

Background: With the advent in hand held mobile computing devices, the demand for high performance compact
processors is increasing. In this work a processor is designed with hardwired instructions for elementary mathematical
functions like sine, cosine, sinh, cosh, division and multiplication. Methods: The processor employs Coordinate Rotation
Digital Computer (CORDIC) algorithm for efficient hardware implementation of the above mentioned instructions. The
parallel and pipelined implementation of the processor is carried out. The pipelined processor is configured as waveform
generator. The novelty of this work is the integration of both trigonometric and hyperbolic operations in the same processor.
Findings: ASIC Implementation is carried out with 40nm technology libraries. The parallel processor so designed operates
at maximum frequency of 24.23 MHz and pipelined processor operates at maximum frequency of 261.36 MHz. Conclusion:
This increase in operating frequency is achieved at the cost of increased silicon area and optimal power dissipation. The
waveform generator generates sine, cosine waves of 3.5 MHz and sine hyperbolic, cosine hyperbolic waves and exponential
waves of 7.9 MHz. The limitation being the waveform generator generates waves of constant frequency. Additional circuit
is required in generating waves of different frequencies.

Keywords: Coordinate Rotation Digital Computer (CORDIC), Parallel Architecture, Pipelined Architecture, Waveform
Generator

1. Introduction
The targeted application of the designed CORDIC
processor is in (DSP) Digital Signal Processing appli-
cations, which demand real time processing of data.
The hardware implementation of such elementary
mathematical functions can be carried out in a wide
variety of ways. The most popular ones are as follows.

Lookup table based approach •	
Taylor Series based approach •	
CORDIC based approach •	

1.1 Lookup Table based Approach
This is the fastest means of computation. However, the
precision is directly proportional to the size of lookup

table. Higher the desired accuracy, larger is the size of look
up table which in turn demands more on-chip memory.
This exponentially increases the area requirement.

1.2 Taylor Series based Approach
This is based on the Taylor series expansion of the desired
function. This kind of implementation is proved area effi-
cient. However, it takes a comparatively longer time while
converging to the desired accuracy.

1.3 CORDIC based Approach
This acts as a bridge between both of the above approaches.
The attractive feature of this algorithm is that the above
listed mathematical operations can be evaluated through
mere shift and add operations and using a small look up

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(19), DOI: 10.17485/ijst/2015/v8i19/76856, August 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Design and Implementation of a Generic
CORDIC Processor and its Application

as a Waveform Generator
V. Soumya1*, Raghavendra Shirodkar2, A. Prathiba1 and V. S. Kanchana Bhaaskaran1

1School of Electronics Engineering, VIT University Chennai Campus, Chennai-600127, Tamil Nadu, India;
soumya.v2013@vit.ac.in, prathiba.a@vit.ac.in

2NXP Semiconductors India PVT LTD, Bangalore-560045, Karnataka, India; raghavendra.shirodkar@nxp.com

Design and Implementation of a Generic CORDIC Processor and its Application as a Waveform Generator

Indian Journal of Science and Technology2 Vol 8 (19) | August 2015 | www.indjst.org

table for constants1. Thus, this algorithm is very popular
among the hardware designers.

Due to the advantage cited above, the CORDIC
algorithm is used in this work, for the hardware imple-
mentation of sine, cosine, sine hyperbolic, cosine
hyperbolic and exponential functions, and the multipli-
cation and the division instructions of the processor. The
CORDIC being an iterative algorithm as will be explained
in Section 2 can be implemented using the parallel or the
pipelined architecture.

1.4  Parallel CORDIC
The implementation as a parallel CORDIC is completely
combinatorial. The number of stages is equal to the num-
ber of iterations. The output of the previous stage is fed
as input to the next stage. The critical path is thus long,
and it reduces frequency of operation as a result. This
implementation avoids the initial latency and the result is
available in one clock cycle.

1.5  Pipelined CORDIC
The parallel CORDIC is pipelined by inserting registers
between each of the stages. Due to this insertion of the
pipelining registers, the critical path is reduced to the
path between two registers. Thus, it drastically increases
the frequency of operation. However, it has the initial
latency equal to the number of stages.

In this work, the ASIC implementation of the pro-
cessor with both the parallel and pipelined CORDIC is
carried out. The performance parameters, namely, the
area, the frequency of operation and the power dissipation
are measured and duly compared.

1.6  Waveform Generators
The function generators or the signal generators are the
electronic components that generate the various repeat-
ing or non-repeating waves. These signals are needed in
calibrating, testing, measuring and trouble-shooting the
electronic equipments. The most popular way of design-
ing the digital waveform generator is through the LUTs.
However, these LUTs consume a huge area and resources
when used in ASIC implementation. In Reference2 a DDS
(direct digital synthesizer) is designed that generates trig-
onometric waves using basic CORDIC which operates at
380MHZ. Reference3 explains design of a sine and cosine
waveform generator which operates at 13.3MHz. A Scale
free Hyperbolic CORDIC algorithm is designed in4 which

operates at 56.38 MHz. FPGA Implementation of a RA
CORDIC processor is discussed in Reference5.

In this work, the pipelined CORDIC processor
combined with a small LUT is used to implement a wave-
form generator that generates sine, cosine, sine hyperbolic,
cosine hyperbolic and exponential waves. The processor
is also provided with hardwired instructions for elemen-
tary functions like multiplication, division, sine, cosine
and exponential functions which facilitate the use of the
processor for generic applications. The processor also has
instructions for generating both trigonometric and hyper-
bolic waves unlike processors in references2,3,6 which either
generates trigonometric waves or hyperbolic waves.

2. Algorithms

2.1  Introduction to CORDIC
The CORDIC algorithm was devised using the basic
foundations of the two dimensional geometry. Consider a
vector with unit magnitude [1, 0] as shown on Figure 1 (a).
When this vector is rotated by an angle Φ, the x projection
gives sine of angle Φ and the y projection gives the cosine
of angle Φ.

On generalizing this analysis, consider a vector with
initial vector position (x, y) as shown in Figure 1 (b). This

(a)

(b)

Figure 1.  (a) Circle with unit vector [0 1] and (b) Circle
with vector [x, y].

V. Soumya, Raghavendra Shirodkar, A. Prathiba and V. S. Kanchana Bhaaskaran

Indian Journal of Science and Technology 3Vol 8 (19) | August 2015 | www.indjst.org

vector is rotated by an angle Φ. The new vector position
is then given by

	 x’= x cos(Φ) – y sin(Φ) � (1)

	 y’= y cos(Φ) + x sin(Φ)� (2)

On rearranging the terms in equations (1) and (2)

	 x’= cos(Φ) [x – y tan(Φ)]� (3)

	 y’= cos(Φ) [y + x tan(Φ)]� (4)

Here, assume tan(Φ)=2–i. This assumption results
in the equations to be useful only for the discrete set of
angles. In order to make the above set of equations more
generic, the algorithm is made iterative as shown below.

	 xi+1= Ki [xi – yi
∗di

∗2–i]� (5)

	 yi+1= Ki [yi + xi
∗di

∗2–i]� (6)

	 zi+1=zi– tan–1(2–i)� (7)

	 Ki= cos (tan–1(2–i))

	 K = Π (1+2–2i)–1/2

as i tends to infinity K= 1.6468 the CORDIC can be oper-
ated in two modes, namely,

Rotation mode •	
Vector mode •	

2.1.1  Rotation Mode
The vector is rotated by the desired angle. The direction of
rotation is decided by the angle of iteration.

	 xi+1= Ki [xi – yi*di*2–i]� (8)

	 yi+1= Ki [yi + xi*di*2–i]� (9)

	 zi+1=zi– tan–1(2–i)� (10)

where di = – 1, if zi<0
	  + 1, if zi>0

After completion of the desired number of iterations,
the result obtained is given by	

	 xn= K [x0cos(z0) – y0sin(z0)]� (11)

	 yn= K [x0sin(z0) – y0cos(z0)]� (12)

	 zn = 0

On starting the algorithm with the initial parameters
x0 = 0.607(1/K) and y0 = 0, the cosine and sine of the

initial angles are made available in x and y variables after
completion of n iterations. The more is the number of
iterations, higher is the accuracy.

2.1.2  Linear Mode
The vector is rotated towards the x axis. The direction of
rotation is decided by the y projection of the vector.

	 xi+1= Ki [xi – yi
∗di

∗2–i]� (13)

	 yi+1= Ki [yi + xi
∗di

∗2–i]� (14)

	 zi+1=zi– tan–1(2–i)� (15)

Where di = + 1 if yi<0
	  – 1 if yi>0

After completion of the desired number of iterations,
the result obtained is represented as follows.

	 xn = K √(x0
2+y0

2)� (16)

	 yn = 0

	 zn = z0+tan–1(y0/x0)� (17)

On starting the algorithm with the initial parameters
z0= 0, the magnitude and the direction of the vector is
available in xn and yn. The above explained algorithm was
proposed by Volder and is applicable only for the Circular
coordinates.

This was later extended to the linear and hyperbolic
coordinates by Walther in 1971 by adding an additional
parameter to decide the coordinates as summarized in
Table 1.

	 xi+1= Ki [xi – yi
∗m∗di

∗2–i]� (18)

	 yi+1= Ki [yi – xi
∗di

∗2–i]� (19)

	 zi+1=zi– tan–1(2–i)� (20)

	 yi+1= Ki [yi – xi
∗di

∗2–i]

Here, the ‘m’ defines the coordinates.

Table 1.  Summary of Welther’s CORDIC

m Rotational mode Linear mode

1 xn = K (x0 cos z0 – y0 sin z0)
yn = K (x0 sin z0 + y0 cos z0)

xn = K √ (x0
2 + y0

2)
zn = z0 + tan–1(y0/x0)

0 xn = x0
yn = y0 + x0 z0

xn = x0
yn = x0 + y0 / z0

–1 xn = K (x0 cosh z0 – y0 sinh z0)
yn = K (x0 sinh z0 + y0 cosh z0)

xn = K √ (x0
2 – y0

2)
zn = z0 + tanh–1(y0/x0)

Design and Implementation of a Generic CORDIC Processor and its Application as a Waveform Generator

Indian Journal of Science and Technology4 Vol 8 (19) | August 2015 | www.indjst.org

2.2  Multiplication using CORDIC
With reference to Table 1, it can be observed that the
product of the two numbers is obtained when the
CORDIC engine operates in rotational mode with linear
coordinates. One of the operands is fed as the x coordi-
nate of the vector and the second operand is fed as the
desired angle of rotation (z) with zero y coordinate. If
number of bits in the operands is ‘n’, then iterating the
CORDIC equations ‘n’ times yields the product of the
desired accuracy. The domain of convergence of the
CORDIC is limited as explained in Reference6. The reli-
able product is obtained only when the operands are in
the range {–1, 1}. Thus, the application of such a mul-
tiplier is very limited. In order to make the multiplier
more generic, the pre-processing of the operands and
the post-processing of the product is essential. The
CORDIC with these additional steps is explained in the
next section.

2.3  Division using CORDIC
Referring to Table 1, it can be observed that the quotient
of the two numbers is obtained when the CORDIC engine
operates in vector mode with the linear coordinates. The
dividend is fed as the y coordinate and the divisor is fed
as the desired angle (z) with the x coordinate being equal
to zero. As explained in Reference6, the CORDIC engine
has its predefined limitations. The accurate quotient is
available only when the dividend is less than the divisor
or in other words, when (y<z). Thus, in order to make
the algorithm generic the pre-scaling of the operands and
the post-scaling of the quotient is required. The updated
algorithm is described in the Section 3.

2.4 � Trigonometric Functions using
CORDIC

When the CORDIC engine operates in the rotational
mode with the circular coordinates, the sine and cosine of
the desired angle is obtained. The x coordinate should be
initialized to 1/K (0.607) and the y coordinate should be
initialized to zero for obtaining the scale free results. The
sine and cosine values of the angles are simultaneously
obtained in the x and y coordinates after completing the
iterations. The domain of operation for the trigonometric
functions is (z<π/2).

The algorithm can be extended to the entire range
(0 to 3600) by pre-processing the input angle before feeding
to the CORDIC engine as explained in the next section.

2.5  Hyperbolic Functions using CORDIC
The hyperbolic functions sinh and cosh can be evaluated
by operating the CORDIC engine in the rotation mode
for hyperbolic coordinates. The calculation of the hyper-
bolic functions using the CORDIC is more complex due
to the fact that the iteration angle is zi=tanh–1(2–i) which
does not satisfy the convergence criterion. However, with
reference to7 it can be proved that

	
z z zj zn i i+1

j i

n

−
= +

−

> − ∑1 3
1

1

−

Hence, the iterations {4, 13, 40….k, 3k+1} have to
be repeated to extend the range of convergence. Various
algorithms have been proposed to address the conver-
gence issue of the hyperbolic functions. One popular way
is using the mathematical identities, such as the Taylor
expansion of hyperbolic functions. However, this method
is not suitable for the hardware implementation. In this
work, the expanded hyperbolic CORDIC algorithm as
suggested in references4 is used.

Figure 2.  Flow chart of Enhanced CORDIC for
Multiplication.

V. Soumya, Raghavendra Shirodkar, A. Prathiba and V. S. Kanchana Bhaaskaran

Indian Journal of Science and Technology 5Vol 8 (19) | August 2015 | www.indjst.org

3. � Proposed Enhancement to
CORDIC

3.1  Enhanced CORDIC for Multiplication
The enhanced CORDIC algorithm for multiplication
shown in Figure 2 operates on 16 bit operands. The sup-
ported product range is –32768 to +32767. Since the
operands are 16 bit wide, 16 iterations are sufficient for
producing convincing results. In order to deal with the
fractional numbers, logic 1 is assumed to be equivalent to
216 and other fractional numbers are scaled accordingly.
The input operands are first shifted towards left by 16 bit
position to scale the operands by 216. Since the CORDIC
engine supports operands in the range {–1, +1}, the oper-
ands are divided by two until the operands fall in this
range, and the number of times the division is carried out
is stored in the counters. After this stage, the operands can
be fed to the CORDIC engine for the product calculation.
The counters are used to post scale the product. The stored
sign bits are used in determining the sign of the product.

3.2  Enhanced CORDIC for Division
Figure 3 gives the flowchart of enhanced CORDIC for
division. The handling of fractional numbers is the same

as in the multiplication. The CORDIC engine supports the
quotient less than one. Hence, if the dividend is greater
than the divisor, the dividend is divided by two until the
dividend is less than one, and the number of times the
division is carried out is stored in the counter. After this
stage, the operands can be fed to the CORDIC engine for
the quotient calculation. The counter is used to post scale
the quotient. The stored sign bits are used in determining
the sign of the quotient.

3.3 � Enhanced CORDIC for Trigonometric
Calculation

As demonstrated in flowchart Figure 4. The input angle
is 32 bit wide and stored as variable z. The upper two
bits of the angle define the quadrants. According to the
conventional CORDIC algorithm, in order to extend
the region of operation to the entire domain of 0 to 360
degree, a slight modification of the inputs is necessary
before applying to the CORDIC engine. If the angle lies
in the range 0 to 90 degree or 0 to –90 degree, then no
modifications is necessary. The angle is applied as it is, x
coordinate is 1/K∗215 and y coordinate is 0. Here, the logic
one is assumed to be 215. If the angle lies in the range of
90 to 180 degree, where the sine is positive and the cosine
is negative, 90 degree is subtracted from the angle. And,

Figure 3.  Flow chart of Enhanced CORDIC for Division.
Figure 4.  Flow chart of Enhanced CORDIC for
trigonometric function.

Design and Implementation of a Generic CORDIC Processor and its Application as a Waveform Generator

Indian Journal of Science and Technology6 Vol 8 (19) | August 2015 | www.indjst.org

the y coordinate is 1/K∗215 and the x coordinate is 0. If the
angle lies in the range 180 to 270 degree, where the tan
is positive, 90 degree is added to the angle, y coordinate
is –1/k∗215 and the x coordinate is 0. After sixteen itera-
tions, the sine of the angle is available in the y coordinate
and the cosine of the angle is available in the x coordinate
simultaneously.

3.4 � Expanded CORDIC for Hyperbolic
Functions

Theoretically, on operating the CORDIC engine in the
rotation mode with hyperbolic coordinates, yields sinh
and cosh of the input angle. Unlike the other trigono-
metric functions, the range of hyperbolic functions is
unbound. Thus, the expanded hyperbolic algorithm
proposed in References1,8 is attractive for the hardware
implementation of hyperbolic functions. In this approach,
a few additional iterations are added to the basic CORDIC
for the negative indices of i.

	 θi = tanh–1(1–2i–2) for i<0� (21)

Thus, the set of equations used in this modified
CORDIC are as follows.
For i < 0

	 xi+1= Ki [xi + yi
∗di

∗(1–2i–2)]� (22)

	 yi+1= Ki [yi + xi
∗di

∗(1–2i–2)]� (23)

	 zi+1=zi– tanh–1(1–2i–2)� (24)

For i>0

	 xi+1= Ki [xi + yi
∗di

∗2–i]� (25)

	 yi+1= Ki [yi + xi
∗di

∗2–i]� (26)

	 zi+1=zi– tanh–1(2–i)� (27)

Here, the maximum supported input angle is given by

	

Θmax tanh () tanh ()

tanh ()

= − +

+

− − − −

−

− −

∑

∑

1 2 1
0

1 1

1

1 2 2

2

i n

m
n

� (28)

With reference to the References1,8, for the processor
with 32 bit registers, 8 additional iterations are added
for the negative indices along with the conventional 16
iterations for positive indices and repeated two iterations

corresponding to the indices 4 and 13 for increasing the
range of convergence. Thus, in total, 26 iterations are
required for evaluating the sinh and the cosh functions.
The maximum sinh and cosh value supported by this
implementation is of the range given by {– 4.4∗106 to +
4.4∗106}. The flow is explained in Figure 5.

4.  Hardware Implementation

4.1  Basic CORDIC Unit
Figure 6 depicts the basic CORDIC block. It is made of
three adders, two shifters and a Look Up Table (LUT)
containing the iteration angles. The CORDIC being an
iterative algorithm, the same set of operations is carried
out repeatedly with the output of the previous stage fed as
input to the successive stage. In this project, the parallel
and the pipelined CORDIC architectures are implemented
and their performance parameters are measured as
discussed in the ensuing sections.

4.2  Parallel CORDIC Architecture
As described above, the elementary operations such as the
multiplication, division, sine and cosine require sixteen iter-
ations in arriving at the desired output. On the other hand,
the hyperbolic functions sinh, cosh and the exponential
functions require twenty six iterations. Thus, for the parallel
implementation sixteen CORDIC units shown in Figure 6

Figure 5.  Flow chart expanded hyperbolic CORDIC.

Figure 6.  Basic CORDIC unit.

V. Soumya, Raghavendra Shirodkar, A. Prathiba and V. S. Kanchana Bhaaskaran

Indian Journal of Science and Technology 7Vol 8 (19) | August 2015 | www.indjst.org

are connected in parallel such that the output of one stage is
fed to the subsequent stage as shown in Figure 7.

Advantages
It is completely combinational and avoids the clock •	
switching power.
Fixed shift is needed at each stage which can be •	
achieved by wiring.
Iteration angles for each stage can be hardwired as •	
constants thus avoiding the memory space.
Registers are needed only at the input and after the •	
final stage for calculating the frequency of operation.
The output is obtained in one clock cycle.

Limitations
The critical path length is very large, which reduces •	
the frequency of operation to a significant extent.

4.3  Pipelined CORDIC Architecture
The parallel CORDIC architecture is converted to the
pipelined architecture by inserting the pipelined registers
between every stage as seen in Figure 8. The attractive
part is that the processing of next sample is started even
before the completion of the current sample.

Advantage

In this implementation, the critical path is the path •	
between the two pipelined registers. Thus, it divides
the critical path and in the process, significantly
increases the frequency of operation

Limitation

This kind of implementation suffers from the initial •	

4.4  CORDIC Processor Architecture
Figure 9 gives the block diagram of the proposed
CORDIC processor. The processor is designed for 32 bits
of operation. Hence, the input and output busses are of
32 bit width. The program bus is of 10 bit width, thus
supporting a program memory of 1K byte.

4.4.1  Datapath
The datapath of the processor comprises of the following.

CORDIC block for circular and linear coordinates•	
CORDIC block for hyperbolic coordinates •	
Instruction decoder•	
Program counter•	
Register set•	

The CORDIC block designed for operating in
the linear and the circular coordinates is used for
evaluating the product, the quotient and the trigono-
metric functions, whereas the CORDIC block operating
in the hyperbolic mode is used in evaluating the hyper-
bolic and the exponential function. The processor is
provided with sixteen 32 bit registers for storing the
operands.

Figure 7.  Parallel CORDIC architecture.

Figure 8.  Pipelined CORDIC architecture. Figure 9.  CORDIC Processor block diagram.

Design and Implementation of a Generic CORDIC Processor and its Application as a Waveform Generator

Indian Journal of Science and Technology8 Vol 8 (19) | August 2015 | www.indjst.org

4.4.2  Controller
Figure 10 gives the operating states of the processor
controller

Reset: •	 All the logic blocks are reset. The program
counter is loaded with logic zero and thus the address
bus points to the first memory location of the program
memory.
Fetch: •	 The instruction is loaded from the memory loca-
tion pointed to by the address bus into the instruction
decoder.
Decode: •	 The instruction is decoded to fetch the
opcode and the register numbers. The opcode is used
in generating the control signals and register numbers
are fed as input to the register set.
Execute: •	 Based on the control signals generated by the
controller, the desired functions are carried out by the
respective block in the datapath.
Load: •	 This state is activated only with the move instruc-
tion. On reception of this instruction, the actual data
needs to be fetched from the next memory location.

4.5  Waveform Generation
The pipelined processor which executes the set of the
pipelined instructions generating one output for each of
the clock cycles can be configured as a waveform generator
by using a relatively smaller look up table.

To evaluate the trigonometric functions, the input to the
CORDIC engine is fed in the form of angle∗232/360. The pre-
evaluated angles with a difference of five degrees in the range
0 to 360 are stored in a lookup table and fed repetitively to
the CORDIC engine operating in rotation mode with circu-
lar coordinates to generate the sine and cosine waves.

To evaluate the hyperbolic functions, the input to the
CORDIC engine is fed in the form angle∗231/360. Unlike

the trigonometric functions, the input to the hyperbolic
function is unbound. Thus, to handle both the negative
and the positive inputs, the angle is scaled by multiply-
ing with 231. The pre-evaluated angles with a difference
of one degree in the range –16 to 16 are stored in a lookup
table and fed repetitively

5.  Results and Discussion

5.1  Synthesis Results
It can be concluded from the results in Table 2 that if the
area and power dissipation are of concern, the parallel
CORDIC architecture needs to be preferred. On the other
hand, if the processor is designed for an application that
demands very high frequency of operation, then the
pipelined architecture can be selected.

The parallel processor delivers results in one clock
cycle, though suffering from a very large critical path
delay which drastically reduces the frequency of
operation. The frequency of operation is increased ten
times in the pipelined implementation relative to the par-
allel implementation. However, pipelined architecture is
realized at the cost of more number of gates and area. In
this work there is 28% increase in number of gates and
39.82% increase in area.

5.2  Simulation Results
Figure 11 shows the simulation results on executing the
division instruction using the parallel and the pipelined
processor. As already discussed, the pipelined processor
suffers from an initial delay. On the other hand, the
parallel processor delivers results in one clock cycle,
though suffering from a very large critical path delay. It
thus drastically reduces the frequency of operation.

Table 2.  Synthesis summary

Parallel
Implementation

Pipelined
Implementation

Waveform
Generator

Area 47437 µm2 66328 µm2 67476 µm2

Number
of gates 22955 29601 30306

Power 4.403mW 6.298mW 10.44mW
Frequency

of operation 24.23 MHz 261.36MHz 255.29MHz

Critical
Path 41.268ns 3.826ns 3.917ns

Figure 10.  Controller state machine.

V. Soumya, Raghavendra Shirodkar, A. Prathiba and V. S. Kanchana Bhaaskaran

Indian Journal of Science and Technology 9Vol 8 (19) | August 2015 | www.indjst.org

In this implementation, since the CORDIC in linear
and the circular coordinates require sixteen iterations, the
corresponding results for the first set of inputs is available
after 16 clock cycles. On the other hand, the CORDIC for
the hyperbolic coordinates requires twenty six iterations.
Hence, it has an initial latency of 26 clock cycles.

5.3  Static Power Analysis Results
Static power analysis of the processor is carried out using
Cadence® Voltus tool for the typical corner model. The
graph in Figure 12 gives the module wise power dissipa-
tion and clearly suggests that the parallel implementation
of the CORDIC is more of a combinational circuit with
very less sequential elements. The change in the output
of the previous stage triggers the next stage thus avoid-

ing the clock switching which is one of the major power
consuming factors. On the contrary, due to the insertion
of the pipelined registers, the pipelined implementation
of CORDIC has a large number of sequential elements.
It is clear from Figure 13 that a considerable amount of
power dissipation is contributed by these sequential ele-
ments. In this structure, the output of the previous stage
is fed to the successive stage only when triggered by the
clock. Thus, there is a large amount of switching power
dissipation in the clock network.

6.  Conclusion
In this work, the popular and elementary mathematical
operations such as the sine, cosine, sinh, cosh, exponential,
multiplication and division, which form the inevitable part
of various DSP algorithms, communication systems and
common scientific and technical calculations are hard-

(a) (b)

Figure 12.  Parallel CORDIC (a) Graphical display of power
dissipated by individual module and (b) Power contribution
by combinational and sequential gates.

(a) (b)

Figure 13.  Pipelined CORDIC (a) Graphical display
of power dissipated by individual module and (b) Power
contribution by combinational and sequential gates.

(a)

(b)

Figure 11.  Result of division instruction for (a) Parallel
CORDIC and (b) Pipelined CORDIC.

Table 3.  Comparison with existing CORDIC
processors

Frequency of
operation

No of
operand Bits

DDS using Hybrid 380MHz 13
CORDIC architecture2

Sine/Cosine wave 13.3MHz 32
generator3

Scale free Hyperbolic 56.38 MHz 16
CORDIC processor4

Current Work 261.36MHz 32
[Pipelined]

Current Work 24.23MHz 32
[Parallel]

Design and Implementation of a Generic CORDIC Processor and its Application as a Waveform Generator

Indian Journal of Science and Technology10 Vol 8 (19) | August 2015 | www.indjst.org

wired into the processor. This reduces the computation
time compared to the software implementations using
microprocessor. The CORDIC is proved to be the most
attractive algorithm due to the reason that with slighter
modifications, all of the above operations are implemented
through the simple shift and add operations. Both parallel
and pipelined CORDIC architectures were realized and
their results are compared.

Table 3 gives the performance comparison of designed
processor with existing works. The novel concept being
that both trigonometric and hyperbolic operations are
integrated in a single processor. Processors in2–4 employ
CORDIC to design a DDS (Direct Digital Synthesizer)
which is in turn used in arbitrary waveform genera-
tor. In this work, the pipelined processor with a small
look up table acts as a waveform generator that gener-
ates trigonometric and hyperbolic waves. The limitation
of this waveform generator is that frequency of gener-
ated trigonometric and hyperbolic waves is constant
[sin,cos = 3.5MHz sinh, cosh = 7.9MHz]. An addi-
tional frequency divider circuit needs to be externally
connected to the processor to control the frequency of
waves. The comparison as shown in Table 2 clearly dem-
onstrates that, there is ten times increase in frequency
of operation from parallel implementation to pipelined
implementation. It is concluded that the pipelined
approach is ideal for applications demanding very high
performance. On the other hand, the parallel approach
is more suitable for applications, where reduction of
area and power are of primary concern since pipelined
processor demands 28% increase in number of gates as
shown in Table 2.

7. Acknowledgement
This work would not have been made possible without
the constant support of the Logic library team at NXP
Semiconductors India PVT LTD, Bangalore. I am deeply
indebted to Swanand Kulkarni for permitting me to use
the industry standard tools and the resources.

8.  References
1.	 Volder JE. The CORDIC trigonometric computing

technique. IRE Trans Electron Computers. 1959; 8:330–4.
2.	 Caro DD, Petra N, Strollo AGM. A 380 MHz direct digital

synthesizer/mixer with hybrid CORDIC architecture in 0.25
um CMOS. IEEE J Solid-State Circuits. 2007; 42:151–60.

3.	 Hsiao SF, Hu YH, Juang TB. A memory efficient and high
speed sine/cosine generator based on parallel CORDIC
rotations. IEEE Signal Process Lett. 2004; 11:152–5.

4.	 Aggarwal S, Meher PK, Khare K. Scale-Free Hyperbolic
CORDIC Processor and Its Application to Waveform
Generation. IEEE Transactions on Circuits and Systems—I:
Regular Papers. 2013; 60(2):314–26.

5.	 Subha S, Muthaiah R. FPGA Implementation of
RA-CORDIC Processor. Indian Journal of Science and
Technology. 2013; 6(5):4403–9.

6.	 Aggarwal S, Meher PK, Khare K. Area-Time Efficient
Scaling-Free CORDIC Using Generalized Micro-Rotation
Selection. IEEE Transactions on Very Large Scale Integration
Systems. 2012; 20(8):1542–46.

7.	 Walther JS. A unified algorithm for elementary functions.
Spring Joint Computer Conf; 1971; USA. p. 379–85.

8.	 Hu X, Harber RG, Bass SC. Expanding the Range of
Convergence of the CORDIC Algorithm. IEEE Transactions
on Computers. 1991; 40(1):13–21.

