Indian Journal of Science and Technology, Vol 8(27), DOLI: 10.17485/ijst/2015/v8i27/70620, October 2015

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

Novel Investigation Methodologies to Identify the
SQL Server Query Performance

Muthukumar Murugesan', K. Karthikeyan? and K. Sivakumar?

'Department of Application Delivery, Mphasis Limited, Bangalore - 560048, Karnataka, India;

amgmuthu@yahoo.com

*Department of Computer Application, Anna University, Madurai - 625007, Tamil Nadu, India;

adithyakarthi@gmail.com

*Department of Computer Science and Electronics, Hindusthan Institute of Technology, Coimbatore - 641032,

Tamil Nadu, India; rksivakumar@gmail.com

Abstract

Objectives: Performance optimization is an ever end process. It requires continuous monitoring and special attention.
Widely known fact that 60% of the performance problems are direct result of the inefficient queries. Method of Analysis:
SQL Query is one of the most essential parts of application performance. Over the period, inefficient queries pull down
the performance in live applications gradually. To achieve better application performance, proper database design and
efficient query are needed. Most of the database systems provide expected performance in early stage and drastically
will come down, once the data volume is increased and database becomes large size. Findings: Real performances of
database systems can be assessed only during the applications are in live Database administrator and query developers
cannot make sure 100% performance issues during the database design and query writing. Lot of issues will come mostly
in post deployment in particular, when database has heavy transactions per day. There are multiple approaches available
in the market to provide the solution for database performance. But, none of the mechanism is available to find out the
performance bottleneck proactively. Also, solving performance issues is very painful and time-consuming. Improvement:
This paper proposes various novel approaches to identify the performance bottleneck upfront and demonstrates the
solution for the same.

Keywords: Database Performance, Performance Bottleneck, Query Performance, Query Tuning, SQL Server Database

1. Introduction

Global providers like insurance, banking, finance, railway
system and others have massive number of transactions
on daily basis. All these transactions should be captured
in the database for further reference. Over the period, size
of these databases will get increased to MBs and GBs of
data. Most of the complex queries will give performance
issues, when they process enormous number of records.
SQL developers and database administrators should
possess special skills and techniques to improve the query
performance. Even for a powerful infrastructure, the
performance can be significantly degraded by inefficient

* Author for correspondence

queries®. The ideas and processes of this paper will help
to avoid these situations in future. Fortunately, it is not
needed to have a lot of SQL experience. Identifying these
bottle necks is not that difficult, if it is handled with a plan
and few secrets. This paper is focuses on a plan and few
secrets, and they are

+ Describing protocols that can be used to find and
solve SQL performance issues.

o Details of specific techniques that can be used to dis-
cover the causes of SQL performance issues and solve
them.

Along the way, it can be understood that SQL server
commands can help to become self-sufficient®. The steps

Novel Investigation Methodologies to Identify the SQL Server Query Performance

and approaches available in this paper are very similar,
and can be applied to other environment without any
major challenges.

2. Significance of Identifying
Performance Bottleneck

End users will get frustration, when the application has

performance issue**. During this time, there won't be

any idea on where to begin. Identifying the performance

bottleneck proactively will increase the application

performance and save lot time and cost. The novel

approaches available in this paper will provide the

solutions for:

o The people who are facing the performance issue on
existing applications.

o When SQL statements take forever to run. Or worse,
they run for so long (sometimes hours).

o The people who are planning to increase their busi-
ness transaction massively.

Before planning to increase the business transaction®,
it should be made sure on performance and scalability of
the existing application. Based on the volume of database,
present database transactions will forecast the application
performance and scalability for the future enhancement.
Proactively doing this way, the performance bottleneck
can be identified and existing SQL queries can be
tuned. As a result, lot of future issues can be avoided?
and also end users may be made happy. This proposed
unique approach will help the administrator to diagnose
problems, tune the server for optimal performance and
troubleshoot the SQL queries.

3. Experimental Configuration

To enable better performance, a good system
configuration and correct database software are needed.
System configuration depends on the system throughput,
system stability and user maintenance ability.

3.1 Software Configuration

For the experimental analysis, SQL server 2012 database
is used. It is widely used in all large scale industries and
data warehousing. In order to measure the performance
bottleneck, sample real time database, which has massive
number of transaction per day is used. The information

- 2 | vols (27) | October 2015 | www.indjst.org

analyzing is available as long as SQL Server is running.
Once SQL Server is stopped, all the information collected
will get lost. Statistics collected in this paper is based on
query plan cached data which are available in SQL Server.

3.2 System Configuration

All the tests are executed on a physical machine Intel(R)
Core™ i5 CPU @ 2.5 GHz Processer with 64 bit operating
system, hosted on a computer with Windows 7 Enterprise
with Service Pack 1 with a total of 4GB RAM. It is
important to notice that Microsoft SQL Server 2008 R2
with 64 bit is used for the database.

4. Experimental Evaluation

The following sub section demonstrates how to start and
where to begin to identify the performance bottleneck.
The SQL server is tested using a mix of real time examples
to better understand the various approaches and how the
performance is affected internally by each complex and
inefficient queries. The different methodologies and the
benchmark of the query execution are measured in terms
of

o Most Expensive Queries.

o Most Frequently Executed Queries.

e Most I/Os per Executions.

« CPU and Memory Utilization and Availability.

By default, SQL Server will store all the information
related to query execution and database transactions in
internal system tables. SQL Server dynamic management
views!*16
and every query execution. Dynamic Management Views
(DMVs) gives internal information about SQL Server
instance and database state and also they are useful for
performance monitoring and troubleshooting. SQL
Server system database (Master), holds all these schema
related information.

will give almost all the details related to each

4.1 Most Expensive Queries
This section provides detailed information about what are
all the queries take more time to consume the CPUs and
what are all the most expensive queries available in the
database. CPU utilization has been calculated based on
the query completion in seconds.

The SQL statement provides all information needed
to find most expensive queries currently running, or

Indian Journal of Science and Technology

Muthukumar Murugesan, K. Karthikeyan and K. Sivakumar

recently executed where their execution plan is still in the
cache'*". They can only show queries that are in the cache.

time the processor used to execute a query and is divided
by the number of query executions, i.e. total worker time/

execution count.
From the above figure:

Hence, if there is an expensive query, that’s replaced in the
cache by a new one. The result set will not show it. For

experimental purpose, here only top 10 most expensive o First record gives details of top most expensive query.
queries are considered. This number can be changed to « This UPDATE query is executed three times and con-
any number based on the business requirement. sumed CPU 21.303 seconds as an average.

SELECT top 10 o Column Individual Query gives the actual query text

involved in the execution.

o Column Parent Query gives the name of the database
objects (stored procedure, views and triggers) where
the actual SQL query exists.

o Last column gives the information of the date and
time of the actual query executed last.

[Avg CPU_Utilized_in_Seconds] =(total_worker_
time * 1.0 / gs.execution_count * 1.0)/1000000,

[CPU_Utilized_in_Seconds] = total_worker_time *
1.0/1000000,

[Execution count] = gs.execution_count,

[Individual Query] =SUBSTRING(qt.text,gs.
statement_start_offset/2,

(CASEWHEN gs.statement_end_offset =-1

THENLEN(CONVERT(NVARCHAR(MAX),
qt.text))* 2

ELSE gs.statement_end_offset END-

gs.statement_start_offset)/2)

,[Parent Query] = qt.text

,[Last Execution Time] = gs.last_execution_time

FROMsys.dm_exec_query_stats qs

CROSSAPPLYsys.dm_exec_sql_text(qgs.sql_handle)
as qt

WhereDB_NAME(qt.dbid)= ‘Employee’

ORDERBY [Avg CPU_Utilized_in_Seconds] DESC;

Execution results of the above query have been
captured in Figure 1. From the below figure, the average
CPU utilized time, CPU utilized time, execution count,
query which involved, parent query or stored procedure
involved and query execution time are determined. Here,
average processor time has been calculated based on total

4.2 Most Frequently Executed Queries
Identifying most frequently executed queries is one of the
most important factors while finding out the performance
bottleneck. This section provides detailed information
about most frequently executed queries. This doesn't
indicate a slow query and will give the information of the
statement executed many times. Also, this includes query
execution plan as well. Query execution plan'®'! is very
useful for understanding the performance characteristics
of a query. It calculates in most efficient way to imple-
ment the request represented by the T-SQL query that
has been submitted. Execution plan tell show a query is
executed and identifies the exact piece of SQL code that
causes the problem. When a SQL query takes a long time
to complete, execution plan will help to determine where
the tuning is required.

The below SQL statement provides the details
about most frequently executed and recent queries. The

Parent Query query_plan Last Bxecution Time

CREATE PROCEDURE dbo.aspet_UsersinRoles_GetRol. <ShowPlanXML mins="héin://schemas microsoft com.. 20150501 00:22:31 577
2385 SELECT @Userld = Userld FROM dboaspret_lls.. CREATE PROCEDURE dboaspnet_UsersinRoles_GetRol.. <ShowPlanXML mins="héip://schemas microsoft com. . 20150501 00:22:31 977
13876 SELECT rRoleName FROM dboaspnet_Rolesr.d.. CREATE PROCEDURE dbo.asprel_UsersinRoles_GetRol . <ShowPlanXML mins="hto://schemas microsoft com. . 2015-04-30 16:51:30 677
2342 SELECT @sice=@sice+ => "+ LevelName FROM LE.. CREATE FUNCTION ScalarSpit Sting | @input N... <ShowPianXML xmins="hitp. /schemas microsoft com . 2015-04-30 08:34:04.030
SELECT @hpplicationld = Applicationld FROM aspnet.. CREATE PROCEDURE dbo.aspret_UsersinRoles_lsUsed... <ShowPlanXML xming="titp://schemas microsoft com.. 201504-30 122117 447
1504 SELECT @Userld = Userld FROM dboaspret_lls.. CREATE PROCEDURE dbo aspet_UsersinRoles_lsUser .. <ShowPlanXML xmins="héip.//schemas microsoft com . 2015-04-30 12:21:17 447

Execution count Individual Query
'23325 SELECT @#rpplicationld = Applicationld FROM aspret ..

T R T R T

516 IF (EXISTS(SELECT * FROM dbo.aspnet_.. CREATE PROCEDURE [dbo]aspnet_CheckSchemaVersio.. <ShowPlanXML mins="hétp://schemas microsoft com.. 20150501 00:12:07.290
135 SELECT @Roleld =Roleld FROM dboaspnet Ro.. CREATE PROCEDURE dbo.aspret_UsersinRoles lsUsed... <ShowPlanXMLmins="téip. //schemas microsoft com... 2015-04-30 06:26:29.020
135 |F (EXISTS({ SELECT * FROM dbo.aspret_UsersihRole.. CREATE PROCEDURE dbo.aspret_UsersinRoles_lsUsed .. <ShowPlanXML smins="Htp://schemas microsoft com.. 2015-04-30 06:26:29.020

=
8

SELECT @Applicationkd = Applicationld FROM aspnet.. CREATE PROCEDURE dbo.2spnet_UsersinRoles_GetRol.. <ShowPlanXML xmins="hitp.//schemas microsoft com... ~ 2015-04-30 15:30:57 643

Figure 1. Most expensive queries.

Vol 8 (27) | October 2015 | www.indjst.org Indian Journal of Science and Technology [3 -

Novel Investigation Methodologies to Identify the SQL Server Query Performance

returned result set contains a row for every statement in
the cached plan. For experimental purpose, here only top
10 most expensive queries are considered. This number
can be changed to any number based on the business
requirement.

SELECT TOP 10

[Execution count] = gs.execution_count,

[Individual Query] =SUBSTRING(qt.text,qgs.

statement_start_offset/2,

(CASEWHEN gs.statement_end_offset =-1

THENLEN(CONVERT(NVARCHAR(MAX),
qt.text))* 2

ELSE gs.statement_end_offset END-

gs.statement_start_offset)/2)

,[Parent Query] = qt.text

,deqp.query_plan

,[Last Execution Time] = gs.last_execution_time

FROMsys.dm_exec_query_stats qs

CROSSAPPLYsys.dm_exec_sql_text(qgs.sql_handle)
as qt

CROSSAPPLY(SELECT*

FROMsys.dm_exec_query_plan(gs.plan_handle))
deqp

WhereDB_NAME(qt.dbid)="Employee’

ORDERBY [Execution count] DESC;

Awara.ge I0s avg_logical_reads avg_logical_writes avg_phys_reads

1 | 2993690 6483 0
2 1348263 15951 174
3 712580 707508 5072 0
4 379484 372893 6585 0
5 237793 237315 70 408
6 164947 164495 452 0
7 164447 163300 547 0
s 163581 163036 545 0
9 84589 84589 0 0
10 84457 84457 0 0

Figure 2. Most frequently executed queries.

Results of the above query execution have been
captured in the Figure 2. From the below figure, execution
count, actual query which involved on maximum times,
parent query or stored procedure involved and query
execution time will be made sure.

From the above figure:

o First column gives the count about number of times a
query has executed.

o Columns second and third give the actual query text
involved and parent database object (stored proce-
dure, views and triggers) where the actual query exists
respectively.

- 4 | vols (27) | October 2015 | www.indjst.org

» Fourth column gives the detailed information about
query execution plan.

o Last column gives the information of the date and
time of the actual query executed last.

4.3 Most Input/Output (I/O) per Executions
Identifying most I/O queries is also one of the most
important factors finding out the performance bottleneck.
The performance of applications is inherently limited by
disk input/output (I/O). Often, CPU activity must be
suspended, while I/O activity completes. SQL query has
to be designed so that the performance is not limited by
I/0O. By looking at instance and identifying the databases®’
that are using the bulk of the I/Os will help to identify
where to focus the tuning effort. By drilling into the high
I/O databases and finding the specific T-SQL statements
that consume large amounts of I/Os, those problem
queries can be quickly identified. By reducing I/O on big
I/O consuming queries and databases, it can be helped to
tune-up the proposed server from an I/O perspective.
There is a single application using a single database, or
multiple applications running against multiple databases
on the same instance. However, for multiple databases
running on an instance, it must be determined that how

execution_court queny_test

UPDATE [Emp_Master] SET Name=UT.MName Emad=UT.Em...
insert into Emp_Master_Main(empid name emai nt_id status....
Dielete from Emp_Master_Main where NT_ID =

UPDATE #UserTable SET IsEmpldExist = 1 FROM [Emp_M...
INSERT INTO @tblFroductSeresGlb SELECT PS.Product...

SELECT 1AS[C1]. [Extent1][EMPID] AS [EMPID]. ...
1750 SELECT 1ASI[C1]. [Extent1][EMPID] AS [EMPID]. ...
SELECT 1AS[C1], [Extert1][EMPID] AS [EMPID], ...

SELECT SCHEMA_NAME(sp schema_id) AS [Schema], sp....
SELECT SCHEMA_NAME(sp schema_id) AS [Schema). sp....

much I/O each database is generating. Based on this,
count will decide which database and queries are using
most of the I/Os. The SQL statements below will help to
return the I/O statistics associated with the DATA and
LOG files for all databases on an instance.

Table 1. Most I/O usages database

Database Name Total I/Os
Employee 187000
Temp db 114843
Payroll 9726
Enterprise Directory 2307
Ms db 1846

Indian Journal of Science and Technology

Muthukumar Murugesan, K. Karthikeyan and K. Sivakumar

SELECTTOP 5
[Database Name]

,SUM(num_of_reads + num_of_writes)AS [Total I/
Os]

FROMsys.dm_io_virtual_file_stats(NULL,NULL)

GROUPBY database_id

ORDERBYSUM (num_of_reads + num_of writes)
DESC

For experimental purpose, here only top 5 most
I/O usages databases are considered. This number
can be changed to any number based on the business
requirement. The Table 1 depicts the results of the above

DB_NAME(database_id)AS

THENLEN(CONVERT (nvarchar(MAX),text))* 2

ELSE statement_end_ offset

END- statement_start_offset)/2)

FROMsys.dm_exec_sql_text(sql_handle))AS query_
text

FROMsys.dm_exec_query_stats

ORDERBY [Average 10s] DESC;

The above SQL statement displays a number of
different statistics associated with the master database.
The results of the above statement show statistics order
by the statement that performs the most I/Os on average.
From the above Figure 3:

First column “Average I0s” has been calculated based
on dividing the value of execution count with sum of
“total logical reads, logical writes and physical reads”.
o Next, three columns give the details about total logi-
cal reads, total logical writes and total physical reads.
o Fifth column gives the count about number of times a
query has been executed.
o Last column gives the actual query text involved in
1/0 operation.

query. The Table 1 also gives the high level idea of from .
where further investigation can be started. It means
which database has highly used I/O. Further, analysis can
be started based on the particular database.

Now, it is known that which database is issuing the
bulk of the I/O operations. Then, the next step is to identify
which T-SQL statements within that database are issuing
majority of I/Os. Eventually, this will help to fine-tune a
few queries to reduce the database I/Os considerably. The
T-SQL statement that identifies the 10 most expensive
T-SQL statements from an I/O perspective that are
executed from the “master” database are given below:

SELECTTOP 10

(total_logical_reads + total_logical_writes +total_
physical_reads)/

execution_count [Average IOs],

4.4 CPU and Memory Utilization and
Availability

CPU and memory utilization are the most important

factors in performance bottleneck?. Each system has

some maximum capacity to process the SQL server

request simultaneously. When SQL server sends the

(total_logical_reads/execution_count)AS avg_ request constantly beyond the server maximum capacity,
logical_reads server may use 100% CPU or memory and automatically
(total_logical_writes/execution_count)AS avg_ server virtual memory will get filled. Then, the server
logical_writes will have to restart its SQL server instance periodically.
(total_physical_reads/execution_count)AS avg_ During this critical situation, the CPU and memory
phys_reads utilization have to be monitored periodically to identify

(SELECTSUBSTRING (text, statement_start_offset/2 + 1, which query or store procedure causes the issue. For

(CASEWHEN statement_end_offset =-1 example, assume current SQL server can process 100-

ID EvertTime Total_Memory_GB Usage_Memory_GB Avadable_Memory_GE Memory_Usage CPU_OtherProcess_Utiization CPU_SGLProcess_Ltikization CPU_ide CreatedDate
§ |74 | 2015050217:32:41447 395 357 038 9038 % 0 ™ 20150502 17:3246 513
0 81 2015050217:3241.447 395 359 03% %0.79 % 0 74 20150502 17:3254.013
1 73 20150502 17:30:40.483 395 in 0.22 94.47 23 (] 7 20150502 17:31:10.840
12 72 2015{4-30 17:58:41.437 395 27 116 T0.54 3 0 Ell 2015404-30 17:58:47.167
13 65 20150317 154800970 335 305 050 7721 8 0 2 20150317 15:46:48.283
14 68 2015031518:38:29817 395 248 149 6229 1 1 s 20150315 18:38:40.707
5 67 2015031518:38:29813 395 246 149 6228 i 1 i 20150315 18:36:30.573
16 65 HN5031518:3729700 395 247 148 625 11 0 8 20150315 18:36:10.307
17 66 2015031518:3729700 395 248 149 6233 11 0] 20150315 18:36:20.880
18 61 2015031518:37.29657 395 248 149 6235 11 0] 20150315 18:37.30.403
19 62 2M1503-1518:37:29697 395 246 149 62.36 1] 89 2015-03-15 18:37.40 523
20 B3 W1503-1518:37:29657 395 246 149 62.38 1] 89 2015-03-15 18:37:50.627
21 B4 201503-1518:37.29697 3195 247 148 6263 1 0 89 2015-03-15 18:38:00.243
2 5% AN503-1518:36:29607 395 244 1.51 61.91 1 0 8 2015-03-15 18:36:40.300

Figure 3. Most I/O usages queries.

Vol 8 (27) | October 2015 | www.indjst.org Indian Journal of Science and Technology | 5 -

Novel Investigation Methodologies to Identify the SQL Server Query Performance

150 queries per second, if the amount even 1 higher than
the expected is set, it may cause the issue either in CPU
or memory. Though, the increasing capacity of CPU or
memory will not help much.

High CPU utilization can be masking a number of
other application or hardware bottlenecks too. Once it
is identified with high CPU utilization, despite other
counters looking healthy, it can be started looking for
the cause within the system. In>* high level, there are
two paths to identify CPU performance problems. The
first is reviewing the performance of system hardware
and second one is reviewing the server’s query efficiency.
Second path is usually more effective in identifying SQL
Server performance issues. Unless it is known exactly
where the query performance issues lie, however, it should
be always started with a system performance evaluation.

Knowing where to look for trouble is important, but
more crucial is identifying why the system reacts the way
that it does to a particular request. A number of factors can
affect CPU utilization on a database server: compilation
and recompilation of SQL statements, missing indexes,
multithreaded operations, disk bottlenecks, memory
bottlenecks, routine maintenance, extract, transform,
and load (ETL) activity, among others. The key to healthy
CPU utilization is making sure that the CPU is spending
its time processing what it is wanted to process and not
wasting cycles on poorly optimized code or sluggish
hardware.

The below SQL statement will help to determine
where to look when the first path is headed down.

DECLARE

@memory_usage FLOAT= 0.0

, @tot_memory DECIMAL(19,2)= 0.0

, @available_memory DECIMAL(19,2)= 0.0

, @Usage_memory DECIMAL(19,2)= 0.0
, @cpu_usage FLOAT= 0.0

, @CPU_Utilization VARCHAR(100)= 0.0
, @COUNT INT=1

SET @tot_memory =(SELECT (CAST(total_
physical_memory kb ASDECIMAL(22,3))/1024)/1024
FROMSsys.dm_os_sys_memory)

SET @available_memory=(SELECT (CAST (available_
physical_memory kb ASDECIMAL(22,3))/1024)/1024
FROMSsys.dm_os_sys_memory)

SET @Usage_memory = @tot_memory - @available
memory

SET @memory_usage =(SELECT (100 -(available_
physical_memory_kb /(total_physical_memory_kb * 1.0
))* 100) memory_usage

FROMsys.dm_os_sys_memory)

SET @CPU_Utilization =

(SELECTtop 1

(CONVERT(varchar(30),record_time,21)+,+CO
NVERT (varchar(20),SQLProcessUtilization)+, +CON
VERT (varchar(20),SystemIdle)+,+CONVERT (varch
ar(20),(100 - Systemldle - SQLProcessUtilization)))AS
CPUUtilization

FROM (

SELECT

record.value(‘(./Record/@id)[1]7int’)AS record_id,

record.value(‘(./Record/SchedulerMonitorEvent/
SystemHealth/SystemlIdle)[1]7int’)AS SystemIdle,

record.value(‘(./Record/SchedulerMonitorEvent/

Pug_CPU_kized in_Seconds CPU_Lkized in_Seconds Bxecution count ndividal Query

Parent Query Laet Execation Time

P L 3 UPDATE Ep_ Mactr] SET NamaUT Name Eni:UTE . CREATE PROCEDURE fbo] SyneEDioCDPy... - 20150415082741 8%
2 1663%16000000000 3300854000 3 nseito Enp_Naster_Manlerpdraneenaist dstdhs,. CREATE PROCEDURE o] [SmcEDtoCPy.. 0154150626503
3 6633520000000 616535200 1 Deltefrm Emp_Master M where NT D =" CREATE PROCEDURE oo} SyneEDioCDPy.. - 201504150827:18603
4 5RUTIBEEERERS 16472365000 3 UPDATE #lseTable SET EnpldErst = \FROMEmp .. CREATE PROCEDURE [dho] SymeEDIoCOPy.. 201504150827:36.00
5 31T 10685611000 3 INSERTINTO #UseTab(ErpiD Name EmaNTO gD, CREATE PROCEDURE dbo] SneEDIoCOPy.. 20180415 0827:30807
6 33%0192000000000 10080676000 3 Udale Enp _MasteMaiset \T 0] <REPLACENT_JD.. ~ CREATE PROCEDURE kool SyncEDioCDRy.. 2015041508274 520
7T 25TV 8025000 3 UPDATE Enp_Mastr] ST Iskcve <0 -Pr. CREATE PROCEDURE do][GncEDICDRy.. 201604-15082728220
8 DB93REEH00666 2655151000 3 Udate [Enp_Vaste]se [Enp Mt et Nome =AM, CREATE PROCEDURE [dho][SncEDIoCOPY.. - 20150415 082809.197
9 0415024000000000 041502400 1 pddte Enp_Maser Man oo e Mted where. CREATE PROCEDURE o] [SmeEDteCDRy.. 20150445 062724343
10 025781000000000 077340 3 INSERTINTO [Enp_Master) EnplDMame ErnalNT 1D, CREATE PROCEDURE dho][SyncEDIoCOPy.. 20160415 082741597

Figure 4. CPU and memory utilization and availability.

- 6 I Vol 8 (27) | October 2015 | www.indjst.org

Indian Journal of Science and Technology

Muthukumar Murugesan, K. Karthikeyan and K. Sivakumar

SystemHealth/ProcessUtilization)[1])int’)AS

SQLProcessUtilization,
record_time
FROM (
select
dateadd(ms, r.[timestamp] -sys.ms_ticks,getdate())as

record_time,

cast(r.record asxml) record

fromsys.dm_os_ring buffers r

crossjoinsys.dm_os_sys_infosys

where

ring_buffer_type="RING_BUFFER_SCHEDULER _

MONITOR
AND
record LIKE’%<SystemHealth>%’

JAS x

JASY)

The results of the above query execution have been
captured in the Figure 4. This SQL statement can be
scheduled and these results can be stored into some
physical table for future analysis. Doing this way, CPU
and memory status will be captured on every millisecond
and will make sure either CPU or memory is reaching
maximum level, root cause of the actual issue and what
time the server is undergoing performance issue.

From the above results, complete information about
CPU and memory usage availability will be obtained.
From the above Figure 4, it can be noted that
o Column “Event Time” gives the actual timing of the

event occurs.

o Immediate next columns “Total Memory GB, Usage
Memory GB, Available Memory GB, Memory Us-
age” give the detailed information about total system
memory, memory used by all the process, memo-
ry availability and memory usage, respectively. First
three columns results are measured by GB and last
column is measured by percentage.

o Next three columns “CPU Other Process Utilization,
CPU SQL Process Utilization, CPU Idle” give the
complete details about CPU utilized by other process,
CPU utilized by SQL server process and current CPU
availability, respectively.

5. Conclusion

This paper gives a clear, concise, and actionable plan and
that can be used to tame the wildest of SQL problems.
With these techniques provided in this paper, along with

Vol 8 (27) | October 2015 | www.indjst.org

practice and research, optimizing SQL performance is
an attainable execution plan. Extensive experiments are
conducted to estimate and enhance the performance of
the proposed approaches. The approaches presented here
can be customized according to the business situation
and SQL performance problems can be fixed that have
plagued for weeks/while.

6. References

1. Jadidinejad AH, Sadr H. Improving weak queries using
local cluster analysis as a preliminary framework. Indian
Journal of Science and Technology. 2015 Jul; 8(15). ISSN
(Online): 0974-5645.

2. Nagarajan S, Chandrasekaran RM. Design and implemen-
tation of expert clinical system for diagnosing diabetes us-
ing data mining techniques. Indian Journal of Science and
Technology. 2015 Apr; 8(8):771-6.

3. Fritchey G. SQL server 2012 query performance tuning.
3rd Edition. USA: Apress; 2012 Jun 12.

4. Lobel L, Brust A. Programming Microsoft SQL server 2012.
Microsoft Press. 2012.

5. Strate], Krueger T. Expert performance indexing for SQL
server 2012. USA: Apress; 2012.

6. Jorgensen A, Segarra J, Leblanc P, Chinchilla J, Nelson A.
Microsoft SQL server 2012 Bible, Indianapolis, Indiana,
USA: Johns Wiley and Sons Inc; 2012.

7. Henderson K. Transact-SQL (Titlul original: The guru’s guide
to transact-SQL) Bucuresti, Romania: Editor Teora; 2002.

8. Dejan S. Microsoft SQL server 2005 stored procedure program-
ming in T-SQL & .NET, Third Edition. McGraw-Hill; 2006.

9. Andrew NK, Robust C. Optimization for performance tun-
ing of modern database systems. European Journal of Op-
erational Research. 2006; 171(2):412-29.

10. Kim SW, Jeong BS. Performance bottleneck of subsequence
matching in time-series databases: Observation, solution,
and performance evaluation. Information Sciences. 2007;
177(22):4841-58.

11. Pinal D. SQL SERVER - Optimization rules of thumb -
best practices. Reader’s Article; 2008 Apr 26.

12. KimW, David S, Batory RDS. Query processing in database
systems. Springer Verlag. Berlin Heidelberg New York To-
kyo; 2009.

13. Elmasri R, Navathe S B. Fundamentals of database systems.
Fifth edition. Pearson Education; 2009.

14. Volkov A. SQL server optimization. 2015 May. Avail-
able from: http://msdn.microsoft.com/en-us/library/
2a964133(v=sql.90).aspx

15. SQL tuning or SQL optimization. 2015 May. Available from:
http://beginner-sql-tutorial.com/sql-query-tuning.htm

16. Han J, Kamber M. Data mining concepts and techniques.
2nd edition. Amsterdam, Netherlands: Elsevier Publisher;
2006. p. 383-5.

Indian Journal of Science and Technology I 7 -

Novel Investigation Methodologies to Identify the SQL Server Query Performance

17. Han J, Kamber M. Data mining concepts and techniques. 19. Ferreira D, Oliveira A, Freitas A. Applying data mining
2nd ed. Burlington, Massachusetts: Morgan Kaufmann; techniques to improve diagnoses in neonatal jaundice.
2006. p. 285-8. BMC Med Informat Decis Making. 2012; 12:43.

18. Rajesh K, Sangeetha V. Application of data mining meth-
ods and techniques for diabetes diagnosis. IJEIT. 2012;
2(3):224-9.

- 8 I Vol 8 (27) | October 2015 | www.indjst.org Indian Journal of Science and Technology

