
Abstract
Background: Software agents are expected to work autonomously and deal with unfamiliar situations astutely. 
Achieving cent percent test case coverage for these agents has always been a problem due to limited resources. 
Also a high degree of dependability is expected from autonomous software agents. Formal verification of these 
systems can be done by specifying the possible actions of the agents to increase the confidence in the correctness 
of such systems. Methods: We have used social approach of agent communication where actions of the agents are 
described as social obligation between the participants. Formal specification of e-agents was done using µ-calculus 
as it is more expressive than Linear Temporal Logic (LTL). An algorithm has been given for syntactic conversion 
of µ-calculus formulas to TAPA model checker environment. Results: Using converstion algorithm syntactically 
modified µ-calculus formulas will be executed on TAPA model checker to verify the system being modelled for the 
specified properties. Application: The study will help to provide future directions for formal modelling of e-agents 
for their correct functioning.
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1.  Introduction
The term ‘formal methods’ is utilized to allude to any 
exercises that depend on mathematical representations of 
software which includes but not limited to formal soft-
ware specification, transformational development, formal 
verification of programs. A high degree of dependability 
is expected from intelligent software agents. The main 
purpose of these agents is to interact with the dynamic 
environment and its not possible to build an agent with all 
the world knowledge composed into it. Being intelligent 
agents they are expected to respond intelligently to unfa-
miliar situations. For such systems executing a predefined 
representative test cases of the system cannot provide a 
high degree of reliability. Even if we do achieve a high 
degree of test case coverage, the chances of system failure 
are still high due to test scenarios that were never executed. 
When receiving the external stimuli, these agents try to 
perceive it according to their knowledge and any failure 
in this process might cause the agent to fail. In this paper 

an executable m-calculus based formal technique has been 
proposed to specify the action of communicating agents. 
The expressiveness of the m-calculus allows formalization 
of the communicative actions in verifiable form. Different 
types of agent communication languages have been pro-
posed for communication between autonomous agents 
but we will be using the agent communication language 
proposed by Singh1. In this approach instead of mental 
attitudes of the agent like intentions, the focus is on social 
commitments of agents in the system. This is justifiable 
because in a multi agent system the agent’s actions are 
affected by its social commitments. When perceiving the 
system as a whole in these open multi agent systems, the 
inner states of certain agents might not be perceptible. In 
these social semantics the actions of the agents are mod-
eled by its commitments to other agents. Using these 
semantics the system is evolved by the dynamic interaction 
of the agents where agent has to respect its commitments. 
Another advantage of the social approach is that we do 
not need to provide a comprehensive specification of all 
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possible action sequences as in a behavioral approach. 
Here we have a categorical specification of basic actions 
to model the agent communication.

In the past developing executable semantics for 
e-agent’s communication languages has been examined 
in detail. In 2 verifiable semantics based on computational 
models have been proposed. In 3 a framework for commu-
nication among e-agents was presented. In particular they 
used different languages for the specification of communi-
cation among e-agents. Giordano has used Dynamic LTL 
Logic for specifying and verifying agent communication 
properties4. In DLTL we express the programs as regu-
lar expressions and specify the communicative actions as 
precondition laws, causal laws and constraints. The use of 
model checking for verification of e-agents has been dis-
cussed in 5 using Belief-Desire-Intention (BDI) attitudes. 
They used a new logic which was the composition of formal 
temporal evolution and formal BDI attitudes. A process 
algebra based approach for e-agent’s communication was 
discussed in 6. They proposed new semantics called ACPL 
which models the basics of agent communication. They 
used the information processing aspects of Concurrent 
Constraint Programming (CCP) with a generalisation of 
the synchronous handshaking communication mecha-
nism of Communicating Sequential Processes (CSP). 
However the use of m-calculus for formal specification of 
e-agents is a novel approach.The m-calculus being more 
expressive than LTL7 is computationally more suitable 
for modeling and verification of the proposed system. 
The m-calculus is an augmentation of Computation Tree 
Logic (CTL) with least fixpoint (m) and greatest fixpoint 
(n) operators8. The addition of minimum and maximum 
fixed points incorporating recursion to modal logic pro-
vides a great increase in expressive power.

In this paper communication between agents is exhib-
ited in the form of interaction protocols. These interaction 
protocols can be viewed as commitments between agents 
in a communication system. The overall state of com-
municating system comprising of these agents is evolved 
by the dynamic execution of these commitments1. 
Preconditions for the execution of actions are specified 
in the form of precondition laws. Execution of certain 
actions may result in the establishment of new commit-
ments between participating agents. We have specified 
the action of agents involved in interaction protocol in the 
form of m-calculus formulas. For verification that every 
agent in the system satisfies the preconditions and is able 
to execute its actions can be formally represented as a 

validity problem in m-calculus logic. The validity problem 
can then be solved by the help of m-calculus based model 
checker.

The rest of this paper is divided as follows. In sec-
tion 2 some preliminaries for notations and semantics 
of m-calculus are given. Section 3 describes the formal 
specification of the actions of e-agents along with the pre-
conditions and commitments. In section 4 verification 
of the e-agents is done through a TAPA model checker 
alongwith an algorithm for syntactic conversion of m-cal-
culus based properties to TAPA environment. Section 5 
concludes the paper.

2.  Preliminaries
A few terminologies, mathematical and computational 
models have been described in this section that will be 
used in the rest of the discussion for the specification of 
the problem under analysis. 

2.1  Modal m-Calculus
The m-calculus is a type of temporal logic used in diverse 
areas of computer science for the specification and for-
mal verification of systems. The requirements of hardware 
and software systems can be specified in it and then it can 
be verified whether these systems satisfies those require-
ments or not. The process of verification can be done by 
using different model checkers available for m-calculus9. 
The m-calculus is an extension of CTL with a least fix-
point operator (m) and greatest fixpoint operator (n) 
which makes it possible to give characterizations of cor-
rectness properties. Most modal and temporal logics of 
interest can be defined in terms of m-calculus. We will use 
the Hennessy Milner Logic syntax to specify the formulas 
of m-calculus. HML is an archaic modal logic of action10. 
Formulas of the m-calculus Fm can be be generated by fol-
lowing rules given below. Let Act denote the set of all 
possible actions and a Œ Act

F false true F F F F a F a Fm m m m m m m::= ∧ ∧  

Interpretation of 〈a〉Fm is that there is a choice to 
take 'a' action and reach a state in which Fm is satisfied.  
[a]Fm denotes that no matter how we take 'a' action we 
will end up in a state where Fm holds. To formally spec-
ify that a state s of a transition system satisfy a required 
property of interest we can express it as s a F m  iff  
{∃t.s → t ∧ t = Fm}. Atomic propositions can be used in the 
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logic to find out the set of states that satisfies those atomic 
propositions. The operators 〈 〉 and [ ] can be used with a 
set of actions.

Let A = aa,...an⊆ Act with n ≥ 1 and φ denotes no 
action then 〈A〉Fm represents 〈a1〉Fm ∨ ...∨ 〈an〉Fm and  
〈f〉Fm  = false and [A]Fm  represents [a1]Fm ∧ ...∧ [an]Fm and  
[f]Fm = true. 

2.2  Semantics of m-Calculus
Hennessy Milner Logic does not allow the specification 
of properties of infinite depth. This limits the expressive 
power of m-calculus and even the invariant and reachability 
properties cannot be verified. For example the properties 

Invariant (Fm) = Fm ∧ [Act] Fm ∧ [Act][Act] Fm ∧ [Act]
[Act][Act] Fm ∧ ... 

Reachability (Fm) = Fm ∨ 〈Act〉 Fm ∨ 〈Act〉〈Act〉 Fm ∨ 〈Act〉
〈Act〉〈Act〉 Fm ∨ ... 

are not expressible in HML. The use of least and greatest 
fixpoint operators is the basis of m-calculus. If S is the set of 
states representing the complete state space of the system 
then we can provide semantics of a state-based modal logic. 
Using these semantics we can map a m-calculus formulae 
Fm to the set of states where that formula is satisfied. This 
mapping of formula Fm to the set of states is given by Fm
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To specify formulas in a recursive mode we can add a free 
variable X in our logic having interpretations over Fm S 
like 

X F Act X In iant
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We can now write HML with one recursively defined 
variable as 

F X false true F F F F a F a Fm m m m m m m:: |= ∧ ∨  
where X is a distinguished variable with a definition 

X FX=
min

 or X FX=
max

 and a Œ Act such that FX is a for-
mula of the logic that can contain X. Alternatively 

F X false true F F F F a F a F X F vX Fm m m m m m m m mm:: . .= ∧ ∨  

These formulation will be used in order to specify the 
actions of the communicating agents. 

3.  �Action Specifications of 
Communicating Agents

Every agent of the system under consideration has its 
own set of actions. Every action has a corresponding local 
affect on the agent and global affect on the system when 
that action is executed. Global state represents complete 
state of the system, which is composed of individual 
states of all the agents in the system. Let Agentsi = Agent1, 
Agent2...Agentn be the set of agents representing agent 
space for the system under consideration. For action 
specification of the agents we will adopt the synchronous 
model of communication. This implies that every com-
munication action will generically be of the form action 
(agent1, agent2). It means that agent1 will intentionally 
execute an action with agent2 e.g. send (sender, receiver, 
message) means that sender will perform an action send 
on the receiver with message as argument. If the receiver 
needs to reply back to the sender then he can use the 
same pattern. However the execution of actions will be 
done synchronously in a deterministic order. Depending 
on the nature of the action an argument may or may 
not be required. Local states of both the sender and the 
receiver are updated sequentially based on their action 
specification. 

The semantics of communicative actions will be 
specified by a protocol that describes the effects of each 
action on the social state of the system. Execution of cer-
tain actions may give rise to new obligations between 
the interacting agents. Preconditions laws will be used 
to specify conditions that need to be true before some 
actions can be executed. For simplicity we will only use 
preconditions for the sender and assume that actions are 
always executable for the receiver. Normally execution of 
an action will affect both the state of the sender and the 
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state of the receiver but for action like acknowledgement 
this will not be true. All agents can only see the effects 
of actions in which they participate. This means that for 
two agents the history of all communications is known to 
both of them and so they have the same local view of the 
system state. For more than two interacting agents this 
will not be true. 

We will use the example of NetBill protocol for spec-
ifying the properties of two interacting agents. NetBill 
protocol was proposed for buying and selling goods 
on the internet11. In the protocol initially a customer 
requests a quote for some desired goods and subse-
quently the merchant replies back with the quote. On 
acceptance of the quote by the customer the merchant 
delivers the goods in an encrypted form. The customer 
cannot use the goods until he has made the payment. 
After the customer pays the agreed amount, the mer-
chant sends the receipt to the customer with which 
he can successfully decrypt and use the goods. In this 
protocol the communication can be initialized in any 
sequence like the merchant may send the quote without 
customer request and the customer may send confir-
mation without prior conversation on the price of the 
goods. For some actions we will need to impose restric-
tion like merchant will never send the receipt until the 
customer has made the payment. For such actions we 
will used the precondition laws. We will use two agents 
for our example mr representing the merchant and ct 
representing the customer. 

Atomic propositions for our example will be {Send 
Quote, Send Goods, Send Request, Send Receipt, Send 
Payment, Send Accept}. In our example for communi-
cative actions {Send Quote, Send Goods, Send Receipt}, 
merchant will be the sender and customer will be the 
receiver. For communicative actions {Send Request, Send 
Accept, Send Payment}, customer will be the sender and 
merchant will be the receiver. The customer and mer-
chant agents will execute actions synchronously. For 
actions that will create new obligations between agents 
we will represent them as commitments. Commitments 
can be basic of the form C(ag1, ag2, action), which 
means that agent ag1 is obligated to agent ag2 to execute 
the action. Additionally there can be conditional com-
mitments of the form CC(ag1, ag2, cond, action), which 
means that agent ag1 is obligated to agent ag2 to execute 
action only if condition cond is satisfied. There is a vast 
majority of properties that can be verified for customer 
and merchant according to the protocol but we will 

restrict ourselves to the basic properties for simplicity. 
Action laws for the merchant and customer are specified 
as follow. 

3.1  Semantics of Commitments
As discussed above that execution of certain actions may 
create new obligations between the interacting agents 
which we will express as commitments. They represent 
static properties of the agents and cannot be verified on 
a labeled transition system until the dynamic behavior 
of the agents is observed. Some of the commitments are 
specified below. 

When the action •	 Send Quote will be executed by the 
merchant then he is committed to execute the action 
Send Goods if customer has executed the action Send 
Accept showing his confirmation. Also merchant is 
committed to execute the action Send Receipt if the 
customer has executed the action Send Payment

[Send Quote]mr true → CC (mr, ct, Send Accept, Deliver  
Goods) ∧ CC (mr, ct, Send Payment, Send Receipt)

On execution of action •	 Send Goods by the merchant, 
the merchant is committed to send receipt to the cus-
tomer after he has made payment. 

[Send Goods]mr true → ∧ CC (mr, ct, Send Payment,  
Send Receipt)

3.2  Semantics of Preconditions
As discussed above we will only use preconditions for the 
sender and for receiver we take the assumption that all 
actions are always executable. For merchant there is only 
one precondition law

The action •	 Send Receipt cannot be executed by the mer-
chant until the customer has paid. All other actions 
are always executable by the merchant. 

[Send Payment] false → [Send Receipt]mr false 

The only condition on the execution of actions by the cus-
tomer is the following precondition law: 

It means that the customer may send a payment for •	
the goods only if he has received the goods (all other 
actions are always executable for the customer). 

[Send Goods] false → [Send Receipt]mr false 
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4.  �Verification of Communicating 
Agents 

We have used the TAPA model checker12 to verify the 
properties of merchant and customer agents. The required 
properties had to be modified syntactically for their 
execution on the model checker. The syntactic changes 
did not affected the semantics of the actions of agent. To 
automate the process of this conversion we have devised 
an algorithm. All the m-calculus formulas to be converted 
are input to the algorithm in a single text file. The input 
file should contain a single formula per line. In Data sec-
tion we declare variable to be used in the algorithm. The 
variable fixpoint will be used to keep track of whether 
the formula we are going to convert is least/greatest fix 
point or not. formula will contain the single m-calculus 
formula which is going to be converted. conformula 
represents converted forumla which can be input to the 
TAPA model checker. Ptr will serve as the file pointer for 
the input file. EOF represents the end of file for the input 
file. The function readLine will read a single m-calculus 

formula at a time. The function append will concatenate 
the second argument to the first argument. The function 
readToken reads single token at a time separated by space. 
The function lastToken will return the last token of any 
text input to it as argument. The function initiate creates a 
new string with text input to it as argument. the function 
movePointer will move the file pointer to the next formula. 
The function writeToFile will write the converted formula 
to the output file one at a time.

Table 1 and Table 2 shows the actual m-calculus 
formulas for the merchant and customer agents respec-
tively along with their corresponding modified versions 
used to run on the model checker. For each property 
the model checker verifies whether the agent satisfies 
it or not by outputting a boolean result. The technique 
can be extended to verify the properties of interest for 
any number of agents in a system. After execution of 
Algorithm 1 on the specified properties of merchant 
and customer we get syntactically modified executable 
semantics. Table 3 and Table 4 represents these execut-
able semantics.

Table 1.  Actions of the merchant

Property Semantics Description

¬〈Send Quote〉mr true or  
〈Send Quote〉mr false Merchant cannot send quote at the moment to the customer

〈Send Quote〉mr true  
∧¬〈Send Goods〉mr false Merchant can send quote to customer but cannot deliver the goods.

〈Send Quote〉mr true When there is a request for a quote the merchant sends the quote and the request is 
finished.

〈Send Receipt〉mr true When the merchant sends the receipt then the receipt is delivered to the customer.

X SendQuote false Act X= ∨
min

[ ] It is possible to reach a state where merchant cannot send the quote.

X Send ceipt false Act X= ∨
min

[ ]Re It is possible to reach a state where merchant cannot send the receipt.

X SendGoods false Act X= ∨
min

[ ] It is possible to reach a state where merchant cannot send the goods.

X PA true Act Xmr= ∧
max

[ ]
Let PAmr ={send Quote, send Receipt, send Goods} then in every reachable state the 
merchant can send quote or send receipt or send goods.

X Act false X= ∧
max

[ ] The merchant is deadlocked.
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Table 2.  Possible actions of the customer

Property Semantics Description

〈Send Request〉ct true The customer can send the request. 

〈Send Accept〉ct true The customer can send the confirmation. 

〈Send Payment〉ct true The customer can send the payment. 

[Send Accept]ct (〈Send Goods〉 true ∧ [Act\{Deliver Goods}]
false)

On acceptance of quote by the customer the merchant always 
delivers the goods. 

[Send Payment]ct (〈Send Receipt〉 true ∧ [Act\{Send Receipt}]
false)

If the customer has sent the payment then the merchant always 
send the receipt. 

〈Request Quote〉ct true ∧ 
〈Send Accept〉ct false

The customer can request quote for some desired goods but 
cannot send the accept message. 

X questQuote false Act X= ∨
min

[ ]Re
It is possible to reach a state where customer cannot request 
the quote. 

X SendAccept false Act X= ∨
min

[ ]
It is possible to reach a state where customer cannot send the 
confirmation. 

X SendPayment false Act X= ∨
min

[ ]
It is possible to reach a state where customer cannot send the 
payment. 

X PA true Act Xct= ∧
max

[ ]
In every reachable state the customer can send request or send 
confirmation or send payment. Let PAct = {send Request, send 
Accept, send Payment} then

X Act false X= ∧
max

[ ]
The customer is deadlocked. 

Table 3. � m-calculus properties for the customer and their corresponding modified formulas for TAPA model checker

Property Name Modified Formulas for Model Checker

C1 property C1 : 〈Send Request?〉 true end

C2 property C2 : 〈Send Accept?〉 true end

C3 property C3 : 〈Send Payment?〉 true end

C4 property C4 : [Send Accept?] [Deliver Goods?] true end

C5 property C5 : [Send Payment?] [Send Receipt?] true end

C6 property C6 : 〈Request Quote?〉 true & ![Send Accept?] false end

C7 property C7 : minZ: ([Request Quote?] false | <∗> Z) end

C8 property C8 : minZ: ( [Send Accept?] false | <∗> Z ) end

C9 property C9 : minZ: ( [Send Payment?] false | <∗> Z ) end

C10 property C10 : maxZ: ( 〈Send Request?〉 true | 〈Send Accept?〉 true | 〈Send Payment?〉true & [∗]Z) end

C11 property C11 : maxZ: ( [∗] false & Z) end
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5.  Conclusion
In this paper we have shown how actions of communi-
cating agents can be specified in modal m-calculus. The 
problem of developing a verifiable semantics for agent 
communication has been discussed by many in the past2. 
Multi agent systems are seen as a key enabling technol-
ogy for the future e-commerce products. To ensure a high 
degree of reliability of these systems we need an execut-
able semantics for them. This is evident by the difficulty 
to achieve good test case coverage for a system of reason-
able size. We have used a mentalistic approach for the 
specification and verification of communicating agents. 
Netbill protocol was used to specify the properties of 
two interacting agents for buying and selling of goods 
on the internet. The major advantage of our approach is 
that the semantics are in executable form and the process 
of verification of properties can be done on any model 
checker supporting the modal m-calculus logic. We used 
TAPA model checker to verify the properties of the cus-
tomer and merchant agents. The technique can be used to 
specify and verify the properties of any number of agents. 
The current work limits the commitment to two partici-
pating agents. In a multi agent system we may be need to 
specify interaction between more than two agents simul-
taneously e.g a merchant might be communicating with 
two or more customers and if the two customers already 
have some commitments between them than the interac-
tion protocol needs to be modified to accommodate the 
interaction between three or more agents con currently. 

Table 4. � m-calculus properties for the merchant and their corresponding modified formulas for TAPA model checker

Property Name Modified Formulas for Model Checker

M1 property M1: !〈Send Quote?〉 trueend

M2 property M2: 〈Send Quote?〉 true &! [Send Goods?] falseend

M3 property M3: 〈Send Quote?〉 trueend

M4 property M4: 〈Send Receipt?〉 trueend

M5 property M5: minZ. ([Send Quote?] false  | 〈∗〉 Z) end

M6 property M6: minZ. ([Send Receipt?] false  | 〈∗〉 Z) end

M7 property M7: minZ. ([Send Goods?] false  | 〈∗〉 Z) end

M8 property M8:  maxZ. (〈Send Quote?〉 true | 〈Send Receipt?〉 true |〈Send Goods?〉 true & [∗] Z) end

M9 property M9:  maxZ. ([∗] false & Z) end

Data: fixpoint = no, formula, conformula, ptr
ptr = openFile(inputFile)
while ptr != EOF do

formula = readLine(ptr)
conformula = append (conformula, property proper-
tyname)
while readToken(formula) != \n do

if readToken(formula)= ¬ then
conformula = append(conformula,!)

else if readToken(formula)= ∧ then
conformula = append(con formula,&)

else if read Token(formula)= ∨ then
conformula = append(con formula,|)

else if readToken(formula)= 〉 then
if lasttoken(conformula)= ∗ then

conformula = append(conformula, 〉)
else

conformula = append(conformula,? 〉)
end if

else if readToken(formula)= ] then
if lastToken(conformula)= ∗ then

conformula = append(conformula,])
else

conformula = append(conformula,?])
end if
else if readToken(formula)= =

min  
then

conformula = initiate(minZ:()
fixpoint=yes
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else if readToken(formula)= =
max  

then
conformula = initiate(maxZ:()
fixpoint=yes

else if readToken(formula)= Act then
conformula = append(conformula,∗)

else if readToken(formula)= X then
conformula = append(conformula,Z)

else
conformula = append(conformula,readToken 
(formula))

end if
movePointer(ptr)

end
if fixpoint=yes then

conformula = append(conformula,))
else

conformula = append(conformula,end)
end if

writeToFile(outputFile,conformula)
fixpoint = no

end
Algorithm 1: Syntactic conversion of m-calculus for-
mulas to TAPA
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