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1.  Introduction

Optimizing a problem involves finding the best possible 
values of the deciding factors of the problem. The fine-
tuned values of these variables or factors, either maximize 
or minimize the solution of the given problem. Further, 
the problem may have either a single solution or multiple 
conflicting solutions. They are termed as Single-objective 
Optimization Problem (SOP) and Multi-objective 
Optimization Problem (MOP) respectively. Among 
many existing algorithms, Evolutionary Algorithms 
(EA) were found to be effective in finding near optimal 
solutions. Some of the evolutionary algorithms are 

Genetic Algorithms (GA), Evolution Strategies (ES), 
and Strength Pareto Evolutionary Algorithms (SPEA), 
Differential Evolution (DE). In this paper, we concentrate 
on Differential Evolution algorithms for solving MOP.

Nowadays, most of the real time optimization problems 
are of multi-objective type. Multi-objective problems 
can be seen in many fields like science, engineering, 
economics and so on. A MOP consists of more than one 
conflicting objective functions. In MOP, there doesn’t 
exist any single solution that can simultaneously optimize 
all objective functions. Instead, it will have set of solutions 
that are optimal, which is called as Pareto Front. There 
exists two requirements of MOP: 1 to find out solutions 
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that converges to the pareto optimal front, and 2 to find 
solution that will maintain diversity in population.
In this paper, the performance of different variants of DE 
is analyzed by applying them on five ZDT benchmark test 
functions. The analysis is done based on the convergence 
and diversity nature of solutions obtained by each variant. 
This nature is measured using Convergence Metric (Cm) 
and Diversity Metric (Dm).

2.  Related Work

Collello et al1, have provided an overview about the 
approaches in the Evolutionary Algorithms (EA). It 
consists of various EAs and other metaheuristics that can 
be used to solve MOP. These includes genetic algorithms, 
evolution strategies, particle swarm organization, cultural 
algorithms, differential evolution, ant colony, mathemetic 
algorithm and so on.

DE was proposed by Storn and Price2 for single 
objective optimization problems. Over span of years, DE 
became successful and reputed optimization algorithm 
among researchers. Abbass et al3,4 were the first to apply 
DE over MOP in algorithm called Pareto Differential 
Evolution (PDE). In this algorithm, new individuals are 
created by DE and only non-dominated individuals are 
kept for next generation.

Madavan5 introduced Pareto Differential Evolution 
Approach (PDEA), which also creates new individuals 
like in PDE but in this approach DE combines parent 
population as well as new individuals and then ranks the 
obtained solutions using pareto based ranking as well as 
diversity ranking where the latter uses crowding distance 
metric of each individual.

Xue et al6 introduced a new algorithm for MOP called 
Multi-Objective Differential Evolution (MODE), which 
initially found the fitness of individuals with the help of 
pareto based ranking and then analyzed diversity using 
crowding distance. The fitness value obtained was used to 
find out best individuals for next population. Later, Robic 
and Filipic9 introduced an algorithm called Differential 
Evolution for Multi-objective Optimization (DEMO) 
which is explained clearly in section 4.2.

Mezura-Montes et al10  have provided an overview 
about DE for solving MOP. DE algorithm and its variants 
are discussed in this paper. Also, the approaches of DE 
that can be used for faster convergence and maintaining 
diversity of optimal solutions is explained. 

Jinil Persis et al11 have addressed an application of 
multi-objective optimisation problem called Mobile 
Ad-hoc Network (MANET). MANET uses network 
performance measures such as delay, hop distance, load, 
cost and reliability. Ant based routing algorithm is used to 
solve MANET route optimisation problem.

Mahmoud et al12 have addressed another application 
of multi-objective optimisation problem called land 
use planning based on sustainable development. The 
objectives of land use planning includes maximizing 
compactness, maximizing floor area ratio, maximizing 
compatibility, maximizing economic benefit and 
maximizing mix use. Non-dominated sorting genetic 
algorithm version two (NSGA-II) is used to solve this 
land use planning problem.

3.  �Multi-Objective Optimization 
Problems 

Multi-objective optimization problems are the problem 
that has more than one conflicting objective function that 
has to be optimized simultaneously. The set of solutions 
obtained for MOP are called pareto optimal front. It 
consists of decision variables, which are the numerical 
quantities that solve the optimization problems. 
These objective functions are also subjected to certain 
constraints which could be either inequality constraints 
or equality constraints.

A general MOP includes a set of ‘n’ decision variables, 
a set of ’k’ objective functions, and a set of ‘p’ inequality 
constraints or a set of ‘q’ equality constraints. 

The optimization goal is to
Maximize/Minimize

Y = f(x) = (f1(x), f2(x)... fk(x))

Subject to
Inequality Constraints

ei(x) ≤ 0, where i = 1, 2... p

Or Equality Constraints

gj(x) = 0, where j = 1, 2... q
Where x = (x1, x2... xn), Y denotes the objective vector 

and x denotes the decision vector.
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4.  Test Functions of MOP

Deb7 in his experiments observed that the characteristics 
of pareto optimal front that prevent any evolutionary 
algorithm from finding diverse pareto optimal front 
are convexity, non-convexity, non-uniformity and 
discreteness. Considering these issues Zitzler, Deb, Thiele8 
developed five test functions described in the sections 
4.1 to 4.5. These functions are termed as ZDT functions. 
These ZDT functions later became broad and popular set 
of benchmark test functions for analyzing multi-objective 
pareto optimization problems. Each ZDT function 
includes two objective functions, which is most common 
for pareto optimization, especially in engineering field.

Each ZDT function is the mathematical formulation 
of the characteristics like convexity, non-convexity, 
discreteness, non-uniformity, local pareto fronts and so 
on. 

4.1 ZDT1
Decision space		  : x  [0, 1]30

Objective Function	 : f1(x) = 2 1f (x) g(x)(1- x /g(x) )=

			     n
ii=2

9g(x) = 1+ x
n -1å

Optimal Solution	 : 0 ≤x1 ≤ 1, xi = 0 where i = 2... 30
Characteristics		  : Convex Pareto Front

4.2 ZDT2
Decision space		  : x  [0,1]30

Objective Function	 : f1(x) = x1 
			   : f2(x) = g(x)(1−(x1/(g(x))2))
			     n

ii=2

9g(x) = 1+ x
n -1å

Optimal Solution	 : 0 ≤ x1 ≤ 1, x i = 0 where i = 2... 30
Characteristics		  : Concave Pareto Front

4.3 ZDT3
Decision space		  : x  [0,1]30

Objective Function	 : f1(x)=x1

	            f2(x) = 

			   n
ii=2

9g(x) = 1+ x
n -1å

Optimal Solution	 : 0 ≤ x1 ≤ 1, xi = 0 where i=2... 30
Characteristics		  : Discontinuous Pareto Front

4.4 ZDT4
Decision space		  : x  [0,1] × [−5,5]9

Objective Function	 : f1 (x) =x1

			     f2(x) = g(x)(1−(x1/(g(x))2))

	        
Optimal Solution	 : 0 ≤ x1 ≤ 1, xj = 0 where j = 2... 10
Characteristics		  : Many Local Pareto Front

4.5 ZDT6
Decision space		  : x  [0,1]30

Objective Function	 : 
			     f2(x) =g(x)(1−(f1(x)/(g(x))2)
			     n

ji=2

9g(x) = 1+ x
n -1å

Optimal Solution	 : 0 ≤x1  ≤ 1, xj = 0 where j = 2... 10
Characteristics	 : �Pareto Front having low 

density solutions near to it

5.  �Differential Evolution 
Algorithm 

DE is one of the evolutionary algorithm used to solve 
many optimization problems. DE is a simple and 
powerful population based algorithm that uses real 
valued parameters. The advantages of DE include its 
ease of use, speed, simple structure and robustness. 
The three operations involved in the algorithm for 
optimizing the given objective functions are crossover, 
mutation and selection .The three strategy parameters 
used in DE are the size of the population (NP), Scaling 
Factor (F) and Crossover Rate (CR). The Scaling Factor 
(F) deals with population diversity. Smaller value of F 
leads to the premature convergence and hence leads to 
loss of diversity. The Crossover Rate (CR) controls the 
number of components inherited from the mutant vector. 
It influences the mutation probability and convergence 
speed. There exists many variants of DE that are discussed 
in the section 5.1.

5.1 De Variants
Price and Storn1, initially introduced the DE algorithm 
with single variant for solving SOP. Later few more 
strategies of DE were suggested by them which are also 
called as DE variants. These variants vary based on the way 
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the vectors are selected for computing mutation process, 
number of pairs of vectors to find the difference vector 
and the type of crossover used. The different variants and 
their mutation strategies are given in the Table 1.

The general convention of the DE variant can be 
denoted as DE/p/q/r. Here, the DE denotes the Differential 
Evolution Algorithm, ‘p’ represents the method of 
selecting the vectors for the mutation process (the vector 
could be the best vector of the current generation or 
randomly selected vector or a vector between the best 
and random vector), ‘q’ denotes the number of pairs of 
vector(s) to be selected  to compute the difference vector  
and ‘r’ denotes the type of crossover to be performed 
which could be either bin or exp (where bin denotes 
for Binomial Crossover and exp denotes Exponential 
Crossover). 

5.2 De for Mop
In this paper, the DEMO algorithm proposed by Robic 
and Filipic9 is used to analyze the performance efficacy of 
the DE variants empirically on the previously mentioned 

ZDT functions. The DEMO algorithm uses the concept 
of dominance. That is, if the newly generated vector 
dominates its parent vector, then the new vector replaces 
the parent else, the new vector is discarded. The new 
vector is added into the population if both (new vector 
and parent vector) are non-dominated solutions.This 
may increase the size of the population. Therefore, non-
dominated sorting and crowding distance measures are 
used to truncate the population. The DEMO algorithm 
is given in Figure 1 and the corresponding candidate 
creation using the variant DE/rand/1/bin is given in 
Figure 2.

Input: Parent Pi
	 1. �Randomly select three individuals Xj1, Xj2, Xj3 

from P, where j ≠ j1 ≠ j2 ≠ j3.
	 2. �Calculate child C as C = C = Xj1 + F(Xj2−Xj3)

where F is a scaling factor.
	 3. �Evaluate the child by crossover with the parent 

using crossover rate CR
Output: ChildC
Figure 2.    Candidate creation using DE/rand/1/bin.

1. Generate random initial population P.
	 2. While stopping criterion not met, do:
		  2.1. �For each individual  

where NP is size of population
 			   Repeat 
`			   (a) �Create childC from parent

.
			   (b) �Evaluate the child using the 

objective functions.
			   (c) �If the child dominates the 

parent, the child replaces 
the parent.

			     Else, the candidate is discarded.
 			    �If both are non-dominated, 

the candidate is added in the 
population.

		  2.2. �If the population has more than NP 
individuals, truncate it.

		  2.3. �Randomly enumerate the 
individuals in P.

Figure 1.    Demo algorithm.

Table 1.    Differential Evolution Variants Mutation Strategy
Sl. No. Variants Mutation Strategy

1 DE/rand/1

2 DE/rand/2

3 DE/best/1

4 DE/best/2

5 DE/rand-to-best/1
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6.  Performance Metrics

The metrics used in this paper to analyze the performance 
of the DE variants are based on the convergence and 
diversity nature of the population. It should be noted 
that the DE variants having less convergence value and 
less diversity value are considered to be better performing 
variants. The Convergence metric and Diversity metric 
are explained in the Sections 6.1 and 6.2 respectively. 

6.1 Convergence Metrics
The convergence metric Cm is a measure that calculates the 
distance between the obtained non-dominated solutions 
B and the setof Pareto-optimal solutions. It tells how 
faster the obtained solutions converges to pareto front.

		

|Q|

m i
i=1

C d | B |/æ ö÷ç= ÷ç ÷ç ÷è ø
å

where d1 is the distance between the solution i ∈ B and the 
nearest member of pareto optimal solution.

6.2 Diversity Metrics
The second metric is the Diversity metric Dm. This metric 
measures how diverse the obtained non-dominated 
solutions are.
		

|Q|-1
f 1 ii=1

m
f 1

d d d d
D

d d (| Q | 1) d
+ + -

=
+ + -

å

where di is the distance between consecutive solutions 
in the non-dominated solutions Q, and d is the average of 
all these distances. 

The parameters df and d1 represent the distances 
between the extreme solutions of the Pareto front and the 
boundary solutions of the obtained solutions Q.

7  Experimental Design

The empirical analysis was performed with the following 
parameter values.  
Size of the population, NP : 50
Number of runs : 30 
Maximum number of generations, MAXGEN : 2000
Crossover Rate ( ) : (0.3, 0.9)
Scaling Factor, F	: 0.5

8.  Results and Disscussion

The Convergence value Cm of each variant tested on each 

ZDT benchmark test functions are given in the Table 
2. The results shows that based on Cm,  that is,  the best 
performing variants in the order of lowest convergence 
metric are: 1. DE/rand/1/bin, DE/best/1/bin and DE/
rand/2/bin for ZDT1, 2. DE/best/1/bin, DE/rand/1/bin 
and DE/rand/2/bin for ZDT2, 3. DE/rand/1/bin, DE/
best/1/bin and DE/rand/2/bin for ZDT3, 4. DE/best/1/
bin and DE/rand/1/bin for ZDT4, 5. DE/rand/1/bin and 
DE/best/1/bin for ZDT6. The variants DE/rand/1/bin 
and DE/best/1/bin perform better irrespective of specific 
ZDT function. The variants DE/best/2/bin and DE/rand-
to-best/1/exp had higher Cm value for ZDT1, ZDT2 and 
ZDT3 and DE/rand/2/bin and DE/best/2/exp had higher 
Cm value for ZDT4 and ZDT6.

The Diversity value Dm of each variant applied on each 
ZDT benchmark test functions are given in the Table 3. 
The result shows that on the basis of Dm, the variants 
performed best in the order of lowest diversity metric are: 
1. DE/rand/1/bin and DE/best/1/bin  for ZDT1, 2. DE/
rand/1/bin and DE/best/1/bin for ZDT2, 3 DE/best/1/
bin and DE/rand/1/bin for ZDT3, 4. DE/best/1/bin, DE/
rand/1/bin and DE/best/2/bin for ZDT4, 5. DE/rand/1/
bin, DE/best/1/bin and DE/best/2/bin for ZDT6. Again, 
the variants DE/rand/1/bin and DE/best/1/bin perform 
better irrespective of specific ZDT function. The variants 
DE/best/1/exp, DE/rand/2/exp and DE/best/2/exp had 
higher Dm value for ZDT1, ZDT2 and ZDT3 and DE/
rand/1/exp and DE/best/2/exp had higher Dm value for 
ZDT4 and ZDT6.

9.  Conclusion

In this paper, the performance efficacy of different 
variants of Differential Evolution algorithm are analyzed 
empirically based on their convergence and diversity 
nature. An empirical comparison of ten DE variants to 
solve ZDT multi-objective optimization problems was 
done. The performance of DE variants to solve MOP are 
analyzed by checking whether it fulfills the two goals of 
MOP, i. e., convergence to the pareto front and uniform 
diversity of the obtained solutions. These two goals are 
determined using two metrics called Convergence Metric 
and Diversity Metric. The results shows that the best 
performing variants are rand/1/bin, best/1/bin which 
had faster convergence to the pareto front and also have 
uniform spread of solutions along the front.
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Table 3.    Diversity Metric value for each ZDT Function. The lowest is made bold
Variant ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
DE/rand/1/bin 1.9753E-317 2.6229E-317 3.7996E-317 2.9578E-317 2.6553E-317
DE/rand/1/exp 9.1154E+227 9.8154E+227 9.9254E+227 6.9389E+252 6.6589E+252
DE/rand/2/bin 5.7777E+199 6.7897E+199 7.7867E+199 1.3658E+074 1.5658E+074
DE/rand/2/exp 1.7706E+248 1.7726E+248 1.7709E+248 2.6425E+092 2.6665E+092
DE/best/1/bin 1.9864E-317 2.6340E-317 3.7885E-317 2.9467E-317 2.6664E-317
DE/best/1/exp 2.6326E+276 2.6315E+276 2.6318E+276 7.6222E+218 7.6892E+218
DE/best/2/bin 5.0140E+180 5.0150E+180 5.0177E+180 1.1243E-307 1.2243E-307
DE/best/2/exp 2.5060E+262 2.5040E+262 2.5120E+262 1.3800E+228 1.3780E+228
DE/rand-to-best/1/bin 8.9473E+073 8.9673E+073 8.9493E+073 1.8113E+045 1.9913E+045
DE/rand-to-best/1/exp 1.1616E-012 2.1716E-012 3.1876E-012 1.3981E-152 1.6781E-152

Table 2.    Convergence Metric value for each ZDT Function. The lowest is made bold
Variant ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
DE/rand/1/bin 2.7524E-317 1.8245E-317 1.6515E-317 3.0538E-317 1.8134E-317
DE/rand/1/exp 2.0088E-013 2.1088E-013 2.0288E-013 5.4645E-086 5.4835E-086
DE/rand/2/bin 1.2637E-306 1.2847E-306 1.2637E-306 7.3759E+097 7.5659E+097
DE/rand/2/exp 1.8305E-076 1.8415E-076 1.8375E-076 5.4885E-086 5.4945E-086
DE/best/1/bin 2.7635E-317 1.8134E-317 1.6626E-317 3.0438E-317 1.8245E-317
DE/best/1/exp 1.3860E+093 1.3871E+093 1.3860E+093 1.0796E+021 1.0786E+021
DE/best/2/bin 1.0253E+200 1.0266E+200 1.0300E+200 4.8663E+011 4.8713E+011
DE/best/2/exp 1.9889E+045 1.9888E+045 1.9866E+045 1.3867E+107 1.3877E+107
DE/rand-to-best/1/bin 1.3658E+074 1.3668E+074 1.3688E+074 6.7767E+073 6.7778E+073
DE/rand-to-best/1/exp 2.5874E+161 2.5894E+161 2.5869E+161 6.1293E+030 6.1298E+030


