
Abstract
The effectiveness and elasticity of virtual machine placement has become a main concern in modern cloud computing
environment. Mapping the virtual machines to the physical machines cluster is called the VM placement. In this paper we
present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines
in a cluster of Physical hosts. We used two different techniques, first initial VM packing is done by checking the load of the
physical host and the user constraints of the VMs. Second optimization of placed VMs is done by using a hybrid genetic
algorithm based on fitness function. The presented algorithm is implemented in JAVA Net beans IDE, and Clouds simulator
has been used for simulation to assess the execution and performance of our heuristics by comparison with algorithms
first fit, best fit and round robin. The performance of the proposed algorithm was examined from both users and service
provider’s perception. The simulation results show that our proposed algorithm uses the less number of physical servers
for placing a certain number of VMs which helps to improve the resource utilization rate. The response time of our algorithm
is little bit more than the first fit algorithm because of its nature of allocating VMs is based on the user constraints and past
usage history of the VMs. Elevated SLA satisfaction rate and inferior load imbalance rate was observed in results. Since
we used a modified version of hybrid genetic algorithm for load optimization the percentage of VM migrations had been
decreased through which we can achieve the better results for load balancing along with cost reduction. The results also
show that our hybrid genetic based multi dimensional host load aware and user constraints based algorithm is applicable,
valuable and reliable for implementation in real data center environments.

Keywords: Host Load Aware Algorithm, Load Monitoring, Load Rebalancing, Physical Machine Cluster, Virtual Machine,
VM Scheduling

1. Introduction

Infrastructure-as-a-Service (IaaS) is the most fundamental
use of cloud computing. The virtualization technology
is the base to form an IaaS platform. This proposes the
entire computing resources for deploying and executing
applications, storing data, or accommodating a company’s
complete computing environment1. Virtualization tech-
nologies guarantee opportunities for cloud data centers
to host applications on shared infrastructure. Data center

expenses can be lessened by using Virtual Machines
(VMs) Cloud data center providers can create a huge
number of Virtual Machines (VMs) for different types of
workload and specification requirements. 2Each VM is
configured with a certain amount of computing resources
which is adequate with workload requirements. The cloud
service providers can consolidate all the VMs into a few
numbers of physical hosts, keeping in mind the end goal
to lessen the aggregate number of obliged physical serv-
ers and abusing server capacities all the more completely,

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(17), DOI: 10.17485/ijst/2015/v8i17/59140, August 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Energy Efficient Multi Dimensional Host Load Aware
Algorithm for Virtual Machine Placement and

Optimization in Cloud Environment
T. Thiruvenkadam1* and P. Kamalakkannan2

1Department of Computer Science, K.S.Rangasamy College of Arts and Science, Tiruchengode - 637215,
Tamil Nadu, India; mailone.thiru@gmail.com

2Department of Computer Science, Arignar Anna Govt., Arts College, Namakkal - 637002,Tamil Nadu, India;
Kamal_karthi95@yahoo.co.in

Energy Efficient Multi Dimensional Host Load Aware Algorithm for Virtual Machine Placement and Optimization in Cloud
Environment

Indian Journal of Science and Technology2 Vol 8 (17) | August 2015 | www.indjst.org

permitting cloud providers to spare cash on equipment
and vitality costs. VM consolidation method is the key
sympathy toward attaining economy of scale in a cloud
data center domain3. The advent of virtualization tech-
nology enables the physical server consolidation in data
centers which plays a vital role in minimizing the number
of physical servers used and energy consumption also.
Various approaches has been provided by the researchers
for server consolidation in data centers but none of them
have been considered all the aspects of the server consoli-
dation which ensures the QOS as well as reduced cost for
the datacenter administrators. Therefore a new algorithm
is needed in order to provide better service to the cloud
users and at the same time reducing the operational cost
to the service provider4. Placing the VM in the appropri-
ate host is necessary for ensuring the effective resource
utilization and minimizing the datacenter cost as well as
power. To address this problem in this paper we propose
a new efficient hybrid genetic based host load aware algo-
rithm for scheduling and optimization of virtual machines
in a cluster of Physical hosts. We divide this problem into
two following categories5.

1.1  Initial Scheduling of VMs
The Virtual Machine allocation problem in a cloud
infrastructure is investigated by many researchers in the
past. But the majority of the presented mechanisms paid
no attention to the ever changing load of the physical
host and dynamic nature of the Virtual Machine deploy-
ment requests that frequently reaches the cloud provider
infrastructure. Here we present an efficient hybrid host
load aware algorithm for scheduling virtual machines to
a cluster of Physical hosts. We developed the algorithm
based on two different methods, first by checking the load
of the physical host, the load factor of a physical host can
be measured by the way of analyzing utilization level of
the individual resources like CPU, Memory and Network
bandwidth. Second by considering the past utilization
activities of a VM to a physical host.

1.2 � Ongoing Load Rebalancing or
Optimization

Rebalancing of load in datacenter environment need live
VM migrations but more number of frequently moved
VMs between physical hosts causes increased network
bandwidth utilization and datacenter cost hence the
load rebalancing has to be achieved with minimum

number of VM migrations in order to solve this issue we
used a modified version of hybrid genetic algorithm for
load optimization. The main contribution of this paper
includes the introduction of virtualization technology, a
new proposed algorithm for initial VM scheduling, ongo-
ing load rebalancing or optimization and validation of the
proposed algorithm on a simulated environment for its
goals.

The rest of the paper is organized as follows: In Section
II we describe the related work while in Section III
placement problem under study has been explained, we
present the design model to explain the proposed strategy
in section IV The proposed algorithm for VM schedul-
ing is discussed in section V. Load balancing and VM
optimization based on genetic algorithm is presented in
section VI. Section VII shows the experimental setup and
results acquired by our technique compared with some
of the existing strategy for optimal VM placement and
optimization. Section VI concludes the paper and spot-
lights some possible future directions. Most of the IaaS
cloud data centers uses virtualization technology since it
provides a good flexibility in the provisioning and place-
ment of servers and their associated workloads and cost
savings6,7 while this model provides a number of advan-
tages, it is essential to administer the allocation of virtual
machines to the physical hosts in the data center.

2.  Related Work
Even though a lot of researchers have been studied this
virtual machine mapping problem in the past we draw
attention to some of the closest work in perspective of
our point. In8 the number of physical machines needed
to deploy the requested virtual machine instances are
reduced by combining time series forecasting techniques
and bin packing heuristic but the model has not included
the relationships between multiple resources, like CPU
and I/O. In9 the VM placement algorithms make use of
the behavior of VMs to have some properties in general.
In10 for the placement of virtual machines to physi-
cal machines a two level control management system is
used and it uses combinatory and multi-phase efficiency
to solve potentially inconsistent scheduling constraints.
In11, VM scheduling constraints are considered as single
dimension in a multidimensional Knapsack problem.

In12, the VM scheduling policy is primarily dealt out
from the viewpoint of network traffic and three common
scheduling algorithms have been introduced for Cloud

T. Thiruvenkadam and P. Kamalakkannan

Indian Journal of Science and Technology 3Vol 8 (17) | August 2015 | www.indjst.org

computing and simulation results provided. In13 the
performing load balancing in data centers are inten-
sively studied the heuristics has been used as a common
approach among systems to enables the load balancing
among physical servers. In14 the performance variations
have been identified and monitored in a physical server
hosting VMs. A few simple VM placement algorithms
like time-shared and space-shared were presented and
compared in15 and introduced a method to model and
simulate Cloud computing environments, in which the
algorithms can be implemented. In16 pioneered methods
for allocating and migrating virtual machines and pro-
posed some migration techniques and algorithms based
on the load imbalance level of the servers. 17Evaluated
most important load-balance scheduling algorithms for
conventional Web servers. Vector Dot a novel load-bal-
ancing algorithm has been introduced in18 to work with
structured and multi-dimensional resources limitations
by taking servers and storage of a Cloud into account.
A countable measure of load imbalance on virtualized
data center servers has been proposed in19. In20 server
consolidation was considered as a stochastic been pack-
ing problem and presented a VM sizing based algorithm
which considers the cumulative resource demand of a host
where the VM to be placed. An overloaded resource based
VM placement approach has been presented in21. In our
previous study22 the comparison of various VM schedul-
ing algorithm has been presented and demonstrated the
necessity of new efficient placement VM placement algo-
rithm. An algorithm for scheduling virtual machines have
been presented in23 based on user constraints and multi
dimensional host load.

A genetic based simulated annealing algorithm for
optimization of task scheduling in cloud computing has
been proposed and implemented in24. This algorithm only
considers the QOS necessities of various types of tasks.
Some of the genetic operators that use the group-oriented
structure lead the better results when compared to the
non-grouping genetic based algorithms which are not use
such grouping feature. In25,26 they used the grouping based
genetic algorithm to reach better results than conventional
methods and universal heuristic algorithms.

3.  Problem Formulation
The major principle of the IaaS cloud computing system
is that its user can make use of the resources to have good
performance and economic benefits. With the support of

virtualization innovation the resources can be conveyed to
the users in the form of virtual machines hence an efficient
virtual machine allocation policy and management process
is required to avoid under utilization or over utilization of
the physical machines which may affect the quality of ser-
vices of the IaaS cloud. The under utilization of servers is
a well known expenditure concern in cloud management.
Low utilization of server resources leads to the usage of
more physical machines, increasing expenses for machine
power and capital and operational expenses for cooling
systems. Moreover, surplus machines require more carbon
footprint. The over utilization of physical servers results
in violating the SLA and quality of service constraints.
Efficient allocation of Virtual machine instance request
will meet client requirements, improve the resource uti-
lization, increases the overall performance of the cloud
computing environment and also decreases the number
physical machines used. Therefore an efficient VM sched-
uling and ongoing load monitoring and optimization in
IaaS is an important cloud computing problem to resolve.

4.  System Architecture
To address the VM scheduling and ongoing load
optimization problem we have proposed a multi dimen-
sional physical host load aware scheduling and hybrid
genetic based optimization algorithm and we implemented
this heuristics in JAVA using Net beans IDE.

Figure 1 shows the framework model in which the
proposed algorithm is implemented. Here the physical
clusters can be formed by adding a set of physical serv-
ers each server contributing its own share of resources
such as CPU cores, main memory, disk capacity and net-
work bandwidth. The users can create virtual machine
instances by giving their requirements for running the
applications and the VM requests are submitted by the
users to the computing system. As the submitted VMs
enter to the cloud they are wait for their turn in the stack.
The VM requests can be handled by the virtual machine
scheduler and it finds the appropriate physical machine
by estimating the VM size and checking for the avail-
ability and capacity of the physical machine when it finds
the appropriate physical machine the VM scheduler
immediately allocates the identified physical machine
to the virtual machine instance request in queue and the
required resource can be allocated to the virtual machine.
The proposed algorithm uses the index table for efficient
VM placement with the properties shown in Table 1.

Energy Efficient Multi Dimensional Host Load Aware Algorithm for Virtual Machine Placement and Optimization in Cloud
Environment

Indian Journal of Science and Technology4 Vol 8 (17) | August 2015 | www.indjst.org

Rebalancing of load in this environment is handled by
virtual machine optimizer we used a modified version of
genetic algorithm for load optimization.

5.  Model Definition
This is a simple and efficient method that uses the load
factor of the physical machine and also VM constraints
given by the user about the VM resource requirement.
It also identifies the overloaded physical machine and
selects the VM to migrate based on the past behavior
of the VM and picks the appropriate PM based on its
resource utilization rate. Then it discovers the under uti-
lized PMs and migrates the VMs running on it to some

other suitable PMs, and turn it off in view of energy saving.
Since accurately forecasting the resource requirement and
behavior of the VM is not possible our algorithm utilizes
the user deployed resource details of workload of the VM
and considers the load factor of the physical machine as
well as physical machine cluster to identify the appropriate
PM for the given VM request. We use bin packing
heuristic combined with three different algorithms to
minimize the number of Physical machines required to
place a set of VMs, quick and correct placement of VMs ,
maintain balanced load among the servers, increase the
resource utilization rate and importantly doing all these
things without violating any SLA agreements.

N number of virtual machines with resource
requirements VR (CPU, Memory, N/W Bandwidth) to
be placed on a set of M physical machines with resource
capacities of PR (CPU, Memory, N/W Bandwidth)
grouped in K number of physical machine cluster.

Consider PM as a set of all the physical machines in
the entire system, where PM = {PM1, PM2, PM3 … PMm }.
m is total number of the physical machines and an indi-
vidual physical machine can be denoted as PM i, where
i denote the physical machine number and range of i is
(1 <= i <= m). Similarly, the set of VMs on the physical
machine i, can be {VMi1, VMi2.… VMin} here n is the
number of VMs on the physical server i. If we want to
deploy VM j on the PMi then the load of the CPU, RAM
and bandwidth has to be calculated individually. The
CPU load of the PMi at the time interval ts is denoted as
follows

	 PMi(cpu, ts) = VMij
n

j=
∑

1

(cpu, ts) � (1)

The amount of RAM utilized by all the VMs of PMi at
the time interval ts can be denoted as follows,

	 PMi(ram, ts) = VMij
n

j=
∑

1

(ram, ts) � (2)

The amount of Network Bandwidth utilized by all the
VMs of PMi at the time interval ts can be denoted as fol-
lows

	 PMi(nbw, ts) = VMij(nbw, ts)
n

j=
∑

1

� (3)

Where PMi represents the ith physical machine of the
Physical Machine Cluster k, VMij represents jth virtual
machine of the PMi and cpu, ram and nbw denotes the

Table 1.  Properties required for the index table of
physical machine and physical machine cluster

S.No Physical Machine Physical Machine
Cluster

1 Total number of VMs
placed

Total number of PMs

2 Total number of VMs in
each type (CPU intensive,

RAM intensive, N/W
intensive)

Total number of PMs
exhausted

3 The percentage of load of
the PM in each resource

type individually

The cumulative
percentage of the load

of the entire PMs
4 Total number of CPU

cores utilized and
available

The list of PMs which
can be used to place the

CPU intensive VMs
5 Total amount of RAM

utilized and available
The list of PMs which

can be used to place the
memory intensive VMs

6 Amount of N/W
bandwidth utilized and

available

The list of PMs which
can be used to place
the N/W Bandwidth

intensive VMs

Figure 1.  Framework model for VM placement in a cluster
of physical machines.

T. Thiruvenkadam and P. Kamalakkannan

Indian Journal of Science and Technology 5Vol 8 (17) | August 2015 | www.indjst.org

amount of CPU, RAM and Network Bandwidth utilized
by all the VMs of the PMi respectively.

Hence derived from (1),(2) and (3) the weighted aver-
age load of the Physical Machine Cluster k at time interval
ts can be denoted as follows

	 PMCk(WL, ts) = PMi (WL, ts)
i

m

=
∑

1

� (4)

Where PMCk represents the kth physical machine clus-
ter of the datacenter, WL represents the weighted load of
physical machine cluster at time interval ts and PMi rep-
resents the ith physical machine of the Physical Machine
Cluster k

At any time interval the total VM load of a PM should
not exceed the host capacity

∑ PMi Wresource usage (ts) ≤ TH value ≤ ∑ PMi Wresource capacity � (5)

Where resource € {CPU, RAM, Network Bandwidth} and
Wresource is the weight associated with each resource TH
value is the threshold value set by the administrator if the
load goes beyond this value the host can be considered as
overloaded host and the selected VMs has to be migrated
to other appropriate physical machines.

6. � Algorithm Design for the
Process of Virtual Machine
Allocation

In this process the objective is to place the VMs in PMs
in a way that the total number of PMs required to place
all the VMs is decreased. So we considered this a multi
potential bin packing problem since this is a NP-hard
problem, we provide a heuristic based on multiple pol-
icy. In the earlier stages of allocation most of the PMs
are under utilized or not used so our heuristics works
as like the first fit scheduler which is a simplest one to
implement and which increases the response time of VM
placement. As the number of VM grows in the datacenter
the utilization level of PM is also being considered by our
heuristic which really helps in maintaining the balanced
load among servers. Towards the closing stages the heu-
ristic works according to the nature of the VMs workload
that is gathered from the user provided hints which helps
in avoiding the bottleneck of a particular resource as
well as avoiding the violence of any SLA agreements. The
algorithm which is used to achieve these things is given
below.

Algorithm 1: Dynamic VM placement
Step1:  The VM requests given by the user at the time ti is
considered for allocation and scans the values of number
of CPU cores, amount of RAM and amount of N/W
bandwidth required.
Step2:  In this algorithm the scheduler maintains an index
table for physical clusters and physical machines as well as
their states whether available or busy.
Step 3:  The scheduler scans the index table of the physical
cluster for the load below 50 %, from top until the first
available physical cluster is found or the index table is
scanned fully.
Step 4:  If the physical cluster is found then scan the index
table of physical machines for the load below 50 % in all
three major resources, from the top until the first physical
machine is found.
Step 5:  When found return the ID of the physical machine
to the main controller
Step 6:  Assign the VM to the identified PM.
Step 7:  Update the index table of the PM and Physical
cluster.
Step 9:  Go to the step 1
Step 8:  If not found then scheduler scans the index table
of the physical cluster for the load below 70 %, from top
until the first available physical cluster is found or the
index table is scanned fully.
Step 9:  If the physical cluster is found scan the index table
of the PMs based on the requirements of the requested
VM.
Step 10:  If the requested VM is a CPU intensive then
scan the PM index table for the amount of CPU utilized is
below 70 %, from the top until the first physical machine
is found.
Step 11:  When found return the ID of the physical
machine to the main controller
Step 12:  Assign the VM to the identified PM.
Step 13:  Update the index table of the PM and Physical
cluster and go to the step 1
Step 14:  If the requested VM is a memory intensive then
scan the PM index table for the amount of RAM utilized
is below 70%, from the top until the first physical machine
is found.
Step 15:  When found return the ID of the physical
machine to the main controller
Step 16:  Assign the VM to the identified PM.

Energy Efficient Multi Dimensional Host Load Aware Algorithm for Virtual Machine Placement and Optimization in Cloud
Environment

Indian Journal of Science and Technology6 Vol 8 (17) | August 2015 | www.indjst.org

Step 17:  Update the index table of the PM and Physical
cluster and go to the step 1
Step 18:  If the requested VM is a network intensive then
scan the PM index table for the amount of network band-
width utilized is below 70%, from the top until the first
physical machine is found.
Step 19:  When found return the ID of the physical
machine to the main controller
Step 20:  Assign the VM to the identified PM.
Step 21:  Update the index table of the PM and Physical
cluster and go to the step 1
Step 22:  If Physical Cluster is not found. The scheduler
scans the index table for the load below 80 %, from top
until the first available physical cluster is found or the
index table is scanned fully
Step 23:  If found scan the index table of the PMs based
on the requirement of the requested VM.
Step 24:  If the requested VM is a CPU intensive then scan
the PM index table for the least number of CPU cores
utilized from the top until the first physical machine is
found.
Step 25:  If found check the host has enough CPU cores
to fulfill the VMs CPU requirement and will not surpass
90% of load after placing the new VM, then return the ID
of the physical machine to the main controller.
Step 26:  Assign the VM to the identified PM.
Step 27:  Update the index table of the PM and Physical
cluster and go to the step 1.
Step 28:  Else go to step 22
Step 29:  If the requested VM is a memory intensive then
scan the PM index table for the least amount of RAM
utilized from the top until the first physical machine is
found.
Step 30:  If host has enough RAM to fulfill the VMs mem-
ory requirement and will not surpass 90% of load after
placing the new VM, then return the ID of the physical
machine to the main controller.
Step 31:  Assign the VM to the identified PM.
Step 32:  Update the index table of the PM and Physical
cluster and go to the step 1.
Step 33:  Else go to step 22
Step 34:  If the requested VM is a network intensive then
scan the PM index table for the least amount of network
bandwidth utilized from the top until the first physical
machine is found.

Step 35:  If host has enough bandwidth to fulfill the VMs
bandwidth requirement and will not surpass 90% of
load after placing the new VM, then return the ID of the
physical machine to the main controller.
Step 36:  Assign the VM to the identified PM.
Step 37:  Update the index table of the PM and Physical
cluster and go to the step 1.
Step 38:  Else go to step 22

7. � Load Balancing among Physical
Servers

Since virtual machine workloads frequently change
eventually, the well primary placement choices is not suf-
ficient to maintain the balanced load. So it is essential to
dynamically rework placements to make QOS constraints
are to be satisfied while change in the data center load.
Maintaining balanced load among server requires more
number of VM migrations which leads to increase the
operational cost of the service provider so VMs should be
rearranged in a way such that the number of VM migrations
should be minimized while satisfying resource utilization
and load balance. In this type of multifaceted problems,
even the most prominent algorithms can’t realize all the
associations between VMs, physical servers, and physical
clusters to lead the most finely optimized solution. In order
to achieve this goal a new grouping based genetic algorithm
is proposed and we believe that our new algorithm is useful
for this kind of complex optimization problem.

7.1 � Grouping Genetic based Algorithm
Design for Load Balancing among
Physical Servers

Genetic algorithm is a better searching technique for VMs
mapping problem because of its enhanced optimization
ability and parallelism advantages to solve complex
problems.

The common steps of the Genetic algorithm are
summarized as follows:

Creation of an initial population•	
The following steps are repeated until it reaches the •	
stopping condition
Select chromosome pairs for mating•	
perform cross-over to generate new offspring’s•	
Calculate the fitness value of new offspring’s•	
Create a new population•	

T. Thiruvenkadam and P. Kamalakkannan

Indian Journal of Science and Technology 7Vol 8 (17) | August 2015 | www.indjst.org

7.2  Creation of an Initial Population
Genetic algorithm is executed in parallel on a set of
selected physical servers. So creating Initial populations
plays an important role27 in genetic algorithm so we
develop a novel algorithm to generate initial population.
In solution space for these physical hosts Selection process
chooses the solution vectors according to the probabil-
ity which is proportional to the fitness value. Then the
algorithm crosses the chosen product vectors and per-
forms mutation operation on the crossed product vectors
based on the fitness value. The algorithm continues the
same stage until it reaches out the terminating situation,
followed by the crossover and mutation process.

Steps for selecting initial Population
Step 1:  Check the PM load against threshold value.
Step 2:  If any PM resource utilization surpasses the
threshold value that can be considered as an overloaded
host
Step 3:  Select the overloaded servers and sort those PMs
based on their resource utilization value.

7.3  Fitness Function
The fitness value plays an important role in any
individuals output. It is the evaluation methodology of
the dominance of an individual in the population. The
performance of an individual can be determined by its
fitness value. The performance of an individual can be
considered as better when the fitness value is high. The
existence or termination of an individual is completely
based on the fitness value. Therefore, the fitness func-
tion is an essential part of the Genetic Algorithm. The
objective function can be defined as follows when there
is m host in the physical cluster k and m is the number of
VM in each host.

	 PMi VMil
j

m

() ()Rcpu, ts PMi Tcpu,ts Dcpu, ts=
=
∑() −

1

� (6)

Where PMi(Rcpu,ts) represents the remaining CPU of ith
PM at the time slot ts ,T cpu represents the total CPU
capacity of ith PM and VMij(Dcpu,ts) represents the
demanded CPU of the jth VM of the ith Physical host at the
time slot ts.

	PMi VMij
j

m

() ()Rram, ts PMi Tram, ts Dram, ts=
=

∑() −
1

� (7)

Where PMi (Rram,ts) represents the remaining RAM of
ith PM at the time slot ts ,Tram represents the total RAM
capacity of ith PM and VMij (Dram,ts) represents the
demanded RAM of the jth VM of the ith Physical host at
the time slot ts.

	PMi VMij
j

m

() (,)Rnbw, ts PMi Tnbw, ts Dnbw ts=
=

∑() −
1

�(8)

Where PMi (Rnbw,ts) represents the remaining Network
Bandwidth of ith PM at the time slot ts, Tnbw represents
the total Network Bandwidth capacity of ith PM and VMij
(Dnbw,ts) represents the demanded Network Bandwidth
of the jth VM of the ith Physical host at the time slot ts.

	 PMCk
PMi Rcpu

mx

m

µRcpu =
=

∑
1

� (9)

	 PMCk
PMi Rram

mx

m

µRram =
=

∑
1

� (10)

	 PMCk
PMi Rnbw

mx

m

µRnbw =
=

∑
1

� (11)

Where PMCk µRcpu , PMCk µRram and PMCk µRnbw
represents the kth physical cluster’s mean value of CPU,
RAM and Network Bandwidth respectively.

In our proposed algorithm we consider four objectives
in packing and optimizing the virtual machines in a data
center: minimizing the total revenues, reducing the power
consumption cost, reducing the cost of migration, increas-
ing the total revenues and also reducing the SLA violation
rate. These diverse objectives can be accomplished by
evaluating the following fitness function described in
equation 12 while allocating the VMs

	

minimize
N

N

i

n1

1

2

1

(PMiR cpu)

(PMi ram

−










+ −

=
∑ PMCk R cpu

PMCk R

µ

µ rram

PMCk R nbw

)

(PMiR nbw)

2

1

2

1

1

i

n

i

n

N

=

=

∑

∑











+ −








µ �(12)

The objective function of our algorithm wants to
minimize the standard deviation of the remaining CPU,
RAM and Network Bandwidth in each host. As we con-
sider that the load of the entire physical cluster instead of
taking into consideration of the total number of virtual
machines in each physical host as a load balance metric we

Energy Efficient Multi Dimensional Host Load Aware Algorithm for Virtual Machine Placement and Optimization in Cloud
Environment

Indian Journal of Science and Technology8 Vol 8 (17) | August 2015 | www.indjst.org

developed an objective function that tries to balance the
consumption of CPU, RAM and Network Bandwidth on
each host, in view of a heterogeneous environment, which
consists of different hosts with different configurations.

7.4  Crossover Operator
Genetic algorithms crossover operator used to combine
the qualities of different individuals in the population
with the intention of creating a new generation.
Hypothetically the new child will have good qualities
from both parents and optimistically has better fitness.
Any two parents have been chosen with probability
relative to the fitness of the individual. Most of the times,
the individuals with high fitness value will reproduce
with higher probability than the individuals with lower
fitness value, we followed a method which is similar to
the one illustrated in28 for the implementation process
of the crossover operator. In our methodology all of the
servers from both parents are integrated and the servers
are sorted based on the fitness.

The servers with less remaining capacity of all the
individual resources are at the front of the list, whereas
the servers with more remaining capacity are placed
at the end of the list. Then our algorithm analytically
chooses the servers which has less remaining capacity
and remains them together in the same group. During
this process whenever a selected server contains any VM
that belongs to a server that has been chosen previously,
then that server is a superfluous and can be removed in
order to avoid duplication. But this process will create a
list of servers that may not include all VMs. These VMs
which are outstanding that have not been integrated in
any server will be used to reinserted in to other servers
based on the algorithm 1.

7.5  Mutation Process
Mutation operator in our algorithm comprises three
alternatives. First, choice of mutation process removes
the VMs of randomly selected servers and the removed
VMs consequently reinserted into the other servers
which are in the new population based on our algorithm
1. Second, two randomly chosen VMs of existing packing
order are interchanged between servers. In this process
we assure that the algorithm never interchanges two
VMs that came from the same server. As a third option,
one VM is shifted to a different server to generate a new
packing order.

Based on the information provided by the monitoring
driver the second and third genetic operator works on
the packing order list, to increase the performance of
the ordering genetic process. Finally, for all the above
genetic operators the mutation process is done on the
VMs with probability inversely proportional to the fit-
ness value of the server that the VMs originally come
from. VMs placed in servers with lesser fitness value are
mutated more frequently than VMs placed in servers with
higher fitness value, in order to guarantee that the orga-
nization of enhanced server is retained. Presently new
children will be an element of the next generation so we
need to choose one solution from the next generation of
solution. Whenever the exit criteria are satisfied then this
algorithm is stopped and returns servers which has the
highest fitness evaluation value.

8.  Performance Evaluation

8.1  Experimental Setup
The presented algorithm is implemented in JAVA Net
beans IDE. Then we use Cloud Sim simulator for simu-
lation to assess the execution and performance of our
heuristics with some of the existing scheduling algo-
rithm in terms of Response Time, Load Balancing among
servers, Reasonable Resource Utilization, energy con-
sumption, Minimum number of active PMs and Higher
profit by reducing the number of migrations. The perfor-
mances of the proposed algorithm were examined from
both users and service provider’s perception.

Since it is difficult to access the real data centers or
cloud infrastructures we used simulation based evalu-
ation which can be easily reproducible to compare the
performance of the proposed algorithm with the fol-
lowing existing works which is currently used by the
majority of the cloud service providers: 1) First Fit
Algorithm 2) Round Robin Scheduling Algorithm 3) Best
Fit Algorithm. The simulated cloud environment contains
a cluster of heterogeneous PMs the total resource capacity
of PMs is expressed in percentage and randomly gener-
ated VM resource demand includes the number of CPU
cores, amount of RAM and required network bandwidth.

8.2  Analysis
The investigations are done to analyze the effect our
proposed algorithm in number of physical servers required
to place a certain number of VMs, overall resource

T. Thiruvenkadam and P. Kamalakkannan

Indian Journal of Science and Technology 9Vol 8 (17) | August 2015 | www.indjst.org

utilization rate of all the active servers, allocation time,
load balancing, percentage of migration and percentage
of SLA violations. The simulation results show that our
proposed algorithm can use the less number of physical
servers for placing a certain number of VMs which helps
to improve the resource utilization rate. The response
time of our algorithm is little bit more than the first fit
algorithm because of its nature of allocating VMs is based
on the user constraints and past usage history of the VMs.
Higher SLA satisfaction rate and lower load imbalance
rate can be observed in results which also show that our
multi dimensional host load aware and user constraints
based algorithm is applicable, valuable and reliable for
implementation in real virtualized environments.

Rebalancing of load in datacenter environment need
live VM migrations but more number of frequently moved
VMs between physical hosts causes increased datacenter
cost hence the load rebalancing has to be achieved with
minimum number of VM migrations in order to solve
this issue we used a modified version of genetic algorithm
for load optimization. Our results show that the percent-
age of VM migrations had been decreased through which
we can achieve the better results for load balancing along
with cost reduction.

In the following figures, Figure 2 shows the number of
physical servers utilized by the scheduler to place the set
of VM request without violating any SLA. Here our pro-
posed host load aware user hint based algorithm and first
fit algorithm uses comparatively same number of physical
hosts for placing the set of VMs. The number of serv-
ers used by the proposed algorithm is minimized when
compared to the round robin and best fit algorithm.

Though the numbers of servers used by the first fit
and proposed algorithms are comparatively stable from
Figure 3 we can see that the resource utilization rate of

our algorithm is appreciably outperforms the other three
algorithms.

Figure 4 shows that the response time of all the
algorithms are comparatively stable our algorithm takes
little bit more time to allocate VMs than the first fit algo-
rithm because of its nature of allocating VMs based on
the user provided information and past usage history of
the VMs

The analysis extremely examines the effect of load
balancing by using the algorithm and the number of migra-
tion needed to achieve the load balanced environment
subsequent to scheduling.

Figure 5 shows the percentage of load imbalance value
in which our algorithm demonstrates that it gets better the

Figure 2.  Comparision of the number of Physical Servers.

Figure 3.  Comparision of the overall resource utilization
rate.

Figure 4.  Comparision of the ResponseTime of different
algorithms.

Figure 5.  Comparision of the percentage of Load
Imbalance Value.

Energy Efficient Multi Dimensional Host Load Aware Algorithm for Virtual Machine Placement and Optimization in Cloud
Environment

Indian Journal of Science and Technology10 Vol 8 (17) | August 2015 | www.indjst.org

way to obtain the load balancing of the data center than
the three other approaches when the number of VMs to
deploy is increased.

Our proposed algorithm is effective in improving the
resource utilization rate and load balancing with the help
of live migrations. But one of our major aims is increas-
ing the total revenue which requires cutting down the
VM migration cost which can be achieved by reducing
the percentage of VM migration rate. We use migra-
tion rate as the estimation metric which is defined as the
percentage of the migrated VMs to the total number of
VM instances. We showed the results in the following
Figure 6. The proposed algorithm decreases the migrating
rate from about 18% - 20% to less than 13 % which leads
to reduce the VM migration cost. Though the curve of
our proposed algorithm indicates that only less number
of VMs migrated from their original host to a new host
we achieved the better resource utilization benefit and
balanced load among the physical hosts.

From the below Figure 7 the low SLA violation rate is
observed in the proposed algorithm because it uses the
past behavior of the VM along with the user provided
information and it maps the PM by considering the

availability of the each key resource like CPU, RAM and
network bandwidth individually.

9.  Conclusion and Future Work
We presented a novel algorithm that considers user
constraints of VM along with physical host load factor to
address the problem of mapping the VMs into PMs such
that the number physical host used is minimized, the over
utilization and under utilization of the resources of a host
can be identified and resolved at the same time without vio-
lating any SLA agreements. Since considered this as a multi
potential bin packing problem, we combined three different
heuristics which considers load factor of hosts along with
user provided information at the various stages of placing
the VMs in physical hosts. The proposed algorithm utilizes
minimum number of physical servers for hosting the set of
VMs, which also reduces the energy consumption of the
datacenter and it achieved high resource utilization rate
by the way of using minimal number of physical servers.
Another considerable enhancement in our algorithm is
less percentage of load imbalance value and the percentage
of VMs that violate their SLA.

We plan to incorporate the proposed algorithm with an
open source cloud platform and test its efficiency against
real time environment in future. Also we would like to
model the interconnection prerequisites that can correctly
express the relationships between VMs consolidated
in the same host which will be valuable for additional
optimizations of VM scheduling in cloud infrastructure.

10.  References
1.	 Chen K, Zheng WM. Cloud Computing: System instance and

Current State. Journal of Software. 2009; 20(5):1337–48.
2.	 Xu ZW, Liao HM, et al., The Classification research of

Network Computing System. Journal of Computing
Machine. 2008; 18(9):1509–15.

3.	 Zhang GW, He R, Liu Y. The Evolution based on Cloud
Model. Journal of Computing Machine. 2008; 7:1233–9.

4.	 Breitgand D, Epstein A. Sla-aware placement of multivir-
tual machine elastic services in compute clouds. ‘11 IFIP/
IEEE International Symposium on Integrated Network
Management (IM); 2011. p. 161–8.

5.	 Meng X, Isci C, Kephart J, Zhang L, Bouillet E, Pendarakis
D. Efficient resource provisioning in compute clouds via
vm multiplexing. Proceeding of the 7th international
conference on Autonomic computing; New York, NY, USA;
2010. p.11–20.

Figure 6.  Comparision of the Percentage of VM
Migarations for Load Balancing.

Figure 7.  Comparision of the Percentage of VMs that
violate their SLA.

T. Thiruvenkadam and P. Kamalakkannan

Indian Journal of Science and Technology 11Vol 8 (17) | August 2015 | www.indjst.org

  6.	 Hewlett Packard Web Site, Introducing Integrity Virtual
Machines white paper. Available from: http://docs.hp.com/
en/9987/Intro VM 2.1. 2011 Feb 26.

  7.	 VMWareWeb Site, Server Consolidation, Containment
Solutions Brief. Available from: http://www.vmware.com/
pdf/server consolidation. 2011 Mar 15.

  8.	 Bobroff N, Kochut A, Beaty K. Dynamic Placement of
Virtual Machines for Managing SLA Violations. IM '07.
10th IFIP/IEEE International Symposium on Integrated
Network Management; 2007 May 21. p. 119–28.

  9.	 Sindelar M, Sitaraman RK, Shenoy P. Sharing-Aware
Algorithms for Virtual Machine Colocation. Proceedings
of the 23rd ACM Symposium on Parallelism in Algorithms
and Architectures; San Jose, California, USA; 2011 Jun.
p. 367–78.

10.	 Xu J, Fortes JAB. Multi-Objective Virtual Machine Placement
in Virtualized Data Center Environments. Proceedings of
the 2010 IEEE/ACM International Conference on Green
Computing and Communications and International
Conference on Cyber, Physical and Social Computing;
Hangshou, PR of China; 2010 Dec. p. 179–88.

11.	 Singh A, Korupolu, M, Mohapatra D. Server-Storage
Virtualization: Integration and Load Balancing in Data
Centers. Proceedings of the 2008 ACM/IEEE conference
on Super computing (SC’08); Austin, TX; 2008. p. 1–12.

12.	 Meng X, Pappas V, Zhang L. Improving the Scalability of
Data Center Networks with Traffic-aware Virtual Machine
Placement. Proceedings of IEEE INFOCOM; San Diego,
CA, USA; 2010 Mar. p. 1–9.

13.	 Kumar S, Talwar V, Kumar V, Ranganathan P, Schwan K.
vManage Loosely Coupled Platform and Virtualization
Management in Data Centers. Proceedings of the 6th
international conference on Autonomic computing; ACM,
Barcelona, Spain; 2009 Jun. p. 127–36.

14.	 Wood T, Shenoy P, Venkataramani A, Yousif M. Black-box
and Gray-box Strategies for Virtual Machine Migration.
Proc of the 4th USENIX Symposium on Networked
Systems Design and Implementation; Cambridge, MA;
2007. p. 229–42.

15.	 Bobrof N, Kochut A, Beaty K. Dynamic Placement of Virtual
Machines for Managing SLA Violations. Proceedings of the
10th IFIP/IEEE International Symposium on Integrated
Network Management; Munich, Germany; May 2007 May.
p. 119–28.

16.	 Tian W, Zhao Y, Zhong Y, Xu M, Jing C. A dynamic and inte-
grated load-balancing scheduling algorithm for Cloud data
centers. Proceedings International Conference on Cloud
Computing and Intelligence Systems (CCIS); Beijing: IEEE;
2011. p. 311–5.

17.	 Zheng H, Zhou L, Wu J. Design and implementation of
load balancing in web server cluster system. Journal of
Nanjing University of Aeronautics & Astronautics. 2006
Jun; 38(3):347–51.

18.	 Singh A, Korupolu M, Mohapatra D. Server-storage
virtualization: Integration and load balancing in data cen-
ters. Proceedings of the 2008 ACM/IEEE Conference on
Super computing; 2008. p. 1–12

19.	 Arzuaga E, Kaeli DR. Quantifying load imbalance on virtu-
alized enterprise servers. Proceedings of WOSP/SIPEW’10
San Jose, California, USA; 2010 Jan 28-30. p. 235–42.

20.	 Chen M, Zhang H, Su YY, Wang X, Jiang G, Yoshihira K.
Effective VM sizing in virtualized data centers. Integrated
Network Management (IM’11); 2011. p. 594–601.

21.	 Thiruvenkadam T, Karthikeyani V. An approach to virtual
machine placement problem in a datacenter environment
based on overloaded resource. International Journal of
Computer Science and Mobile Computing. 2014 Jun;
3(6):837–42.

22.	 Thiruvenkadam T , Karthikeyani V. A Comparative
study of VM Placement Algorithms in Cloud Computing
Environment. International Journal of Advanced
Computational Engineering and Networking. 2015 Jan;
3(1):18–21.

23.	 Thiruvenkadam T , Karthikeyani V. Multi Dimensional
Host Load Aware and User Constraints Based Algorithm
for Scheduling Virtual Machines. International Journal of
Advancements in Computing Technology (IJACT). 2015
Jan; 7(1):56–66.

24.	 Guo G, Ting-Iei H, Shuai G. Genetic Simulated Annealing
Algorithm for Task Scheduling based on Cloud Computing
Environment. IEEE International Conference on Intelligent
Computing and Integrated Systems (ICISS); Guilin; 2010.
p. 60–3.

25.	 Wilcox D, McNabb A, Seppi K. Solving virtual machine
packing with a reordering grouping genetic algorithm.
Proceedings of the IEEE Congress on Evolutionary
Computation (CEC); 2011. p. 362–9.

26.	 Goyal T, Agrawal A. Host scheduling algorithm using genetic
algorithm in cloud computing environment. International
Journal of Research in Engineering & Technology (IJRET).
2013 Jun; 1(1):7–12.

27.	 Srinivas M, Patnaik LM. Adaptive Probabilities of Crossover
and Mutation in Genetic Algorithms. IEEE Transactions on
Systems, Man and Cybernetics. 1994 Apr; 24(4):656–67.

28.	 Rohlfshagen P, Bullinaria J. A Genetic Algorithm with
Exon Shuffling Crossover for Hard Bin Packing Problems.
Proceedings of Genetic and Evolutionary Computation
Conference; 2007. p.1365–71.

