
Abstract
Background: Software agents are expected to work autonomously and deal with unfamiliar situations astutely.
Achieving cent percent test case coverage for these agents has always been a problem due to limited resources.
Also a high degree of dependability is expected from autonomous software agents. Formal verification of these
systems can be done by specifying the possible actions of the agents to increase the confidence in the correctness
of such systems. Methods: We have used social approach of agent communication where actions of the agents are
described as social obligation between the participants. Formal specification of e-agents was done using µ-calculus
as it is more expressive than Linear Temporal Logic (LTL). An algorithm has been given for syntactic conversion
of µ-calculus formulas to TAPA model checker environment. Results: Using converstion algorithm syntactically
modified µ-calculus formulas will be executed on TAPA model checker to verify the system being modelled for the
specified properties. Application: The study will help to provide future directions for formal modelling of e-agents
for their correct functioning.

Executable Semantics for the Formal
Specification and Verification of E-agents

Awais Qasim*, Syed Asad Raza Kazmi and Ilyas Fakhir

Department of Computer Science, Government College University, Lahore - 5400, Pakistan; awais@gcu.edu.pk*

Keywords: Agent Communication, Model Checking, µ-Calculus, µ TAPA Model Checker

1.  Introduction
The term ‘formal methods’ is utilized to allude to any
exercises that depend on mathematical representations of
software which includes but not limited to formal soft-
ware specification, transformational development, formal
verification of programs. A high degree of dependability
is expected from intelligent software agents. The main
purpose of these agents is to interact with the dynamic
environment and its not possible to build an agent with all
the world knowledge composed into it. Being intelligent
agents they are expected to respond intelligently to unfa-
miliar situations. For such systems executing a predefined
representative test cases of the system cannot provide a
high degree of reliability. Even if we do achieve a high
degree of test case coverage, the chances of system failure
are still high due to test scenarios that were never executed.
When receiving the external stimuli, these agents try to
perceive it according to their knowledge and any failure
in this process might cause the agent to fail. In this paper

an executable m-calculus based formal technique has been
proposed to specify the action of communicating agents.
The expressiveness of the m-calculus allows formalization
of the communicative actions in verifiable form. Different
types of agent communication languages have been pro-
posed for communication between autonomous agents
but we will be using the agent communication language
proposed by Singh1. In this approach instead of mental
attitudes of the agent like intentions, the focus is on social
commitments of agents in the system. This is justifiable
because in a multi agent system the agent’s actions are
affected by its social commitments. When perceiving the
system as a whole in these open multi agent systems, the
inner states of certain agents might not be perceptible. In
these social semantics the actions of the agents are mod-
eled by its commitments to other agents. Using these
semantics the system is evolved by the dynamic interaction
of the agents where agent has to respect its commitments.
Another advantage of the social approach is that we do
not need to provide a comprehensive specification of all

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(16), DOI: 10.17485/ijst/2015/v8i16/55160, July 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Executable Semantics for the Formal Specification and Verification of E-agents

Indian Journal of Science and Technology2 Vol 8 (16) | July 2015 | www.indjst.org

possible action sequences as in a behavioral approach.
Here we have a categorical specification of basic actions
to model the agent communication.

In the past developing executable semantics for
e-agent’s communication languages has been examined
in detail. In 2 verifiable semantics based on computational
models have been proposed. In 3 a framework for commu-
nication among e-agents was presented. In particular they
used different languages for the specification of communi-
cation among e-agents. Giordano has used Dynamic LTL
Logic for specifying and verifying agent communication
properties4. In DLTL we express the programs as regu-
lar expressions and specify the communicative actions as
precondition laws, causal laws and constraints. The use of
model checking for verification of e-agents has been dis-
cussed in 5 using Belief-Desire-Intention (BDI) attitudes.
They used a new logic which was the composition of formal
temporal evolution and formal BDI attitudes. A process
algebra based approach for e-agent’s communication was
discussed in 6. They proposed new semantics called ACPL
which models the basics of agent communication. They
used the information processing aspects of Concurrent
Constraint Programming (CCP) with a generalisation of
the synchronous handshaking communication mecha-
nism of Communicating Sequential Processes (CSP).
However the use of m-calculus for formal specification of
e-agents is a novel approach.The m-calculus being more
expressive than LTL7 is computationally more suitable
for modeling and verification of the proposed system.
The m-calculus is an augmentation of Computation Tree
Logic (CTL) with least fixpoint (m) and greatest fixpoint
(n) operators8. The addition of minimum and maximum
fixed points incorporating recursion to modal logic pro-
vides a great increase in expressive power.

In this paper communication between agents is exhib-
ited in the form of interaction protocols. These interaction
protocols can be viewed as commitments between agents
in a communication system. The overall state of com-
municating system comprising of these agents is evolved
by the dynamic execution of these commitments1.
Preconditions for the execution of actions are specified
in the form of precondition laws. Execution of certain
actions may result in the establishment of new commit-
ments between participating agents. We have specified
the action of agents involved in interaction protocol in the
form of m-calculus formulas. For verification that every
agent in the system satisfies the preconditions and is able
to execute its actions can be formally represented as a

validity problem in m-calculus logic. The validity problem
can then be solved by the help of m-calculus based model
checker.

The rest of this paper is divided as follows. In sec-
tion 2 some preliminaries for notations and semantics
of m-calculus are given. Section 3 describes the formal
specification of the actions of e-agents along with the pre-
conditions and commitments. In section 4 verification
of the e-agents is done through a TAPA model checker
alongwith an algorithm for syntactic conversion of m-cal-
culus based properties to TAPA environment. Section 5
concludes the paper.

2.  Preliminaries
A few terminologies, mathematical and computational
models have been described in this section that will be
used in the rest of the discussion for the specification of
the problem under analysis.

2.1  Modal m-Calculus
The m-calculus is a type of temporal logic used in diverse
areas of computer science for the specification and for-
mal verification of systems. The requirements of hardware
and software systems can be specified in it and then it can
be verified whether these systems satisfies those require-
ments or not. The process of verification can be done by
using different model checkers available for m-calculus9.
The m-calculus is an extension of CTL with a least fix-
point operator (m) and greatest fixpoint operator (n)
which makes it possible to give characterizations of cor-
rectness properties. Most modal and temporal logics of
interest can be defined in terms of m-calculus. We will use
the Hennessy Milner Logic syntax to specify the formulas
of m-calculus. HML is an archaic modal logic of action10.
Formulas of the m-calculus Fm can be be generated by fol-
lowing rules given below. Let Act denote the set of all
possible actions and a Œ Act

F false true F F F F a F a Fm m m m m m m::= ∧ ∧  

Interpretation of 〈a〉Fm is that there is a choice to
take 'a' action and reach a state in which Fm is satisfied.
[a]Fm denotes that no matter how we take 'a' action we
will end up in a state where Fm holds. To formally spec-
ify that a state s of a transition system satisfy a required
property of interest we can express it as s a F m iff
{∃t.s → t ∧ t = Fm}. Atomic propositions can be used in the

Awais Qasim, Syed Asad Raza Kazmi and Ilyas Fakhir

Indian Journal of Science and Technology 3Vol 8 (16) | July 2015 | www.indjst.org

logic to find out the set of states that satisfies those atomic
propositions. The operators 〈 〉 and [] can be used with a
set of actions.

Let A = aa,...an⊆ Act with n ≥ 1 and φ denotes no
action then 〈A〉Fm represents 〈a1〉Fm ∨ ...∨ 〈an〉Fm and
〈f〉Fm = false and [A]Fm represents [a1]Fm ∧ ...∧ [an]Fm and
[f]Fm = true.

2.2  Semantics of m-Calculus
Hennessy Milner Logic does not allow the specification
of properties of infinite depth. This limits the expressive
power of m-calculus and even the invariant and reachability
properties cannot be verified. For example the properties

Invariant (Fm) = Fm ∧ [Act] Fm ∧ [Act][Act] Fm ∧ [Act]
[Act][Act] Fm ∧ ...

Reachability (Fm) = Fm ∨ 〈Act〉 Fm ∨ 〈Act〉〈Act〉 Fm ∨ 〈Act〉
〈Act〉〈Act〉 Fm ∨ ...

are not expressible in HML. The use of least and greatest
fixpoint operators is the basis of m-calculus. If S is the set of
states representing the complete state space of the system
then we can provide semantics of a state-based modal logic.
Using these semantics we can map a m-calculus formulae
Fm to the set of states where that formula is satisfied. This
mapping of formula Fm to the set of states is given by Fm













.
The mapping provides us the states that satisfy the formula.

F Sm












⊆ S is defined inductively as

true S
false

F G F G

F G





























































=
=

∧ =

∨

f

m m m m

m m
























































=

=

F G

a F a F

m m

m m. .

where a T p S p p p and p T
a F a F

where

a
. . { | . }

[] [. .]

[.

= ∈ ∃ ′ → ′ ′ ∈
=















aa T p S p p p p T
a

.] { | . }= ∈ ∀ ′ → ′ ⇒ ′ ∈

To specify formulas in a recursive mode we can add a free
variable X in our logic having interpretations over Fm S
like

X F Act X In iant

X F Act X achability

def

def

= ∧

= ∨

m

m

[] ()

[] ()

var

Re

We can now write HML with one recursively defined
variable as

F X false true F F F F a F a Fm m m m m m m:: |= ∧ ∨  
where X is a distinguished variable with a definition

X FX=
min

 or X FX=
max

 and a Œ Act such that FX is a for-
mula of the logic that can contain X. Alternatively

F X false true F F F F a F a F X F vX Fm m m m m m m m mm:: . .= ∧ ∨  

These formulation will be used in order to specify the
actions of the communicating agents.

3.  �Action Specifications of
Communicating Agents

Every agent of the system under consideration has its
own set of actions. Every action has a corresponding local
affect on the agent and global affect on the system when
that action is executed. Global state represents complete
state of the system, which is composed of individual
states of all the agents in the system. Let Agentsi = Agent1,
Agent2...Agentn be the set of agents representing agent
space for the system under consideration. For action
specification of the agents we will adopt the synchronous
model of communication. This implies that every com-
munication action will generically be of the form action
(agent1, agent2). It means that agent1 will intentionally
execute an action with agent2 e.g. send (sender, receiver,
message) means that sender will perform an action send
on the receiver with message as argument. If the receiver
needs to reply back to the sender then he can use the
same pattern. However the execution of actions will be
done synchronously in a deterministic order. Depending
on the nature of the action an argument may or may
not be required. Local states of both the sender and the
receiver are updated sequentially based on their action
specification.

The semantics of communicative actions will be
specified by a protocol that describes the effects of each
action on the social state of the system. Execution of cer-
tain actions may give rise to new obligations between
the interacting agents. Preconditions laws will be used
to specify conditions that need to be true before some
actions can be executed. For simplicity we will only use
preconditions for the sender and assume that actions are
always executable for the receiver. Normally execution of
an action will affect both the state of the sender and the

Executable Semantics for the Formal Specification and Verification of E-agents

Indian Journal of Science and Technology4 Vol 8 (16) | July 2015 | www.indjst.org

state of the receiver but for action like acknowledgement
this will not be true. All agents can only see the effects
of actions in which they participate. This means that for
two agents the history of all communications is known to
both of them and so they have the same local view of the
system state. For more than two interacting agents this
will not be true.

We will use the example of NetBill protocol for spec-
ifying the properties of two interacting agents. NetBill
protocol was proposed for buying and selling goods
on the internet11. In the protocol initially a customer
requests a quote for some desired goods and subse-
quently the merchant replies back with the quote. On
acceptance of the quote by the customer the merchant
delivers the goods in an encrypted form. The customer
cannot use the goods until he has made the payment.
After the customer pays the agreed amount, the mer-
chant sends the receipt to the customer with which
he can successfully decrypt and use the goods. In this
protocol the communication can be initialized in any
sequence like the merchant may send the quote without
customer request and the customer may send confir-
mation without prior conversation on the price of the
goods. For some actions we will need to impose restric-
tion like merchant will never send the receipt until the
customer has made the payment. For such actions we
will used the precondition laws. We will use two agents
for our example mr representing the merchant and ct
representing the customer.

Atomic propositions for our example will be {Send
Quote, Send Goods, Send Request, Send Receipt, Send
Payment, Send Accept}. In our example for communi-
cative actions {Send Quote, Send Goods, Send Receipt},
merchant will be the sender and customer will be the
receiver. For communicative actions {Send Request, Send
Accept, Send Payment}, customer will be the sender and
merchant will be the receiver. The customer and mer-
chant agents will execute actions synchronously. For
actions that will create new obligations between agents
we will represent them as commitments. Commitments
can be basic of the form C(ag1, ag2, action), which
means that agent ag1 is obligated to agent ag2 to execute
the action. Additionally there can be conditional com-
mitments of the form CC(ag1, ag2, cond, action), which
means that agent ag1 is obligated to agent ag2 to execute
action only if condition cond is satisfied. There is a vast
majority of properties that can be verified for customer
and merchant according to the protocol but we will

restrict ourselves to the basic properties for simplicity.
Action laws for the merchant and customer are specified
as follow.

3.1  Semantics of Commitments
As discussed above that execution of certain actions may
create new obligations between the interacting agents
which we will express as commitments. They represent
static properties of the agents and cannot be verified on
a labeled transition system until the dynamic behavior
of the agents is observed. Some of the commitments are
specified below.

When the action •	 Send Quote will be executed by the
merchant then he is committed to execute the action
Send Goods if customer has executed the action Send
Accept showing his confirmation. Also merchant is
committed to execute the action Send Receipt if the
customer has executed the action Send Payment

[Send Quote]mr true → CC (mr, ct, Send Accept, Deliver
Goods) ∧ CC (mr, ct, Send Payment, Send Receipt)

On execution of action •	 Send Goods by the merchant,
the merchant is committed to send receipt to the cus-
tomer after he has made payment.

[Send Goods]mr true → ∧ CC (mr, ct, Send Payment,
Send Receipt)

3.2  Semantics of Preconditions
As discussed above we will only use preconditions for the
sender and for receiver we take the assumption that all
actions are always executable. For merchant there is only
one precondition law

The action •	 Send Receipt cannot be executed by the mer-
chant until the customer has paid. All other actions
are always executable by the merchant.

[Send Payment] false → [Send Receipt]mr false

The only condition on the execution of actions by the cus-
tomer is the following precondition law:

It means that the customer may send a payment for •	
the goods only if he has received the goods (all other
actions are always executable for the customer).

[Send Goods] false → [Send Receipt]mr false

Awais Qasim, Syed Asad Raza Kazmi and Ilyas Fakhir

Indian Journal of Science and Technology 5Vol 8 (16) | July 2015 | www.indjst.org

4.  �Verification of Communicating
Agents

We have used the TAPA model checker12 to verify the
properties of merchant and customer agents. The required
properties had to be modified syntactically for their
execution on the model checker. The syntactic changes
did not affected the semantics of the actions of agent. To
automate the process of this conversion we have devised
an algorithm. All the m-calculus formulas to be converted
are input to the algorithm in a single text file. The input
file should contain a single formula per line. In Data sec-
tion we declare variable to be used in the algorithm. The
variable fixpoint will be used to keep track of whether
the formula we are going to convert is least/greatest fix
point or not. formula will contain the single m-calculus
formula which is going to be converted. conformula
represents converted forumla which can be input to the
TAPA model checker. Ptr will serve as the file pointer for
the input file. EOF represents the end of file for the input
file. The function readLine will read a single m-calculus

formula at a time. The function append will concatenate
the second argument to the first argument. The function
readToken reads single token at a time separated by space.
The function lastToken will return the last token of any
text input to it as argument. The function initiate creates a
new string with text input to it as argument. the function
movePointer will move the file pointer to the next formula.
The function writeToFile will write the converted formula
to the output file one at a time.

Table 1 and Table 2 shows the actual m-calculus
formulas for the merchant and customer agents respec-
tively along with their corresponding modified versions
used to run on the model checker. For each property
the model checker verifies whether the agent satisfies
it or not by outputting a boolean result. The technique
can be extended to verify the properties of interest for
any number of agents in a system. After execution of
Algorithm 1 on the specified properties of merchant
and customer we get syntactically modified executable
semantics. Table 3 and Table 4 represents these execut-
able semantics.

Table 1.  Actions of the merchant

Property Semantics Description

¬〈Send Quote〉mr true or
〈Send Quote〉mr false Merchant cannot send quote at the moment to the customer

〈Send Quote〉mr true
∧¬〈Send Goods〉mr false Merchant can send quote to customer but cannot deliver the goods.

〈Send Quote〉mr true When there is a request for a quote the merchant sends the quote and the request is
finished.

〈Send Receipt〉mr true When the merchant sends the receipt then the receipt is delivered to the customer.

X SendQuote false Act X= ∨
min

[] It is possible to reach a state where merchant cannot send the quote.

X Send ceipt false Act X= ∨
min

[]Re It is possible to reach a state where merchant cannot send the receipt.

X SendGoods false Act X= ∨
min

[] It is possible to reach a state where merchant cannot send the goods.

X PA true Act Xmr= ∧
max

[]
Let PAmr ={send Quote, send Receipt, send Goods} then in every reachable state the
merchant can send quote or send receipt or send goods.

X Act false X= ∧
max

[] The merchant is deadlocked.

Executable Semantics for the Formal Specification and Verification of E-agents

Indian Journal of Science and Technology6 Vol 8 (16) | July 2015 | www.indjst.org

Table 2.  Possible actions of the customer

Property Semantics Description

〈Send Request〉ct true The customer can send the request.

〈Send Accept〉ct true The customer can send the confirmation.

〈Send Payment〉ct true The customer can send the payment.

[Send Accept]ct (〈Send Goods〉 true ∧ [Act\{Deliver Goods}]
false)

On acceptance of quote by the customer the merchant always
delivers the goods.

[Send Payment]ct (〈Send Receipt〉 true ∧ [Act\{Send Receipt}]
false)

If the customer has sent the payment then the merchant always
send the receipt.

〈Request Quote〉ct true ∧
〈Send Accept〉ct false

The customer can request quote for some desired goods but
cannot send the accept message.

X questQuote false Act X= ∨
min

[]Re
It is possible to reach a state where customer cannot request
the quote.

X SendAccept false Act X= ∨
min

[]
It is possible to reach a state where customer cannot send the
confirmation.

X SendPayment false Act X= ∨
min

[]
It is possible to reach a state where customer cannot send the
payment.

X PA true Act Xct= ∧
max

[]
In every reachable state the customer can send request or send
confirmation or send payment. Let PAct = {send Request, send
Accept, send Payment} then

X Act false X= ∧
max

[]
The customer is deadlocked.

Table 3. � m-calculus properties for the customer and their corresponding modified formulas for TAPA model checker

Property Name Modified Formulas for Model Checker

C1 property C1 : 〈Send Request?〉 true end

C2 property C2 : 〈Send Accept?〉 true end

C3 property C3 : 〈Send Payment?〉 true end

C4 property C4 : [Send Accept?] [Deliver Goods?] true end

C5 property C5 : [Send Payment?] [Send Receipt?] true end

C6 property C6 : 〈Request Quote?〉 true & ![Send Accept?] false end

C7 property C7 : minZ: ([Request Quote?] false | <∗> Z) end

C8 property C8 : minZ: ([Send Accept?] false | <∗> Z) end

C9 property C9 : minZ: ([Send Payment?] false | <∗> Z) end

C10 property C10 : maxZ: (〈Send Request?〉 true | 〈Send Accept?〉 true | 〈Send Payment?〉true & [∗]Z) end

C11 property C11 : maxZ: ([∗] false & Z) end

Awais Qasim, Syed Asad Raza Kazmi and Ilyas Fakhir

Indian Journal of Science and Technology 7Vol 8 (16) | July 2015 | www.indjst.org

5.  Conclusion
In this paper we have shown how actions of communi-
cating agents can be specified in modal m-calculus. The
problem of developing a verifiable semantics for agent
communication has been discussed by many in the past2.
Multi agent systems are seen as a key enabling technol-
ogy for the future e-commerce products. To ensure a high
degree of reliability of these systems we need an execut-
able semantics for them. This is evident by the difficulty
to achieve good test case coverage for a system of reason-
able size. We have used a mentalistic approach for the
specification and verification of communicating agents.
Netbill protocol was used to specify the properties of
two interacting agents for buying and selling of goods
on the internet. The major advantage of our approach is
that the semantics are in executable form and the process
of verification of properties can be done on any model
checker supporting the modal m-calculus logic. We used
TAPA model checker to verify the properties of the cus-
tomer and merchant agents. The technique can be used to
specify and verify the properties of any number of agents.
The current work limits the commitment to two partici-
pating agents. In a multi agent system we may be need to
specify interaction between more than two agents simul-
taneously e.g a merchant might be communicating with
two or more customers and if the two customers already
have some commitments between them than the interac-
tion protocol needs to be modified to accommodate the
interaction between three or more agents con currently.

Table 4. � m-calculus properties for the merchant and their corresponding modified formulas for TAPA model checker

Property Name Modified Formulas for Model Checker

M1 property M1: !〈Send Quote?〉 trueend

M2 property M2: 〈Send Quote?〉 true &! [Send Goods?] falseend

M3 property M3: 〈Send Quote?〉 trueend

M4 property M4: 〈Send Receipt?〉 trueend

M5 property M5: minZ. ([Send Quote?] false | 〈∗〉 Z) end

M6 property M6: minZ. ([Send Receipt?] false | 〈∗〉 Z) end

M7 property M7: minZ. ([Send Goods?] false | 〈∗〉 Z) end

M8 property M8: maxZ. (〈Send Quote?〉 true | 〈Send Receipt?〉 true |〈Send Goods?〉 true & [∗] Z) end

M9 property M9: maxZ. ([∗] false & Z) end

Data: fixpoint = no, formula, conformula, ptr
ptr = openFile(inputFile)
while ptr != EOF do

formula = readLine(ptr)
conformula = append (conformula, property proper-
tyname)
while readToken(formula) != \n do

if readToken(formula)= ¬ then
conformula = append(conformula,!)

else if readToken(formula)= ∧ then
conformula = append(con formula,&)

else if read Token(formula)= ∨ then
conformula = append(con formula,|)

else if readToken(formula)= 〉 then
if lasttoken(conformula)= ∗ then

conformula = append(conformula, 〉)
else

conformula = append(conformula,? 〉)
end if

else if readToken(formula)=] then
if lastToken(conformula)= ∗ then

conformula = append(conformula,])
else

conformula = append(conformula,?])
end if
else if readToken(formula)= =

min
then

conformula = initiate(minZ:()
fixpoint=yes

Executable Semantics for the Formal Specification and Verification of E-agents

Indian Journal of Science and Technology8 Vol 8 (16) | July 2015 | www.indjst.org

else if readToken(formula)= =
max

then
conformula = initiate(maxZ:()
fixpoint=yes

else if readToken(formula)= Act then
conformula = append(conformula,∗)

else if readToken(formula)= X then
conformula = append(conformula,Z)

else
conformula = append(conformula,readToken
(formula))

end if
movePointer(ptr)

end
if fixpoint=yes then

conformula = append(conformula,))
else

conformula = append(conformula,end)
end if

writeToFile(outputFile,conformula)
fixpoint = no

end
Algorithm 1: Syntactic conversion of m-calculus for-
mulas to TAPA

6.  References
1.	 Singh MP. A social semantics for agent communication

languages. Issues in agent communication. Springer Berlin
Heidelberg; 2000. p. 31–45.

  2.	 Wooldridge M. Semantic issues in the verification of agent
communication languages. Autonomous agents and multi-
agent systems. 2000; 3(1):9–31.

  3.	 Guerin F. Specifying agent communication languages
[Doctoral Thesis]. University of London; 2002.

  4.	 Giordano L, Martelli A, Schwind C. Specifying and verify-
ing systems of communicatingagents in a temporal action
logic. Advances in Artificial Intelligence. Springer Berlin
Heidelberg; 2003. p. 262–74.

  5.	 Benerecetti M, Giunchiglia F, Serafini L. Model checking
multiagent systems. Journal of Logic and Computation.
1998; 8(3):401–23.

  6.	 van Eijk RM, de Boer FS. van der HW, Meyer J-JC. Process
algebra for agent communication: A general semantic
approach. Communication in Multiagent Systems. Springer;
2003. p. 113–28.

  7.	 Wang BY. Mu-calculus model checking in maude. Electronic
Notes in Theoretical Computer Science. 2005; 117:135–52.

  8.	 Emerson EA. Model checking and the mu-calculus.
DIMACS series in discrete mathematics. 1997; 31:185–
214.

  9.	 Bradfield J, Stirling C. Modal mu-calculi. Handbook of
modal logic. 2007; 3:721–56.

10.	 Hennessy M, Milner R. On observing nondeterminism and
concurrency. ICALP, LNCS. 1980; 85:299–309.

11.	 Yolum P, Singh M. Flexible protocol specification and
execution: Applying event calculusplanning using commit-
ments. AAMAS’02 Bologna, Italy. 2002. p. 527–34.

12.	 Calzolai F, De NR, Loreti M, Tiezzi F. Tapas: A tool for the
analysis of process algebras. Transactions on Petri Nets and
Other Models of Concurrency I. Springer Berlin Heidelberg;
2008. p. 54–70.

