
Abstract
In this paper, we construct some class of quadratic stochastic operator defined on continual state space [0, 1], and show
that such operators are regular transformation.
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1. Introduction

 

Quadratic stochastic operator was first introduced in
Bernstein’s work1 and it was considered an important
source of analysis for the study of dynamical properties
and modeling in various fields such as biology2–5, physics6,
game theory7–10, etc. 

A quadratic stochastic operator acts on the set of all
probability measures on measurable space (X, F), where
X is a state space and F is σ-algebra on X. The theory of
quadratic stochastic operators is well developed for the
case when state space X is a finite set1–17. In18–24 the authors
studied quadratic stochastic operators defined on count-quadratic stochastic operators defined on count-
able or continual state space X.

Let us first recall some well known notions and
notations. Let X is a state space, F is σ-algebra on X, (X, F)
be a measurable space, and S(X, F) be the set of all prob-
ability measures on (X, F). It is known that the set S(X, F)
is a compact, convex space and a form of Dirac measure
dx which defined by:

dx A
x A
x A


( ) = 

∈
∉

1
0

if
if

(1) 

for any A ∈ F are extremal elements of S(X, F). 
Let {P(x, y, A) : x, y ∈ X, A ∈ F}, be a family of func-

tions P(x, y, A) : X × X × F → R which satisfy the following
conditions:

(i) P(x, y, .) ∈ S(X, F) for any fixed x, y ∈ X, that is, 
P(x, y, .) : F → [0, 1] is the probabilistic measure on F,

(ii) P(x, y, A) is measurable function on (X × X, F ⊗ F)
which regarded as a function of two variables x and y
with fixed A ∈ F,

(iii) P(x, y, A) = P(y, x, A) for any x, y ∈ X and A ∈ F.

Definition 1: A mapping V: S(X, F) → S(X, F) is called a
quadratic stochastic operator generated by the family of
functions {P(x, y, A) : x, y ∈ X, A ∈ F} if for an arbitrary
measure l ∈ S(X, F), then the measure l¢ = Vl is defined
as follows:

′ = ∫∫l l l ( ) ( , , ) ( ) ( )A P x y A d x d y
XX

(2)

where A ∈ F is an arbitrary measurable set. 
Assume {Vk(l) ∈ S(X, F) : k = 0, 1, 2, …} is a trajec-

tory of the initial measure l ∈ S(X, F), where Vk+1 (l) =
V(Vk(l)) for all k = 0, 1, 2, …, with V0(l) = l.

Definition 2: A measure l ∈ S(X, F) is called a fixed point
of a quadratic stochastic operator V, if V(l) = l.

Definition 3: A quadratic stochastic operators V is called
a regular, if for any initial measure l ∈ S(X, F)  there exist
a strong limit:

lim ( )
n

nV
→∞ 

= l m (3)
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i.e., for any measurable set A ∈ F there exists limit: 

 lim ( )( ) ( )
n

nV A A
→∞

=l m  (4)

where m ∈ S(X, F).
Note that the limit point is a fixed point of a quadratic 

stochastic operator V. Thus, the fixed points of quadratic 
stochastic operator describe a limit or long run behaviour 
of the trajectories at any initial point. Limit behaviour of 
the trajectories and the fixed points of quadratic stochastic 
operator have been studied in many applied problems1–17. 

If X = {0, 1, 2, …, n}, a natural σ-algebra F on X is a 
power set P(X), and the set of all probability measures on 
(X, F) has the following form:

S(X, F) ≡ Sn-1 = {x = (x1, …, xn) ∈ Rn : xi ≥ 0, for i = 1, 

…, n and xi
i

n

=
∑ =





1

1 , then a measure P(i, j, .) is a discrete 

measure on finite set X and one can define this measure 
by specifying measure of each singleton as follows P(i, j, 
{k}) ≡ Pij, k.

A definition of quadratic stochastic operator on finite 
X is presented as follows.

Definition 4: A mapping V: Sn–1 → Sn–1 is called a quad-
ratic stochastic operator, if for any

x = (x1, x2 ,…, xn) ∈ Sn–1, Vx is defined as

 Vx P x x
k ij k i j

i j

n

( ) =
=

∑ ,
, 1

 (5)

where the coefficients Pij, k which also called as coefficients 
of heredity satisfy the following conditions: 

(i) Pij, k ≥ 0, (ii) Pij, k = Pij, k, (iii) Pij k
k

n

,
=

∑
1

 = 1,

for all i, j, k = {1, 2, …, n}. It is evident that these three 
conditions fully consistent with conditions formulated in 
general case.

Definition 5: The quadratic stochastic operator V is called 
Volterra, if  Pij, k = 0 for any k ∉ {i, j}.

The biological view of Volterra quadratic stochastic 
operators is rather clear, which the offspring repeats one 
of its parents. Evidently, for any Volterra quadratic sto-
chastic operator,

 P P P Pik i ki k ik i ik k, , , ,+ = + = 1  (6)

for all l i, k = 1, …, n; i ≠ k. 
The trajectory behavior of Volterra quadratic sto-

chastic operators with finite state space X have been 

studied in many publications8,11–15,17. For the case of 
 infinite state space X, papers18,19 are discussing about infi-
nite dimensional Volterra quadratic stochastic operators. 
Furthermore, in20–23, the authors introduced and studied 
Poisson, Geometric, and Gaussian quadratic stochastic 
operators on infinite state space.

In24, the authors introduced a quadratic stochastic 
operator on segment [0, 1] and proved that this operator 
is a regular transformation.

In this paper, we generalize a construction of a qua-
dratic stochastic operator generated by 2-partition on 
segment [0, 1].

2.  A Quadratic Stochastic 
Operator Generated by 
2-Partition ξ

Let (X,F) be a measurable space with continual state 
space X. 

Definition 6: A probabilistic measure μ on (X, F) is said 
to be discrete, if there exists a finitely many elements {x1, 
x2 ,…, xn} ⊂ X,such that m({xi}) = pi for i = 1, …, n, with 

pi
i

n

=
=
∑ 1

1

. Then, m(X\{{x1, x2 ,…, xn}}) = 0 and for any  

A ∈ F, m m( ) ( )A xi
x Ai

=
∈

∑ .

Recall that a partition of (X,F) is a disjoint collection 
of elements of F whose union is X. We shall be interested 
in finite partitions. They will be denoted as x = {A1, …, Ak} 
and is called measurable k-partition.

Let x = {A1, Ak} be a measurable 2-partition of the 

segment of the segment X = [0, 1] where A1 0 1= 





,
a

 and 

A2
1 1= 



a

, , and x = {B1, B2, B3} be a corresponding parti-

tion of the unit square X × X = [0, 1] × [0, 1], where B1 = 
A1 × A1, B2 = A2 × A2 and B3 = A1 × A2 ∪ A2 × A1. Note 
that the consideration of this partition is stipulated by the 
condition P(y, x, .) = P(x, y, .).

We define the family {P(x, y, .) : y ∈ [0, 1]} of discrete 
probability measures on (X, F) as follows: if x, y ∈ Bk, 
where k = 1, 2, 3, then

(i) for x < y assume P(x, y, {x}) = pk and  
P(x, y, {y}) = qk, (7) 
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(ii) for x = y assume P(x, x, {x}) = 1, (8) 
(iii) for x < y assume P(y, x, .) = P(x, y, .), (9) 

where pk + qk = 1 and pk, qk ≥ 0 for all k = 1, 2, 3.
Let V be an operator generated by family of functions 

(7–9). Note that this operator is a natural generalization 
of Volterra quadratic stochastic operator4–7. 

Remark Note that a = 1 then we have operator considered 
in24.

Below we investigate limit behavior of the trajectory 
{Vk(l) ∈ S(X, F) : k = 0, 1, 2, …}, where Vk+1 (l) = V(Vk(l)) 
for all k = 0, 1, 2, …, with V0(l) = l.

2.1 Discrete Initial Measure λ
If initial measure l is discrete, one can show that the 
sequence {Vk(l)} converges to a Dirac d measure.

Theorem 1: Let V be a quadratic stochastic operator gen-
erated by family of functions (7)–(9). If initial measure 
l is a discrete, then the sequence {Vk(l)} converges to a 
Dirac d measure.

Proof Let a measure l is a convex linear combination of 
two Dirac measures, i.e., l = ada + (1 – a)db, where a ∈ [0, 1]  
and a, b ∈ [0, 1].

Simple algebra gives l¢(a)= a2 + 2p3a(1 – a) and l¢(b) 
= (1 – a)2 + 2q3a(1 – a),

i.e., ′ = + − + − + −l a a a d a a a d( ( ) (( ) ( ))2
3

2
32 1 1 2 1p qa b .

It is easy to show that the sequence {Vk(l)} converges 

to Dirac measure da if p3
1>
a , and Dirac measure db if 

p3
1<
a

. 

Similarly, one can show that for any initial discrete 
measure l, the sequence {Vk(l)} converges to a Dirac d  
measure.

2.2 Continuous Initial Measure λ
For the case of continuous initial measure l, let l ∈ S(X, 
F) be a continuous probability measure,

A = [a, b] ∈ F, A ⊂ [0, 1], A1 0 1= 





,
a

 and A2
1 1= 



a

, ,  

where α ∈ N. Then, we can consider the following two 
cases:

(i) A ⊂ A1, and 
(ii)  A ⊂ A2.

For case (i) A ⊂ A1 with AC = [0, a) ∪ (b, 1], we have

′ = ∫ ∫l l l( ) ( , , ) ( ) ( )A P x y A d x d y
0

1

0

1

= ⋅ + ⋅ + ⋅∫∫ ∫∫ ∫1 1
0

1

1

d x d y p d x d y q d x d y
a

b

a

b

a

ba

ba

l l l l l l
a

( ) ( ) ( ) ( ) ( ) ( )
bb

∫    

+ ⋅ + ⋅ + ⋅∫∫ ∫∫ ∫q d x d y p d x d y q d x d y
a

b a

a

b

a

b

3
1

1

1
0

1l l l l l l

a

( ) ( ) ( ) ( ) ( ) ( )
bb

1
a

∫

+ ⋅ + ⋅ + ⋅∫∫ ∫∫ ∫q d x d y d x d y d x d y
a

b aa a

b
1

1

1

00 0

1

0 0l l l l l l

a

( ) ( ) ( ) ( ) ( ) ( )∫∫

+ ⋅ + ⋅∫∫ ∫∫0 0
1

0

11

d x d y d x d y
b

a

bb

l l l l( ) ( ) ( ) ( )

= + +l l l l
a

l2
1 10 1([ , ]) ([ , ]) ([ , )) (( , ]) ([ , ])a b p a b a q b a b

+ + +q a b p a a b q a b b3 1 1
1 1 0 1l
a

l l l l l
a

([ , ]) ([ , ]) ([ , ]) (( , ]) ([ , ]) ([ , ]))

+ + +p a a b q a b b q a b1 1 30 1 1 1l l l l
a

l l
a

([ , ]) (( , ]) ([ , ]) ([ , ]) ([ , ]) (( , ]))

= + + +


l l l l
a

l
a

([ , ]) ([ , ]) ([ , )) (( , ]) (( , ])a b a b p a q b q2 0 2 1 2 1 11 1 3



and

′′ = ′ ′ + ′ + ′ + ′l l l l l
a

l( ) ([ , ]) ([ , ]) ([ , )) (( , ])A a b a b p a q b q2 0 2 1 21 1 3 ((( , ])1 1
a







= + + +


l l l l
a

l
a

([ , ]) ([ , ]) ([ , )) (( , ]) (( , ])a b a b p a q b q2 0 2 1 2 1 11 1 3



⋅

⋅ + + +


l l l l
a

l
a

([ , ]) ([ , ]) ([ , )) (( , ]) (( , ])a b a b p a q b q2 0 2 1 2 1 11 1 3







+ + +





2 0 0 2 1 2 1 11 1 3p a a q a ql l l
a

l
a

([ , ]) ([ , ]) ([ , )) (( , ])

+ + +





2 1 1 2 0 2 1 11 1 3q b b p b ql
a

l
a

l l
a

(( , ]) (( , ]) ([ , )) ([ , ])
 

+ +








2 1 1 1 1 2 0 1
3 3q pl

a
l

a
l

a
([ , ]) ([ , ]) ([ , ]) .
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For case (ii) A ⊂ A2 with AC = [0, a) ∪ (b, 1], we have

′ = ∫ ∫l l l( ) ( , , ) ( ) ( )A P x y A d x d y
0

1

0

1

= ⋅ + ⋅ + ⋅∫∫ ∫∫ ∫1 3
0

1

2
1

d x d y p d x d y p d x d y
a

b

a

b

a

b

a

b

l l l l l l
a

( ) ( ) ( ) ( ) ( ) ( )

aa

a

∫

+ ⋅ + ⋅ + ⋅∫∫ ∫∫q d x d y p d x d y p d x d y
ba

b

a

b a

2

1

3
0

1

2
1

l l l l l l
a

a

( ) ( ) ( ) ( ) ( ) ( )∫∫∫
b

a

+ ⋅ + ⋅ + ⋅∫∫ ∫∫ ∫∫q d x d y d x d y d x d y
a

b

b

aa a

b
2

1

00 0

1

0 0l l l l l l( ) ( ) ( ) ( ) ( ) ( )

+ ⋅ + ⋅∫∫ ∫∫0 0
1

0

11

d x d y d x d y
b

a

bb

l l l l( ) ( ) ( ) ( )

= + +l l l
a

l l
a

2
3 20 1 1([ , ]) ([ , ]) ([ , )) (( , ]) ([ , ])a b p a b p a b a

+ +q b a b p a b2 31 0 1l l l
a

l([ , ]) ([ , ]) ([ , ]) (( , ])

+ +p a a b q a b b2 2
1 1l
a

l l l([ , ]) ([ , ]) ([ , ]) (( , ])

= + + +


l l l
a

l
a

l([ , ]) ([ , ]) ([ , )) (( , ]) (( , ])a b a b p p a q b2 0 1 2 1 2 13 2 2



and

′′ = ′ ′ + ′ + ′ + ′l l l l
a

l
a

( ) ([ , ]) ([ , ]) ([ , )) (( , ])A a b a b p p a q2 0 1 2 1 23 2 2ll (( , ])b 1





= + + +


l l l
a

l
a

l([ , ]) ([ , ]) ([ , )) (( , ]) (( , ])a b a b p p a q b2 0 1 2 1 2 13 2 2



.

l l l
a

l
a

l([ , ]) ([ , ]) ([ , )) (( , ]) (( ,a b a b p p a q b+






+ +2 0 1 2 1 2 13 2 2 ]])


+ +





2 0 1 0 1 2 1 13 3p ql
a

l
a

l
a

([ , ]) ([ , ]) (( , ])

+ +





2 1 1 2 0 1
2 3p a a pl

a
l

a
l

a
([ , )) ([ , )) ([ , ])

+ + +








2 1 1 2 0 1 2 1
2 3 2q b b p p bl l l

a
l

a
(( , ]) (( , ]) ([ , ]) ([ , )) .

It is evident that the measure l¢ = Vl is absolutely 
continuous with respect to measure l. Then according 
Radon-Nikodym Theorem, there exists non-negative 
measurable function fl : X → R called density, such that

′ = ∫l ll( ) ( ) ( ).A f x d x
A

For x ≤ 1
a

, the derivations of the density function are 
presented as follows. For rather small segment [x, x + Δx], 
we have,

 ′ + = + + +



l l l l([ , ]) ([ , ]) ([ , ]) ([ , ))x x x x x x x x x p x∆ ∆ ∆ 2 01

+ + + 


2 1 2 1 11 3q x x ql
a

l
a

(( , ]) (( , ])∆  (10)

and 

f x x x x
x x xxl

l
l

( ) lim ([ , ])
([ , ])

= ′ +
+→∆

∆
∆0

= + +





+ + +

→
lim ([ , ]) ([ , ))

(( , ]) ((

∆
∆

∆

x
x x x p x

q x x q

0 1

1 3

2 0

2 1 2 1

l l

l
a

l
aa

, ])1 


= + + ≤2 0 2 1 2 1 1 1
1 1 3p x q x q xl l

a
l

a a
([ , )) (( , ]) (( , ]) if

.

Respectively, for x > 1
a

, the derivations of the density 
function are presented as follows. For rather small seg-
ment [x, x + Δx], we have,

′ + = + +l l l([ , ]) ([ , ]) ([ , ])x x x x x x x x x∆ ∆ ∆

 + + + 


2 0 1 2 1 2 13 2 2p p a q bl
a

l
a

l([ , )) (( , ]) (( , ])  (11)

and 

 f x x x x
x x xxl

l
l

( ) lim ([ , ])
([ , ])

= ′ +
+→∆

∆
∆0

= + +


+ +
→

lim ([ , ]) ([ , )) (( , ]) (( ,
∆

∆
x

x x x p p a q b
0 3 2 22 0 1 2 1 2 1l l

a
l

a
l ]])



= + + >2 0 1 2 1 2 1 1
3 2 2p p x q x xl

a
l

a
l

a
([ , )) ([ , )) (( , ]) if
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Therefore, 

f x
p x q x q x

p
l

l l
a

l
a a( )

([ , )) (( , ]) (( , ]) ,
=

+ + ≤2 0 2 1 2 1 1 1

2

1 1 3     if  

33 2 20 1 2 1 2 1 1l
a

l
a

l
a

([ , )) ([ , )) (( , ]) .+ + >










p x q x x   if  

Now, consider a measure l≤ = Vl¢. It is evident that, 

′′ = ′′∫l ll( ) ( ) ( )A f x d x
A

and since l≤ is absolutely continuous with respect to 
measure l, then: 

′′ = ∫l ll( ) ( ) ( ).( )A F x d x
A

2

We find implicit form of the function F xl
( )( )2 . For 

x ≤ 1
a

, according to (10), we have,

′′ + = ′ + ′ + + ′





+

l l l l([ , ]) ([ , ]) ([ , ]) ([ , ))x x x x x x x x x p x

q

∆ ∆ ∆ 2 0

2

1

1 ′′ + + ′ 


l
a

l
a

(( , ]) ([ , ])x x q∆ 1 2 1 13

= + + +





+ + +

l l l

l
a

([ , ]) ([ , ]) ([ , ))

(( , ])

x x x x x x p x

q x x q

∆ ∆

∆

2 0

2 1 2

1

1 3ll
a

([ , ])1 1 


⋅ + + +











+ +

l l l

l
a

([ , ]) ([ , ]) ([ , ))

(( , ]

x x x x x x p x

q x x

∆ ∆

∆

2 0

2 1

1

1 )) ([ , ])+ + 


2 1 13q l
a

+ + +





2 0 0 2 1 2 1 11 1 3p x x q x ql l l
a

l
a

[ , ]) ([ , ]) (( , ]) ([ , ])

+ + + + +


2 1 1 2 01 1q x x x x p x xl
a

l
a

l(( , ]) (( , ]) (( , ))∆ ∆ ∆

+ 


+ +






2 1 1 2 1 1 1 1 2 0 1
3 3 3q q pl

a
l

a
l

a
l

a
([ , ]) ([ , ]) ([ , ]) ([ , ]) 


.

Then,

F x p x q x ql l l
a

l
a

( )( ) ([ , )) (( , ]) ([ , ])2
1 1 32 0 2 1 2 1 1= + + +





⋅ + +









2 0 0 2 1 2 1 11 1 3p x x q x ql l l
a

l
a

[ , ]) ([ , ]) (( , ]) ([ , ])

 
+ + +





2 1 1 2 0 2 1 11 1 3q x x p x ql
a

l
a

l l
a

(( , ]) (( , ]) (( , )) ([ , ])

+ +








≤2 1 1 1 1 2 0 1 1
3 3q p if xl

a
l

a
l

a a
([ , ]) ([ , ]) ([ , ]) .

Respectively, for x > 1
a

, according to (11), we have:

′′ + = ′ + ′ + + ′





+

l l l l
a

([ , ]) ([ , ]) ([ , ]) ([ , ])x x x x x x x x x p

p

∆ ∆ ∆ 2 0 1

2

3

22 2
1 2 1′ + ′ + 


l

a
l([ , )) (( , ])x q x x∆

= + + +


+ +

l l l
a

l
a

l

([ , ]) ([ , ]) ([ , ])

([ , )) (

x x x x x x p

p x q

∆ ∆ 2 0 1

2 1 2

3

2 2 (( , ])x x+ 


∆ 1

⋅ + + + +






+

l l l
a

l
a

([ , ]) ([ , ]) ([ , ]) ([ , ))x x x x x x p p x

q

∆ ∆ 2 0 1 2 1

2

3 2

22 1l(( , ])x x+



∆

+ +





+

2 0 1 0 1 2 1 1

2 1 1

3 3

2

p q

p x

l
a

l
a

l
a

l
a

l
a

[ , ]) ([ , ]) ([ , ])

([ , )) ([ ,, )) ([ , ]) (( , ])x p q x+ +





2 0 1 2 13 2l
a

l

+ + + +


+ +2 1 1 2 0 1 2 1
2 3 2q x x x x p p x xl l l

a
l

a
(( , ]) (( , ]) ([ , ]) ([ , ))∆ ∆ ∆ 






Then,

F x p p x q xl l
a

l
a

l( )( ) ([ , ]) ([ , )) (( , ])2
3 2 22 0 1 2 1 2 1= + +





⋅

2 0 1 0 1 2 1 13 3p ql
a

l
a

l
a

[ , ]) ([ , ]) ([ , ])+









+ + +





2 1 1 2 0 1 2 12 3 2p x x p q xl
a

l
a

l
a

l([ , )) ([ , )) ([ , ]) (( , ])

+ + +








2 1 1 2 0 1 2 1
2 3 2q x x p p x xl l l

a
l

a
(( , ]) (( , ]) ([ , ]) ([ , )) if >> 1

a

Similarly, one can show that a measure Vn(l) is abso-is abso-
lutely continuous with respect to l for any n and 

( )( ) ( ) ( )( )V A F x d xn n

A

l ll= ∫
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The computations for F xn
l

( )( ) are shown as follows: 

Let

g x xl l( ) ,1 0( ) =  ( ) , h x xl l
a

( ) ,1 1( ) = 









 , pl l

a
( ) ,1 0 1= 









  

for x ≤ 1
a

,

j l
al

( ) ,1 1x x( ) = 









 , y ll

( ) ,1 1x x( ) =  ( ) , ql l
a

( ) ,1 1 1= 









  

 for x > 1
a

,

and

g x g x g x q h x q qn n n n n
l l l l l

( ) ( ) ( ) ( ) ( ) ,+ ( ) = ( ) ( ) + ( ) + 
1

1 32 2

h x h x h x p g x q qn n n n n
l l l l l

( ) ( ) ( ) ( ) ( ) ,+ ( ) = ( ) ( ) + ( ) + 
1

1 32 2

q q q p pn n n n
l l l l

( ) ( ) ( ) ( ) ,+ = + 
1

32

p p p q qn n n n
l l l l

( ) ( ) ( ) ( ) ,+ = + 
1

32

j j j yl l l l l
( ) ( ) ( ) ( ) ( ) ,n n n n nx x x q x p p+ ( ) = ( ) ( ) + ( ) + 

1
2 32 2

y y y jl l l l l
( ) ( ) ( ) ( ) ( ) ,n n n n nx x x p x p p+ ( ) = ( ) ( ) + ( ) + 

1
2 32 2

with p qn n
l l

( ) ( )+ ++ =1 1 1  for every n = 1, 2, 3.

Then, f x
p g x q h x q q x

p

n

n n n

l

l l l a( )

( ) ( ) ( )

( )
,

=
( ) + ( ) + ≤2 2 2 1

2

1 1 3       if  

22 2 32 2 1j y
al l l

( ) ( ) ( ) .n n nx q x p p x( ) + ( ) + >










   if  

Hence, 

F x f xl l
( ) ( )( ) ( ),1 1=  and F x f x f xl l l

( ) ( ) ( )( ) ( ) ( ).2 1 2=  

Using induction, one can show that for any n we 
have:

F x f xn i

i

n

l l
( ) ( )( ) ( ).=

=
∏

1

If l = m is a usual Lebesgue measure on [0,1], then:

g x m x xm
( ) ,1 0( ) =  ( ) = , 

h x m x xm
( ) ,1 1 1( ) = 











= −
a a

p mm
( ) ,1 0 1 1= 











=
a a

,
 
j

a am x m x x( ) ,1 1 1( ) = 











= − ,
 

ym x m x x( ) ,1 1 1( ) =  ( ) = − ,
 
q mm

( ) ,1 1 1 1= 











=
a a

,

and one can compute implicit form of F xm
n( )( ) for any n, 

where:

f x
p x q x q x

p x
m

( )( )
,

1
1 1 3

2

2 2 1 1

2 1
=

+ −





+ ≤

−

a a

a

            if  







+ −( ) + >










2 1 1
2 3q x p x   if  

a
.

In general, for any n the function F xn
l

( )( ) is a 

piecewise monotone function on 0 1,
a







 and 1 1
a

,




 

respectively and has a point of discontinuity at x =
1
a

 with 

F Fn n
l la a

( ) ( )1 1− +







 ≠









  where F Fn

x

n xl

a

la
( ) ( )lim1

1

−

→









 =

−
 

and F Fn

x

n xl

a

la
( ) ( )lim1

1

+

→









 =

+
.

If l = m, one can show numerically that:

 (i) F n( )( )0 → ∞ , F n( )( )1 0
a

−

→ F n( )( )1 0
a

+

→ , F n( )( )1 0→   

if p1 < 1
a

 and p3 < 1
a

, (12)

 (ii) F n( )( )0 0→ , F n( )( )1
a

−

→ ∞ F n( )( )1 0
a

+

→ , F n( )( )1 0→  

if p1 > 1
a

 and p3 < 1
a

, (13)

(iii) F n( )( )0 0→ , F n( )( )1 0
a

−

→ F n( )( )1
a

+

→ ∞, F n( )( )1 0→  

if p2
1<
a

 and p3 > 1
a

, (14)

and

 F n( )( )0 0→ , F n( )( )1 0
a

−

→ F n( )( )1 0
a

+

→ , F n( )( )1 → ∞  if 

p2 > 1
a

 and p3 > 1
a

. (15)

Let us consider the following 8 cases:

  (i) p p p1 2 3< < <1 1 1
a a a

, , ,

  (ii) p p p1 2 3< < >1 1 1
a a a

, , ,

 (iii) p p p1 2 3< > <1 1 1
a a a

, , ,
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  (iv) p p p1 2 3< > >1 1 1
a a a

, , ,

   (v) p p p1 2 3> < <1 1 1
a a a

, , ,

  (vi) p p p1 2 3> < >1 1 1
a a a

, , ,

  (vii) p p p1 2 3> > <1 1 1
a a a

, , ,

(viii) p p p1 2 3> > >1 1 1
a a a

, , ,

and for some fixed values of these parameters we plot the 
graph of functions F xm

n( )( ){ }.
Below we show that the sequence of functions

F xm
n( )( ){ }, n = 1, 2, … converges to some fixed point for 

arbitrary values of parameters p1, p2, p3, where the rate of 
convergence depends on these parameters. If the values 
of parameters p1, p2, p3, , close to 0 or 1 then the sequence 

of functions F xm
n( )( ){ }, n = 1, 2, … converges very fast 

(exponentially) and if the values of parameters p1, p2, p3 , 

close to 
1
a

 then the sequence of functions F xm
n( )( ){ }, n = 

1, 2, … converges very slowly. In each case, we consider 
two variants of a: Variant (a) if a = 4 for parameters p1, p2, 
p3 close to 0 or 1; Variant (b) if a = 10 for parameters p1, 
p2, p3 close to 0 or 1. 

We plot graph of functions F xm
n( )( ){ } with n = 1, 2, … 

10, where curve F xm
( )( )1  is red in colour, while F xm

( )( )2  

is black, F xm
( )( )3  is green, F xm

( )( )4  is blue, F xm
( )( )5  is yel-

low, F xm
( )( )6  is pink, F xm

( )( )7  is orange, F xm
( )( )8  is purple, 

F xm
( )( )9  is brown, and lastly F xm

( )( )10  is grey colour.

Figure 1 presents graph of functions F xm
n( )( ){ } in the 

first case where p p p1 2 3< < <1 1 1
a a a

, , .

Figure 1 (a) and (b) show that the sequence of func-
tions F xm

n( )( ){ } converges to δ-Dirac function at point  
x = 0 and respectively the sequence of measures {Vk(m)}
converges to Dirac measure d0. 

Now consider the second case where p1 <
1
a

, p2 <
1
a

,

p3 >
1
a

.

Figure 2(a) and (b) show that the sequence of func-

tions F xm
n( )( ){ } converges to δ-Dirac function at point 

Figure 1. (a) Graph of Functions F xm
n( )( ){ } when a = 4,  

p1 = 0.1, p2 = 0.2, p3 = 0.15. (b). Graph of Functions F xm
n( )( ){ } 

when a = 4, p1 = 0.01, p2 = 0.02, p3 = 0.03.

(a)

(b)

x = 1
a

 and respectively the sequence of measures {Vk(m)}  

converges to Dirac measure 
d

a
1 .

Then, we consider the third case where p1 <
1
a

, p2 >
1
a

,

p3 <
1
a

.
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Figure 2. (a) Graph of Functions F xm
n( )( ){ } when a = 4,  

p1 = 0.15, p2 = 0.11, p3 = 0.8. (b) Graph of Functions F xm
n( )( ){ } 

when a = 10, p1 = 0.05, p2 = 0.03, p3 = 0.9.

(a)

(b)

Figure 3(a) and (b) show that the sequence of func-
tions F xm

n( )( ){ } converges to δ-Dirac function at point 
x = 0 and respectively the sequence of measures {Vk(m)}  
converges to Dirac measure d0.

Let us consider the fourth case where p1 <
1
a

, p2 >
1
a

,

p3 >
1
a

. 

Figure 3. (a) Graph of Functions F xm
n( )( ){ } when a = 4,  

p1 = 0.15, p2 = 0.85, p3 = 0.1. (b) Graph of Functions 

F xm
n( )( ){ }  when a = 10, p1 = 0.03, p2 = 0.85, p3 = 0.1.

(a)

(b)

Figure 4(a) and (b) show that the sequence of func-

tions F xm
n( )( ){ } converges to δ-Dirac function at point 

x = 1 and respectively the sequence of measures {Vk(m)}  
converges to Dirac measure d1.

Next, we consider the fifth case where p1 >
1
a

, p2 <
1
a

,

p3 <
1
a

.
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Figure 4. (a) Graph of Functions F xm
n( )( ){ } when a = 4,  

p1 = 0.15, p2 = 0.85, p3 = 0.9. (b) Graph of Functions F xm
n( )( ){ } 

when a = 10, p1 = 0.05, p2 = 0.95, p3 = 0.9.

(a)

(b)

Figure 5(a) and (b) show that the sequence of func-

tions F xm
n( )( ){ } converges to δ-Dirac function at point 

x = 1
a

 and respectively the sequence of measures {Vk(m)} 

converges to Dirac measure d
a
1 .

Now we consider the sixth case where p1 >
1
a

, p2 <
1
a

,

p3 >
1
a

.

Figure 5. (a) Graph of Functions F xm
n( )( ){ } when a = 4,  

p1 = 0.75, p2 = 0.15, p3 = 0.1. (b) Graph of Functions F xm
n( )( ){ } 

when a = 10, p1 = 0.95, p2 = 0.06, p3 = 0.02.

(a)

(b)

Figure 6(a) and (b) show that the sequence of func-
tions F xm

n( )( ){ } converges to δ-Dirac function at point 

x = 1
a

 and respectively the sequence of measures {Vk(m)} 

converges to Dirac measure d
a
1 .

Now we consider the seventh case where p1 >
1
a

, 

p2 >
1
a

, p3 <
1
a

.
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Figure 8(a) and (b) show that the sequence of  functions 
F xm

n( )( ){ } converges to δ-Dirac function at point x = 1 
and respectively the sequence of measures {Vk(m)} con-
verges to Dirac measure d1.

Thus, different a will give the same Dirac measure 
depends on the parameters p1, p2, p3. 

Therefore, we have proved the following theorem.

Theorem 2: Let V is a quadratic stochastic operator 
generated by family of functions (7)-(9). Then for any ini-

Figure 6. (a) Graph of Functions F xm
n( )( ){ } when a = 4,  

p1 = 0.75, p2 = 0.75, p3 = 0.85. (b) Graph of Functions 
F xm

n( )( ){ } when a = 10, p1 = 0.82, p2 = 0.06, p3 = 0.95.

(a)

(b)

Figure 7(a) and (b) show that the sequence of func-
tions F xm

n( )( ){ } converges to δ-Dirac function at point 

x = 1
a

 and respectively the sequence of measures {Vk(m)} 

converges to Dirac measure d
a
1 .

Lastly, we consider the eighth case wherep1 >
1
a

, 

p2 >
1
a

, p3 >
1
a

.

Figure 7. (a) Graph of Functions F xm
n( )( ){ } when a = 4,  

p1 = 0.75, p2 = 0.85, p3 = 0.15. (b). Graph of Functions 

F xm
n( )( ){ } when a = 10, p1 = 0.75, p2 = 0.85, p3 = 0.05.

(b)

(a)
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tial continuous measure l Œ S(X, F) there exist a strong 
limit of the sequence of measures {Vk(m)} where:

 (i) lim ( )
n

nV
→∞

=l d0 if p1 < 1
a

 and p3 < 1
a

,

 (ii) lim ( )
n

nV
→∞

= −l d
a
1

 if p1 > 1
a

 and p3 < 1
a

,

(iii) lim ( )
n

nV
→∞

= +l d
a
1

 if p2 < 1
a

 and p3 > 1
a

,

Figure 8. (a) Graph of Functions F xm
n( )( ){ } when a = 4,  

p1 = 0.75, p2 = 0.95, p3 = 0.85. (b) Graph of Functions 
F xm

n( )( ){ } when a = 10, p1 = 0.75, p2 = 0.95, p3 = 0.85.

(b)

(a)

and

(iv) lim ( )
n

nV
→∞

=l d1 if p2 > 1
a

 and p3 > 1
a

.

3. Conclusion
A limit behavior of quadratic stochastic operator V 
generated by arbitrary 2-partition ξ is the regular trans-
formation.
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