 = A [r, c, p]
Byte 2 = A [r1, c1, p1]

B[1]= Combine byte 1 and byte 2 
Set j=2
While j<= 4, do {the number of quarters}

{
Apply BT 
Divide B [j] into two 8-bit B1 and B2, respectively.
r=first three even bits of B1
c= first three odd bits of B1
p=two last bits of B1
r1=first three even bits of byte B2
c1= first three odd bits of byte B2
p1=two last bits of byte B2
byte1= A [r, c, p]
byte2= A [r1, c1, p1]
Combine byte 1 and byte 2 into byte1_1
r=last four even bits of B [j-1]
c= first four odd bits of byte1_1
Byte1_2= ROL (Byte [j-1], r) // ROL Rotate Left     
Byte2_2= ROR (Byte1_1, c)   // ROR Rotate Right  
ty1=tx & 0xFFFF  // 16-bit from P[I]
tx=tx>>16          // >>  Shift Right
B[j]=( (Byte1_2*Byte2 _2)+ ty1) mod 216

j=j+1
}

Permute the eight bytes based on the values from the 
dynamic P-box.

Figure 13. F-function (CCSDPB).
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5.2 Phase 2 Implementation
The implementation involved two stages, namely, key 
expansion and data encryption and decryption. In the 
key expansion stage, the 3D S-box and P-array val-
ues were generated. For the data encryption, plaintext 
was encrypted to ciphertext, and vice versa for data 
decryption.

5.2.1 Key Expansion
The key expansion must be started before data encryp-
tion or data decryption. The key expansion consists of 12 
64-bit sub-keys (P[0]…P[11]) and one 3D S-box values. 
A variable-length key (640 bits) is converted into several 
subkey arrays in the key expansion, amounting to a total 
of352 bytes. The subkeys are as follows:

1. P-array of 12 64-bit subkeys: P [0], P [1] … P [11].
2. One 3D S-box (aijk) with 8-bit entries:  i=0...7, j= 0…7, 

k=0…3.

The same procedure used to generate the subkey values 
(P-array and S-box) in the BA is conducted. This proce-
dure is designed to distribute the set of subkeys randomly 
throughout the domain of possible subkeys, thereby 
preserving the entropy of the keys and distributing the 
entropy uniformly throughout the subkeys1,5,6.

5.2.2 Data Encryption and Data Decryption
The plaintext was encrypted to ciphertext in the data 
encryption stage, whereas the ciphertext was decrypted 
to plaintext in the data decryption stage. 

The encryption algorithm is called RAF, which con-
sists of 128-bit data of plaintext and provides an output 
of 128-bit ciphertext with variable key reaching 640 bits. 
The external structure of the new design is the same as 
that of the BA. The encryption steps are enumerated as 
follows:

Algorithm 3: RAF Data Encryption 
Input:   plaintext 128 bits (X)
Output: ciphertext 128 bits
For i = 0 to 9

{
XL= XL XOR P[i]
XR= CCSDPB (XL) XOR XR
Swap XL and XR
                         }

  Swap XL and XR (Undo the last swap)
      XR = XR XOR P [10]
       XL = XL XOR P [11]
           Recombine XL and XR

Encryption and decryption are structurally identical in 
a Feistel cipher. The subkeys used during encryption in 
every round are reused during decryption but in a reverse 
order. Thus, the steps taken to perform the data decryp-
tion are similar to that used for data encryption.

Algorithm 4: RAF Data Decryption 
Input:   ciphertext 128 bits (X)
Output: plaintext 128 bits
            XL = XL XOR P[11]
XR = XR XOR P[10]
For i= 9 to 0
             {

  XR= CCSDPB(XL) XOR XR
  XL= XL XOR P[i]
Swap XL and XR

             }
 Swap  XL and XR 
 Recombine XL and XR to get plaintext

5.3 Verification
The verification phase includes verification of the output 
algorithm by NIST Statistical Tests(40) and cryptanalysis 
of differential, linear, and short attacks.

5.3.1 NIST Statistical Tests
The output of  the new design rounds (RAF) were veri-
fied using 15 NIST statistical tests on two data types and 
samples. The data types are as follows: random plaintext/
random 128-bit keys, and video files. Each type of data 
included a sample size of 128 sequences. The random 
plaintext/random 128-bit keys were used in selecting the 
finalists for the AES block cipher (18, 36–38). In this study, 
we used the same data and sample size used previously.

(1 )(1 ) 3 (2)p
s

   
    (2)

Where s is the number of samples and a  is the sig-
nificance level. The proportion of sequences that passed 
a specific statistical test is equal or greater than pa, as 
defined in Equation 2.The proportion value of testing 
data is as follows:
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0.01(1 0.01)(1 0.01) 3 0.963616
128

p 
  

In this part, the evaluation includes Partial Round Test-
ing (PRT) and Full Round Testing (FRT). Twofish rounds 
are tested in pairs. Twofish is a Feistel network Thus, each 
round leaves several data bits unchanged, thereby mak-
ing the Twofish appear nonrandom under test conditions 
after one round. However, all data bits are affected after 
two rounds. Thus, paired Twofish rounds are evaluated, 
i.e., even numbered rounds from 2 to 1437. Therefore, in 
this study, the PRT was conducted in pairs from two to 
eight rounds for the new algorithm design. In FRT, the 
output (ciphertext) was tested22,38.

5.3.1.1 Random Plaintext/Random 128-Bit Keys
The Blum BlumShub (BBS) pseudorandom bit generator 
is a cryptographically secure generator for random plain-
text/random 128-bit keys41. Moreover, 128 sequences 
were constructed to examine the randomness of the 
ciphertext based on random plaintext and random 128-
bit keys. Each sequence resulted from the concatenation 
of 8128 128-bit ciphertext blocks (1040384 bits) using 
8128 random plaintext blocks of the same length and 
random 128-bit key. Figure 14 illustrates the NIST results 
with random plaintext/random 128-bit keys. In each Fig-
ure, the dashed line depicts the smallest proportion that 
satisfies the 0.01 acceptance criterion, whereas the solid 
line depicts the expected proportion. 

5.3.1.2 Video Files
The data set consists of 128 sequences of video files (.flv, 
.wmv). Each file contained one sequence resulting from 
the concatenation of 12290 (1573120 bits) 128-bit cipher-
text blocks using 12290 128-bit plaintext blocks and ran-
dom 256-bit key. Figure 15 illustrates the NIST results 
with video files.

At the end of the second round, the output from RAF 
is random (the first round pair) because majority of the 
188 statistical tests show values greater than 96%. Subse-
quent rounds also produced similar results.

5.3.2 Cryptanalysis
This section presents the explanation on the resistance of 
RAF on differential, linear, and short attacks.

5.3.2.1 Differential and Linear Attacks
Using the dynamic 3D S-box and dynamic P-box is a sig-
nificant feature of the RAF. The dynamic 3D S-box and 
dynamic P-box protect the algorithm against differential 
and linear cryptanalysis. The specific properties of the 
dynamic 3D S-box, specifically the structure that is com-
pletely unknown to the cryptanalyst, assist and support 
the RAF to remain resistant against attacks. Meanwhile, 
the dynamic P-box is introduced to provide security and 
protection to the 3D S-box output. Together, these two 
components frustrate all linear and differential trails. The 
3D S-box in RAF is not only dynamic but also changeable 
in every round with every block of plaintext, such that in 
encrypting one block of plaintext, 40 dynamic 3D S-boxes 
are generated. Therefore, the 3D S-box is not a fixed entity. 
Any attempt to construct iterative linear or differential 
relations between rounds, such as the previous attacks on 
the original algorithm BA15,16, leads to failure.

5.3.2.2 Short Attack
Shortcut attack is the trial disclosure of the internal struc-
ture of the cryptographic design12,20,24,25,27,29. The RAF 
is resistant to existing shortcut attacks that attempt to 
recover the specific internal structure of the cipher. The 
3D S-box in RAF has entry 4 x 8 x 8 with probability 
of repeating several elements. A cryptanalyst aiming to 
decode the RAF needs to generate all possible 3D S-box 
and P-box values. This task is almost impossible because 
the cryptanalysis must attempt all possible cases (2n)n with 
each section of the 3D S-box. Moreover, four sections are 
present in the 3D S-box of RAF. Therefore, the cryptana-
lyst must attempt all possible cases 

2 34 4((2 ) ) 2n n n , where 
n is 8. Each of the 10 rounds has 4 different 3D S-boxes, 
thereby creating a total of 40 different 3D S-boxes for 
RAF. Therefore, the cryptanalyst must attempt a total of 

34 4 10((2 ) )n  times the first block. Moreover, the 3D S-box 
in RAF changes with each encryption process of the 
plaintext block. Thus, the cryptanalyst must try the same 
computation 

34 4 10((2 ) )n  again, which is equal to 281920 for 
every block of plaintext. In other words, if five blocks of 
plaintext are present, then the cryptanalysis must per-
form five times of 281920. Moreover, one dynamic P-box 
in every round has 26! Possibilities. Therefore, 10 rounds 
require 10 dynamic P-boxes with possibility (26!)10 for 
only one block of plaintext, thereby making the RAF a 
highly secure algorithm. Therefore, attackers would pay 
a higher price. 
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(a) (b)

(c)                                                                                                         (d)                                                        

(e)

Figure 14. Results of the NIST on random plaintext/random 128-bit keys in the (a) Second round, (b) Fourth round, (c) Sixth 
round, (d) Eighth round and (e) Tenth round.
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       (a)                    

    

(b)

(c)                                        (d)

(e)

Figure 15. Results of the NIST on video in the (a) Second round, (b) Fourth round, (c) Sixth round, (d) Eighth round and 
(e) Tenth round.
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6. Results
This section shows the results of the dynamic 3D S-box, 
dynamic P-box and CCSDPB.

6.1 Dynamic 3D S-Box
The deliverables for this step are the generated random 
SKs and algorithms used to perform BR and BT.

6.1.1 Random Secret Keys
In this section, only the random SKs for Round 0 are 
shown. The generated random SKs are as follows:
Round 0
Seed=12664626897530995354
1 3 0 2 
0 1 3 2 
2 0 1 3 
2 3 1 0 
2 0 1 3

The input and output for the first round are shown as 
follows (Figure 16):

6.1.2 BT
The results from BT are as follows:
--T8 =>ρ0≠ 0, ϕ0≠ 0, z0≠0 =>ρ0=7,ϕ0=2,z0=3------T4 => 
ρ0≠0, ϕ0≠0, z0=0 =>ρ0=4, ϕ0=4---

-- T6 => ρ0≠0, ϕ0=0, z0≠0 =>ρ0=6, ϕ0=0,z0=-2--

Figure 16. Input: 3D S-box from key expansion part 
Output: 3D S-box after applying BR (D0).

6.2 Dynamic P-box Values
The values produced are as follows:

7,5,2,57,47,30,44,59,43,39,26,18,20,23,40,52,11,16, 
55,61,32,46,51,10,36,21,22,13,45,56,50,62,33,42,14,60, 
38,41,53,25,1,28,8,31,29,58,9,4,3,0,12,24,19,54,35,6,15, 
27,63, 49,17,48,37,34,

6.3 CCSDPB
The CCSDPB and round outputs are shown as follows:

Output (CCSDPB): fc7673dcbfa7abfe
Output (Round 0): 11d5f3673b76cf849942313010cbc1af

7. Conclusion
The new design has been implemented and tested during 
the design and verification phases. Several conclusions 
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are drawn, of which the most significant are summarized 
as follows:

•	 The function of the CCSDPB, which is based on a 
CCS with a dynamic P-box and multiple SKs, provides 
high resistance against differential and linear attacks. 
Thus, this technique is better than the BA because 
the dynamic 3D S-box and permutation box are not 
fixed entities. However, this technique is changeable 
in every round with every block by using dynamic 
permutation byte based on different SKs. Any attempt 
from attackers is frustrated, including the construc-
tion of iterative linear and differential relations.
•	  CCS can reduce memory requirements.
•	 These SKs are generated from the random function 

with numerous variables, one of which is the plain-
text sequence. These features not only strengthen 
the security of the generated 3D S-box but also 
make the new design compatible with any data 
type, including long string identical data.

•	 Based on the results of the NIST tests, this design 
succeeded in encrypting all file formats without 
restrictions on the contents of the files. This feature 
is applicable despite a large string of identical bytes 
because this approach is based on the sequence of the 
plaintext as the secret key.

8. Future Research
In accordance with the present study, future research can 
be conducted on the following topics:

•	 Analyzing the performance of the new design based 
on the following factors: avalanche affect and correla-
tion coefficient.

•	 Analyzing the 3D S-box based on criteria S-box.
•	 Recommending the development of a new proce-

dure to generate the 3D S-box and p-array in the new 
design for a new CCSDPB function. 
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