
Abstract
Background/Objectives: The main objective is to present a classification of reliability models that would be useful in
determining which of the existing model to use in a given software development environment. Methods/Statistical
Analysis: In this research importance is given on comparison of existing software reliability models. The analytical
models are mostly useful in estimating and monitoring reliability. The models can help software testing/debugging
managers to make predictions about the anticipated future reliability of software under growth. Findings: This paper
provides a detailed study of existing software reliability models which claim to progress software quality through efficient
determination of software faults. Failure behavior of the software as predicted by these models has important implication
in understanding the performance of the software and its improvement. One unique part of this paper is that we do not
add any new models to the already large collection of models; rather we give importance to the taxonomy of models
used in the software development process. Application/Improvements: The models are supportive for the software
practitioners to master the schedule of the projects, the performance of the programmers and to improve the reliability
of software system.

Classification of Software Reliability Models to
Improve the Reliability of Software

G. Gayathry1* and R. Thirumalai Selvi2

1Department of Computer Science, Bharathiar University, Coimbatore – 641046, Tamil Nadu, India;
gayathry.mgc@gmail.com

2Government Arts College (Men), Nandanam, Chennai - 600035, Tamil Nadu, India; sarasselvi@gmail.com

Keywords: Classification, Reliability Models, Software Reliability

1. Introduction
This paper highlights various Software Reliability Growth
Models. SRGMs are statistical models which can be used
to make predictions about a software system’s failure
rate, given the failure history behavior of the system. In
practice such models are applied during the final test-
ing phase when the development is virtually completed.
Due to post-development testing, failures are identified
and fixed in advance, the software becomes more stable
and the reliability of software increases with time. SRGMs
can be broadly categorized into two types (Pham, 2006).
Deterministic one is used to study the number of dis-
tinct operators and operands and machine instructions
in the program. Probabilistic one represents the failure
occurrence and fault removal phenomenon of the testing
process as probabilistic events with respect to time and
testing effort1.

Over the past 30 years, many SRGMs have been
 proposed for estimating reliability growth of products
during the software development process2. Each model
seems to work well with a particular data set, but no model
appeared to do well for all data sets. Many researchers
like Musa et al.3 have shown that some families of models
have, in general, certain characteristics that are consid-
ered better than others; for example, the geometric family
of models tends to have better predictive quality than
other models.

In4 published a paper describing a non-homogeneous
Poisson process model from the finite exponential class
of models. This model was one of the first NHPP models
proposed. This model predicted well on a unique data set.

In5 proposed a NHPP based SRGM to describe vari-
ous software failure/reliability curves. Both testing efforts
and time dependent fault detection rate are considered for
software reliability modeling. The applicability of proposed

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(29), DOI: 10.17485/ijst/2015/v8i29/85287, November 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Classification of Software Reliability Models to Improve the Reliability of Software

Indian Journal of Science and Technology2 Vol 8 (29) | November 2015 | www.indjst.org

model is shown by validating it on software failure data sets
obtained from different software development projects.

In6 proposed a method for constructing SRGM based
on NHPP. In this proposed method they have consid-
ered the case where the time dependent behaviors of
testing-effort expenditure are described by Generalized
Exponential Distribution (GED). SRGMs based on
NHPP are developed which incorporates the (GED)
testing- effort expenditure during the software testing
phase.

In7 first reviewed the logistic testing-effort function
for modeling software reliability growth. They incorporate
the logistic testing-effort function into S-shaped models.
The proposed models are applied to two real data sets,
to show that the logistic testing-effort function is more
suitable for making estimations of resource consumption
during the software testing phase.

2. Software Reliability Models
Software Reliability Models are used during software
debugging process and it is mainly used to measure the
quality of the software8. In this model, software is tested
for a period of time, during which failures may occur.
These failures cause a modification in design the new ver-
sion of design is tested again. This cycle is repeated until
design objectives are met. The paper discusses about the
taxonomy of various software reliability models.

Figure 1 shows the hierarchy of software reliability
models. At initial stage, the software reliability model is
divided into two type’s namely deterministic and proba-
bilistic model. Two most common deterministic models
are Halstead’s software metric, based on unique number
of operators and operands and McCabe’s cyclomatic com-
plexity metric based on cyclomatic number V (G). The
probabilistic models include the following:

•	 Failure	Rate	Model	(times	between	failure	models).
•	 Failure	or	Fault	Count	Model	(NHPP	models).
•	 Error	or	Fault	Seeding	Model.
•	 	Reliability	Growth	Model	etc,.

2.1 Failure Rate Models
It is one of the earliest classes of proposed model used
for estimating the reliability of software. In this model
time between failures is taken for the process. The time
between ith and (i-1)th failure data are taken for analysis.
Fault data parameters are estimated from the observed

values of time between failures and estimates of software
reliability, mean time to the next failure. The key models
in this class are described in the following section.

2.1.1 Jelinski-Moranda Model
This is one of the most commonly used models for
 estimating software reliability9. During testing N inde-
pendent software faults that may cause failures are taken
for consideration. During the debugging process no new
faults are introduced and the detected fault is removed in
a negligible time. The hazard function also called as soft-
ware failure rate is calculated during t1 time between the
(i-1)th and ith failure is given by:

Z t N ii() = ∅ − −() 1

Where Ø is proportionality constant. This hazard func-
tion is constant between failures, but when the fault is
removed its size decreases.

Figure 1. The hierarchy of software reliability models.

G. Gayathry and R. Thirumalai Selvi

Indian Journal of Science and Technology 3Vol 8 (29) | November 2015 | www.indjst.org

2.1.2 Schick and Wolverton (SW) Model
The model is based on the assumptions of the JM model
except that the hazard function is assumed to be propor-
tional to the current fault content of the program as well
as to the time elapsed is since the last failure10 is given:

Z t N i ti i () = ∅ − −() 1

The hazard rate is linear with time within each failure
interval. A modification of the above model is proposed
in11 whereby the hazard function is assumed to be
 parabolic in test time and is given by the function:

Z t N i at bt ci i i () ()= ∅ − − − + +() 1 2

Where a, b and c are defined as constant. This function con-
sists of two components, the first one is the hazard function
of the JM model and the second one indicates that the reason
for failure occurrence increases rapidly as the test time accu-
mulates within a testing interval. At failure times (ti = 0), the
hazard function is proportional to that of the JM model.

2.1.3 Goel and Okumoto Imperfect Debugging
Model

Goel and Okumoto12 proposed an imperfect debugging
model, which is the extension of the JM model. In this
model, the number of faults in the system at time t, X(t), is
treated as a Markov process whose transaction probabil-
ity is governed by the probability of imperfect debugging.
Time between the transitions of X(t) is taken to be expo-
nentially distributed with rates dependent on the current
fault content of the system. The hazard function during
the interval between the (i-1)th and the ith failure is given
by the function:

Z t N p ii() = ∅ − −() 1 λ

Where N is the initial fault content of the system, p is the
probability of imperfect debugging and λ is the failure
rate per fault.

2.1.4 Littlewood-Verrall Bayesian Model
In this model the times between failures are assumed to
follow an exponential distribution but the parameters of
this distribution are treated as a random variable with a
gamma distribution that is:

F t ei i i
i ti(|)λ λ λ= −

2.2 Fault Count Models
2.2.1 Musa Execution Time Model
In this model the reliability of software is analyzed based
on execution time. The hazard function for this model is
provided as:

Z f N nc τ() ()= ∅ −

Where τ is the execution time, f is the linear execution
frequency, Ø is a proportionally constant fault exposure
ratio and nc is the corrected number of faults.

2.2.2 Goel-Okumoto NHPP Model
It is assumed that at random interval software system is
subject to failures due to the faults in the present system.
Let N(t) is the cumulative number of failures identified in
time t then N(t) can be modeled as NHPP model for the
following.

P N t y m t e y

y

y m t(){ } ()()= = =− () , , , .,
!

0 1 2

m t a e

t m t abe

bt

bt

() ()
()

= −

= ′() =

−

−

1

λ

Where m(t) is the expected number of failures observed
by time t, λ(t) is the failure rate, a is the expected number
of failures observed and b is the fault detection rate per
fault. In this case, the number of faults to be identified is
treated as random variable whose values depend on the
test factor.

2.2.3 Goel Generalized NHPP Model
During testing process, the failure rate is not constant it
first increases and then decreases. Goel proposed a gener-
alized NHPP model to handle the increasing/decreasing
failure rate process.

P N t y m t e y
y

m t a e

y m t

bt

(){ } ()()

() ()

= = =

= −

−

−

() , , , .,
!

0 1 2

1

Where ‘a’ is the expected number of faults, b and c are
constants that reflect the quality of testing. The failure rate
is defined as follows:

λ t m t abe tbtc c() ()= ′ = − −1

Classification of Software Reliability Models to Improve the Reliability of Software

Indian Journal of Science and Technology4 Vol 8 (29) | November 2015 | www.indjst.org

2.2.4 IBM Binomial and Poisson Model
In these models, the fault detection rate is considered as
a discrete process, and it follows a poisson or binomial
distribution. It is assumed that the software system is
developed and tested incrementally. These models can be
applied to both module and system level testing.

2.2.5 Shoo Man Exponential Model
It is same as JM model. The hazard function for this
model13,14 is provided as:

Z t k N I nc() ())= −/ (τ

Where t is the operating time of the system, I is the total
number of instruction in the program, τ is the debugging
time, nc(τ) is the total number of corrected faults and k is
the proportionality constant.

2.2.6 Generalized Poisson Model
The mean value function for this model is:

m t N M ti i i())= ∅ − −1] α

Where Mi-1 is the total number of faults, Ø is a propor-
tionality constant and α is a constant value used to rescale
time ti .

2.2.7 Musa-Okumoto Logarithmic Poisson
Execution Time Model

In this model15,the observed number of failures is
assumed to be NHPP model and the mean value function
is defined as :

µ τ θ λ θτ() ()= +1 10/ .Ln

Where λ0 represent initial failure intensity and θ represent
the reduction in normalized failure intensity.

2.3 Fault Seeding Models
In this model, a known number of faults are ‘seeded’ in a
program. The number of indigenous and seeded faults is
counted at the time of testing. Using different estimation
models, the number of indigenous faults and the reliabil-
ity of the software are estimated.

2.3.1 Mills Seeding Model
It is one of the most popular and basic fault seeding
 models. To test a program, a random number of faults are

seeded and then the program is tested for a particular time
interval. The number of original indigenous faults can be
estimated from the number of indigenous and seeded
faults which are not taken into account at the time of
testing. These models are also known as a tagging model
since a given fault is tagged as seeded or indigenous.

2.3.2 Basin Model
Basin, suggested a two stage procedure with the use of two
programmers which can be used to estimate the number
of indigenous faults in the program.

2.3.3 Lipow Model
Lipow16 proposed a model, which identifies the probability
of fault in any test of the software. Then the probabilities
of finding given number of indigeneous and seeded faults
are calculated for independent tests.

2.4 Input Domain based Models
In this model, test cases are generated from an input
domain. Partition of input domain into equivalence
classes is a difficult task. The reliability is measured from
the number of failures or execution of test cases.

2.4.1 Nelson Model
Nelson proposed a model17, in which the reliability of
software is measured by running the software for a sample
of n inputs. The n inputs are randomly chosen from the
input domain. The random sampling of n input is done
through either probability distribution or simple through
user input distribution.

2.4.2 Ramamurthy and Bastani Model
In this input domain based model18, author mainly
focuses on the reliability of real time, critical process
control program. This model provides an estimate of
conditional probability that the program is correct for all
possible input given that it is correct for a specified set of
inputs.

3. Conclusion
Software reliability is a measuring technique for defects
that causes software failures in which software behavior
is different from the specified behavior in a defined envi-
ronment with fixed time. In this paper, various software

G. Gayathry and R. Thirumalai Selvi

Indian Journal of Science and Technology 5Vol 8 (29) | November 2015 | www.indjst.org

reliability models are reviewed. Above analytical models
are primarily useful in estimating and monitoring and it
is viewed as a measure of estimation of software reliability
and to enhance the quality of software.

4. References
1. Lyu MR. Handbook of software reliability engineering. NY:

McGraw-Hill/IEEE Computer Society Press; 1996.
2. Zhang X, Pham H. An analysis of factors affecting soft-

ware reliability. The Journal of Systems and Software. 2000;
50(1):43–56.

3. Musa JD, Iannino A, Okumoto K. Software reliability:
measurement, prediction, and application. New York:
McGraw-Hill Publication; 1987.

4. Goel AL, Okumoto K. A time-dependent error detection
rate model for software reliability and other performance
measure. IEEE Transaction on Reliability. 1979;
R-28(3):206–11.

5. Kapur PK et al. Flexible software reliability growth model
with testing effort dependent learning process. Applied
Mathematical Modeling. 2008; 32(7):1298–307.

6. Quadri SM, Ahmad N, Farooq SU. Software reliability
growth modeling with generalized exponential test-
ing-effort and optimal software release policy. Global
Journal of Computer Science and Technology. 2011;
11(2):27–42.

7. Huang CY, Kuo SY. Analysis of incorporating testing-
effort function into software reliability modeling. IEEE
Transaction on Reliability. 1979; 51(3):206–11.

 8. Goel AL. Software reliability models: Assumptions,
Limitations and Applicability. IEEE Transaction on Software
Engineering. 1985; SE-11(12):1411–23.

 9. Jelinski Z, Moranda P. Software Reliability Research, In
Statistical Computer Performance evaluation. Freiberger
W, Editor. New York: Academic; 1972. p. 465–84.

10. Schick GJ, Wolverton RW. An analysis of competing soft-
ware reliability models. IEEE Transaction on Software
Engineering. 1978; SE-4(2):104–20.

11. Schick GJ, Wolverton RW. An analysis of component soft-
ware reliability models. IEEE Transaction on Software
Engineering. 1982; SE-R:359–71.

12. Goel AL, Okumoto K. An Analysis of recurrent software
failure in a real-time control system. Proc ACM Annual
Tech Conf, ACM; Washington, DC. 1978. p. 496–500.

13. Chaurasia PK. Classification of Software Reliability Models.
IJARCSSE. 2014 Aug; 4(8):1084–91.

14. Shooman ML. Probabilistic models for software reliability
prediction. In: Freiberger W, editor. Statistical Computer
Performance Evaluation. New York: Academic; 1972.
p. 485–502.

15. Musa JD. A theory of software reliability and its applica-
tion. IEEE Transaction on software engineering. 1971;
SE-1:312–27.

16. Lipow M. Estimation of software package residual
errors. TRW Redondo Beach, CA: Software Series. 1972;
 Rep-SS:359–71.

17. Nelson E. Estimating Software Reliability from test data.
Micro electron. 1978; 17:67–74.

18. Ramamurthy CV, Bastani FB. Software reliability: Status and
perspective. IEEE Transaction on Software Engineering.
1982 Jul; 8(4):359–71.

