
PACMATS: An Adaptive Symmetric Block Cipher for
Parallel Computing Environments

J. John Raybin Jose1* and E. George Dharma Prakash Raj2

1Department of Information Technology, Bishop Heber College (Autonomous), Tiruchirappalli, Tamilnadu, India;
raybinjose@yahoo.com

2School of Computer Science, Engineering and Technology, Bharathidasan University, Tiruchirappalli, Tamilnadu,
India

Abstract
Conventional symmetric cryptographic algorithms are designed considering the cryptographic technicalities alone rather
than the computing capabilities of the modern processing devices. Hence the performances of these algorithms are incon-
sistent and vary enormously when implemented in different computing systems with different processing capabilities.
Parallelized adaptive cryptographic algorithms that can be related with the characteristics of the present day comput-
ing devices are in great demand. “Parallelized Adaptive Cipher with Modular Arithmetic, Transposition and Substitution”
(PACMATS) is a different class of cryptographic algorithm involving traditional techniques, which addresses these issues
effectively. The size of the key and the plain text blocks are each 1024-bits. This symmetric block cipher is made adaptive
by incorporating flexibility in deciding the size of the key and plain text sub-blocks and the number of rounds. Degree of
Intra-packet parallelization, variety in grain size and the required security strength are achieved by suitably deciding the
sub-block size. Flow of the algorithm is made dynamic by determining the execution steps through each key value at the
runtime. The performance of the PACMATS is analyzed with implementations in shared memory parallel programming
environment using OpenMP, Java Threads and MPI.

*Author for correspondence

1.  Introduction
Cryptography deals with the art and science of hid-
ing Information. Cryptographic techniques enable
to preserve the confidentiality, integrity, authentic-
ity and validity of our information in move or in store.
Cryptographic algorithms are broadly classified into
Symmetric or Private Key Algorithms and Asymmetric
or Public Key Algorithms. The Private Key algorithms
make use of a single key for encryption and decryption
and they depend on the safe exchange and handling of
the key. Private key algorithms can be further classified
into stream ciphers which deal with single byte at a time
and block ciphers which handle a group of bytes at a time.

Indian Journal of Science and Technology, Vol 7(S4), 99–105, April 2014
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Keywords: Adaptive Cryptography, Modular Arithmetic, Parallel Cryptography, Substitution, Symmetric Block Cipher,
Transposition

Asymmetric key algorithms make use of two keys. A pub-
lic key is used to encrypt the message and it is available
to all. The secret key is known only to the receiver and it
is used to decrypt the information. Thus the issue of key
distribution is overcome in asymmetric cryptography1–3.

PACMATS is a Symmetric Block Cipher, which uti-
lize reversible operations involving Modular Arithmetic,
Substitution and Transposition techniques. Modular
Arithmetic operations revolve around the remainder of
division operation. Modular arithmetic operations are
denoted using the relation: x mod m = r. Here ‘x’ is an
integer from the set of integers ‘Z’. A positive integer ‘m’
known as modulus is used to divide the value ‘x’ to pro-
duce a positive integer known as residue ‘r’ from the set

PACMATS: An Adaptive Symmetric Block Cipher for Parallel Computing Environments

Indian Journal of Science and Technology100 Vol 7 (5) | April 2014 | www.indjst.org

of residues ‘Zm’. The set of residues comprises all the ele-
ments between 0 and m-1. Modular arithmetic allows
three binary operations such as addition, subtraction and
multiplication to be applied on the elements of Zm. After
applying each operation, the result obtained is mapped
to Zm with the help of the modulus operator. There is
always a many-to-one relationship between the elements
of ‘Z’and ‘Zm’ and this relationship is referred to as con-
gruence.

Addition and multiplication modulo operations can
be used in cryptography, selecting a value from the set
of residues ‘Zm’ as key. In order to perform decryption
the same operation is carried out with the inverse of the
element as the key. Therefore it is essential to find the
additive or multiplicative inverse of the key for decryp-
tion. Each element in modular arithmetic has a unique
additive inverse and at times, the additive inverse of an
element is the element itself. If ‘x’ and ‘y’ are two elements
of the set ‘Zm’, ‘x’ is said to be the additive inverse of ‘y’ and
vice versa if: x+y = 0 (mod m).

An element may or may not have a multiplicative
inverse. If ‘x’ and ‘y’ are the two elements of the set ‘Zm’,
then ‘x’ is said to be the multiplicative inverse of ‘y’ and
vice versa if x * m = 1 (mod m). The simple method to
determine whether or not a number ‘x’ in ‘Zm’ has a mul-
tiplicative inverse is to compute the GCD of ‘x’ and ‘m’.
If gcd (x, m) = 1 then ‘x’ and ‘m’ are said to be relatively
prime and ‘x’ has a multiplicative inverse; otherwise, the
multiplicative inverse for x in Zm does not exist and these
values of ‘Zm’ cannot be used for the multiplicative mod-
ulo operations1–4.

Every symbol is replaced with another one in
Substitution. But, transposition jumbles the symbols in a
block of data. Substitution causes confusion by making it
more difficult in to find a connection between the key and
the cipher text from one end and the key and the plaintext
from the other end. Transposition produces diffusion and
makes sure that there is no connection between the sta-
tistics of the symbols in the plaintext and the ciphertext2,3.

Adaptive Cryptography is a trend in Cryptography,
which makes the cryptographic algorithm and its key
adaptive by dynamically scaling them, according to the
requirements of the application or the processing device.
Adaptive Cryptographic Techniques can be classified as
(i) Inter-Algorithmic Adaptive Techniques and (ii) Intra-
Algorithmic Adaptive Techniques. Inter-Algorithmic
Adaptive Techniques involve more than one algorithm
for different applications or processing environments5.

Intra-Algorithmic Adaptive Techniques are used within
the same algorithm by dynamically changing the sub-
block size of the key or the plaintext based on the nature
of the application or the processing environment in which
it is executed. Intra-Algorithmic Adaptive Techniques are
utilized in this research work.

Parallelism accelerates processing by simultane-
ous execution of multiple tasks. Implicit parallelism is
achieved by the inherent resources and techniques in the
processing hardware. Explicit parallelism is extracted by
the external arrangements and codes utilizing the avail-
able parallel resources efficiently. Techniques used for
explicit parallelism are (i) Per-Connection Parallelism (ii)
Per-Packet Parallelism and (iii) Intra-Packet Parallelism.

Per-connection parallelism is a method in which each
connection is provided with individual thread or process
that executes separately on a single processor. This type of
parallelization requires no changes to be effected in the
existing algorithm or the software and. it does not make
any effort to use sophisticated computing facilities. Per-
packet parallelism is a method in which the connections
distribute their packet load to several processors, and each
packet is handled separately. Several Cryptographic algo-
rithms available today support this type of parallelization.
But cryptographic software that implements this type of
parallelism is not yet available. Intra-packet parallelism
is the most difficult concept to implement as it heavily
depends on the algorithm design. It demands different
approach in the implementation of the cryptographic
algorithm, no longer relying on the flexibility of the hard-
ware or operating system over which it is executed6–9.
Intra-packet parallelism is employed in PACMATS with
the ability to adjust the operations according to parallel
environment in which it is executed.

The design of this paper is given as follows. Section II
gives the Related Works. Section III highlights the draw-
backs in Traditional Cryptography. Description of Parallel
Adaptive Cipher with Modular Arithmetic, Transposition
and Substitution (PACMATS) is given in section IV.
Implementation and Discussion is found in section V and
Section VI concludes the paper.

2.  Related Works
Efforts to parallelize existing cryptographic algorithms
have been pursued by several researchers from year 2000
onward. The prominent of these efforts are classified

J. John Raybin Jose and E. George Dharma Prakash Raj

Indian Journal of Science and Technology 101Vol 7 (S4) | April 2014 | www.indjst.org

broadly as Hardware or Software Parallel Cryptographic
implementations involving several approaches under
them as shown in figure 1.

HoWon Kim introduced a special-purpose micro-
processor optimized for the execution of the ciphers.
This crypto processor is made up of a 32-bit RISC pro-
cessor block and a coprocessor block dedicated to SEED
and Triple-DES algorithms10. Pionteck in their work
has given a hardware design of AES with reconfigurable
encryption/decryption engines which supports all key
sizes. The reconfigurable crypt-engine is integrated in a
32 bit RISC processor as a functional unit and can oper-
ate in parallel with the standard ALU. The Reconfigurable
Cryptographic Unit (RCU) is integrated into 32 bit five
stage pipeline RISC Processor and the area which is used
for the RCU is less than 27% of the total area11.

Application-Specific Integrated Circuits (ASIC)
are developed for specific use. When ASICs are used to
implement cryptographic algorithms they provide robust
operation and much of the overhead involved in hard-
ware implementation is reduced. The work carried out
on ASIC implementation of DES, 3DES, IDEA and the
candidates of AES by S. Mukherjee,, T. Ichikawa and B.
Weeks et al are prominent in this category12–14.

Field Programmable Gate Array (FPGA) logic cells
are reconfigurable platforms that provide cost and perfor-
mance effective methods for implementing cryptography.
Ciphers such as DES, Triple DES, and AES are parallelized
using FPGAs by Swankoski et al15. Virtex-II Pro, FPGA
Platform with Verilog HDL and Block RAM resources

are used for implementation. A hardware design of AES
in chip is proposed by Kotturi Hierarchical simultaneous
key generation is used for implementation in ten separate
units in XC2VP70 device with speed grade 7 in Virtex II
Pro FPGA. Every unit can run a single round of the algo-
rithm and ten rounds of the algorithm can be executed
in parallel in a chip with external pipelined design. The
throughput rate achieved in this method is higher than
most other implementations16. In yet another implemen-
tation by Chi-Wu, 128-bit AES was decomposed into four
32-bits to be executed in parallel. This outperformed all
other recent works by requiring less than 20% reconfigu-
rable area and operated four times faster than 32-bit AES
by providing double the throughput17.

Multi-core Processors and Graphical Processing Units
(GPUs) are available at affordable prices. Considering the
computational demands of the cryptographic algorithms,
these parallel platforms are relevant to parallelize the
existing algorithms to enhance the performance. CUDA
programming is used to parallelize the algorithms in
GPU18,19. OpenMP is used to extract parallelism from
Multi-Core Processors20.

The most time-consuming portions of the crypto-
graphic algorithms without involving the I/O functions
are the loops. Loop parallelization is done for crypto-
graphic algorithms such as DES, Triple DES, IDEA, AES,
RC5, Blowfish, GOST and LOK191 by Bielecki. The Data
Dependences are resolved before parallelizing the Loops.
OpenMP was used to parallelize the loops in these algo-
rithms and Petit was used to resolve dependences in the
loops. Speedup measurements were presented for all
these implementations21,22.

Even though all the efforts to parallelize the existing
conventional cryptographic algorithms with hardware
and software techniques had given better results, they
cannot be fully parallelized or implemented efficiently
in present day computing systems. The dependency
problems and the inability to efficiently modularize the
sections of the algorithms hover around and haunt the
parallelization.

3. � Drawbacks of Traditional
Cryptography

Traditional view on the efficiency of a cryptographic algo-
rithm focuses only on the complexity of the algorithm and
the strength and the secrecy of the key. All conventional

Figure 1.  Classification of parallel implementations of
cryptographic algorithms.

PACMATS: An Adaptive Symmetric Block Cipher for Parallel Computing Environments

Indian Journal of Science and TechnologyVol 7 (S4) | April 2014 | www.indjst.org102

symmetric cryptographic algorithms are developed before
the year 2000 when computers were built around 8, 16
or 32 bit processors. But now, Cryptographic algorithms
can be executed much faster on modern computers. The
Computers of today, and that of future, is not that of 32-bit
desktops, but of multi-cored chips and multiprocessor
machines whose processing capacity is 64 or 128 or more
bits. Parallelizing the cryptographic algorithms is a means
to utilize these systems effectively. Moreover, the rate of
encryptions and decryptions carried out per unit time in
communication systems has increased exponentially. This
imposes additional overhead in the information exchange
and causes congestion. A way out of this trouble is to
develop a new class of adaptive parallel algorithms that
can reduce the time for ciphering, without compromising
the security strength6.

The computing capacity of the devices used for differ-
ent applications varies from low end hand held devices
to the high end multi-processor systems with several
hundreds of processors. A number of Cryptographic
Algorithms are in existence today and different
Cryptographic algorithms are implemented for different
devices, applications and environments. When informa-
tion has to move through these differences it is inevitable
that the enciphering and deciphering has to be preformed
repeatedly several times to switch it over from one cipher
to another5,6. This makes it evident the need for using the
same cipher which is adaptive in all situations. The adap-
tive nature of such a cipher can be achieved by flexibly
changing the sub-block size of the key and the plain-text.

4. � Parallel Adaptive Cipher
With Modular Arithmetic,
Transposition and Substitution
(PACMATS)

PACMATS is a symmetric block cipher with block
length and key size each of 1024 bits. The behavior of the
algorithm is decided dynamically by deriving the control
information from the key. The granularity of the algo-
rithm is decided by forming sub-blocks of various sizes
in the range 2n where n = 3 to 8. The processing resources
available and the security strength required are used to
decide the number of rounds and size of the sub-blocks.
This is depicted in figure 2. The sub-block generation
routine is run to generate key and plain text sub-blocks;
before they are involved in operations at each stage.

Each round in PACMATS has eight stages as depicted
in figure 3. In the first stage sub-blocks are divided into
chunks of 8 bits and addition modulo 28 operations is
performed with the key sub-blocks and the plain text sub-
blocks in the pattern decided by the initial and the final
bits of the key. If both these bits are of same value then
addition modulo operation is performed directly, other-
wise the plain text bits are reversed before the operation.
The key bits are then rotated to right or left by b/2 posi-
tions within the key sub-blocks so that it can be used in
the next stage. Here ‘b’ refers to the number of bits in each
key sub-block. The direction of rotation is determined
by the parity of the key. If the parity is odd the bits are
rotated to the right, otherwise they are rotated to the left.
In the second stage, transposition is carried between the
sub-blocks. Following this an exchange manipulation
is carried out between different key sub-blocks. In the
third stage, addition modulo 216 operation is performed
with key and plain text sub-blocks after dividing the sub-
blocks into chunks of 16 bits. The Intra sub-block rotation
is carried for each key sub-block once again based on the
key value as it is done before the second stage.

Figure 2.  General block diagram of PACMATS.

Figure 3.  Stages in each round of PACMATS.

J. John Raybin Jose and E. George Dharma Prakash Raj

Indian Journal of Science and Technology 103Vol 7 (S4) | April 2014 | www.indjst.org

In the fourth stage intra plain text substitution is
carried out based on the key sub-block values. An inter
sub-block rotation is performed for the key before the
fifth stage and multiplication modulo 28+1 operation is
performed in the fifth stage with plain text sub-blocks
further divided into chunks of 8-bits based on control
information derived from the key. Then key manipulation
is performed with the key sub-blocks as it is done before
for the second and the fourth stages. In the sixth stage
Intra Sub-block transposition operation is carried out on
the plain text sub-blocks. The key undergoes exchange
sub-block key manipulation once again, as it is done just
before the third stage. In the seventh stage multiplication
modulo 216+1 operation is carried with key and plain
text sub-blocks by dividing the plaintext sub-blocks into
chunks of 16 bits. The key bits then experience Intra sub-
block rotation before they are utilized for intra sub-block
rotation to the left or right based on the initial few bits
of each key sub-block in the eighth and the final stage of
each round. Brief algorithmic depiction of PACMATS
with single round is given as follows:

Input : 1024 bit plain text block
Output : 1024 bit cipher text block
Sub-Block Generation:

1.	 Run environment identification routine to identify
the number of processors/cores ‘p’, their data han-
dling capacities ‘c’ and clock speed ‘s’ to divide the
1024 bits key and the 1024 bits plain text into sub-
blocks of ‘b’ bits.

2.	 if p==1 && c<16 bits && s≤10 MHz then b=8 bits.
3.	 else if p==1 && c≥16 bits && c<32 bits && s>10

MHz && s≤100 MHz then b=16 bits.
4.	 else if p==1 && c≥32bits && c<64bits && s>100MHz

&& s≤1000 MHz then b=32bits.
5.	 else if p≤4 && c≥64 bits && s>1GHz then b=64 bits.
6.	 else if p>4 && c ≥ 64 bits && s > 3GHz then b = 256

bits
7.	 else display “resources unsuitable for implementing

PACMATS”.
Steps in Single Round of PACMATS:
1.	 Addition modulo 28 operation with key and plaintext

sub-blocks.
2.	 Intra sub-block rotation on key sub-blocks.
3.	 Inter sub-block Transposition on plaintext sub-

blocks.
4.	 Exchange sub-block operation on key sub-blocks.
5.	 Addition modulo 216 operation with key and plain-

text sub-blocks.

6.	 Intra sub-block rotation on key sub-blocks.
7.	 Intra sub-block substitution on plaintext sub-blocks.
8.	 Inter sub-block rotation on key sub-blocks.
9.	 Multiplication modulo 28+1 operation with key and

plaintext sub-blocks.
10.	 Intra sub-block rotation on key sub-blocks.
11.	 Intra sub-block Transposition on plaintext.
12.	 Exchange sub-block operation on key sub-blocks.
13.	 Multiplication modulo 216+1 operation with key and

plaintext sub-blocks.
14.	 Intra sub-block rotation on key sub-blocks.
15.	 Intra sub-block rotation on plaintext sub-blocks.

For all normal implementation of PACMATS in
Personal Computers, single round execution is sufficient
as it provides the required security level. Utilization of
straight and reverse modulo arithmetic operations and
inter sub-block and intra sub-block transpositions, sub-
stitutions and shift operations makes PACMATS both
computation and communication intensive in between
the different processing elements available for execution
in parallel environments.

5.  Implementation and Discussion
PACMATS is implemented in shared memory architec-
ture using MPI, OpenMP and Java Threads programming
with different plain text sub-block sizes and compared
with sequential results. The speedup of various combina-
tions of executions are analyzed and compared and the
results are given in Table 1.

SUB-
BLOCK

SIZE

SPEEDUP IN ECB MODE

MPI OpenMP JAVA
Threads

ENC DEC ENC DEC ENC DEC

8 bits 3.32 3.36 2.78 2.82 2.17 2.22

16 bits 3.65 3.71 2.95 3.02 2.54 2.61

32 bits 3.91 3.97 3.42 3.47 2.89 2.95

64 bits 3.93 3.98 3.69 3.75 3.35 3.41

128 bits 3.88 3.96 3.51 3.55 3.21 3.26

256 bits 3.62 3.67 3.16 3.20 2.86 2.90

Table 1.  Implementation of PACMATS (Single
Round)

ECB Mode: Electronic Code Book Mode
ENC : Encryption DEC : Decryption

PACMATS: An Adaptive Symmetric Block Cipher for Parallel Computing Environments

Indian Journal of Science and TechnologyVol 7 (S4) | April 2014 | www.indjst.org104

When PACMATS is implemented in a machine with
multi-core processor with 4 cores yielded a better speedup
in MPI than OpenMP and Java threads, as thread imple-
mentations behave better only for a communication
intensive operation. For all implementations when the
sub-block size is small the speedup is low but it gradually
increases and reaches maximum as the sub-block size in
increased to 64 bits for MPI, OpenMP and Java Threads.
If the sub-block size is increased further the speedup
decreased. A comparative representation of encryption
using MPI, OpenMP and Java threads is shown in Figure
4 and the decryption is shown in Figure 5.

The advantages of PACMATS are its adaptive nature,
ability to run on all parallel architectures, flexibility in
deciding the size of the key and plain text sub-blocks and
the number of rounds. The level of Intra-packet paral-
lelization, variety in grain size and the required security
strength are obtained by suitably deciding the sub-block

Figure 4.  Performance of PACMATS encryption.

Figure 5.  Performance of PACMATS decryption.

size. Flow of the algorithm is made dynamic by deter-
mining the execution steps through each key value at the
runtime.

The performance of parallelized traditional symmet-
ric block ciphers cannot be directly compared with that
of PACMATS’ as those algorithms are static and cannot
adapt themselves to the nature of the computing environ-
ments in which they are executed. Any how the results o
obtained by the research of Bielecki et al21,22 in similar
environments are given in Table 2 for reference. soft Word
document.

Cryptographic
Algorithms

Speedup in ECB Mode

Encryption Decryption

DES 1.65 1.65

Triple DES 1.70 1.70

IDEA 1.65 1.70

AES – 128 bits 3.10 3.30

Table 2.  IPerformance of parallel implementations of
traditional symmetric block ciphers.

6.  Conclusion
PACMATS is an adaptive cryptographic algorithm
that provides better security strength and performance
in parallel computing environments. It requires 5.7 X
10288 years to break this cipher with brute force attack.
PACMATS is a dynamic algorithm as its granularity and
execution stages are decided during runtime using the
bit patterns in the key. As the general reversible tech-
niques are used, this algorithm is scalable. The algorithm
is exclusively designed for software implementations and
to avoid dependency problems in the parallel process-
ing environments. PACMATS is a block cipher in which,
computation and communication intensive operations
are equally distributed over the different stages in each
round of operations and hence the performance of MPI
implementations are better than implementations with
OpenMP and Java Threads.

6.  References
1.	 Stallings W. Cryptography and Network Security-Principles

and Practice. 5th ed. Pearson Education Licensees from
Dorling Kindersley (India) Pvt. Ltd. 2011.

2.	 Schneier B. Applied Cryptography: Protocols, Algorithms,
and Source Code in C. 2nd ed. Wiley and Sons. 1995.

J. John Raybin Jose and E. George Dharma Prakash Raj

Indian Journal of Science and Technology 105Vol 7 (S4) | April 2014 | www.indjst.org

Apr 13–14; New York, USA. p. 279–85.
14.	 Weeks B, Bean M, Rozylowicz T, Ficke C. Hardware

performance simulations of round 2 advanced encryption
standard algorithms. Proceedings of Third Advanced
Encryption Standard Candidate Conference (AES3); 2000
Apr 13–14; York, USA.

15.	 Swankoski EJ, Brooks RR, Narayanan V, Kandemir M, Irwin
MJ. A parallel architecture for secure FPGA symmetric
encryption. 18th International Parallel and Distributed
Processing Symposium, (IPDP’04); 2004; Santa Fe, New
Mexico.

16.	 Kotturi D, Seong-Moo Y, Blizzard J. AES crypto chip
utilizing high-speed parallel pipelined architecture. IEEE
International Symposium on Circuits and Systems ISCAS;
2005.

17.	 Chi-Wu H, Chi-Jeng C, Mao-Yuan L, Hung-Yun T. The
FPGA Implementation of 128-bits AES Algorithm Based
on Four 32-bits Parallel Operation. Paper presented at
the First International Symposium on Data, Privacy and
E-Commerce; 2007.

18.	 Chonglei M, Hai J and Jennes J. CUDA-based AES
Parallelization with fine-tuned GPU memory utilization.
IEEE International Symposium on Parallel, Distributed
Processing, Workshops and Ph.D. Forum (IPDPSW);
2010. p.19–23.

19.	 Ortega J, Tefeffiz H, Treffiz C. Parallelizing AES on
Multicores and GPUs. Proceedings of the IEEE International
Conference on Electro/Information Technology (EIT);
2011 May 15–17; Mankato, US. p. 1–5.

20.	 Li H, Li JZ. A new compact dual-core architecture for AES
encryption and decryption. Can J Electr Comput Eng.
2008; 33(3-4):209–13.

21.	 Bielecki W, Burak D. Parallelization of standard modes of
operation for symmetric key block ciphers. Image Analysis,
Computer Graphics, Security Systems and Artificial
Intelligence Applications. Bialystok; 2005.

22.	 Bielecki W, Burak D. Parallelization of symmetric
block ciphers. Computing, Multimedia and Intelligent
Techniques special issue on Live Biometrics and Security.
Czestochowa University of Technology; 2005.

3.	 Menezes AJ, Van Oorschot PC, Vastone SA. Handbook of
Applied Cryptography. CRC Press. 1996.

4.	 Hoffstein J, Pipher J, Silverman JH. An Introduction
to Mathematical Cryptography. New Delhi: Springer
International Edition. Springer (India) Pvt. Ltd; 2008.

5.	 Khakurel S, Tiwary PK, Maskey N, Sachdeva G. Security
vulnerabilities in IEEE 802.11 and adaptive encryption
technique for better performance. The proceedings of IEEE
Symposium on Industrial Electronics and Applications
(ISIEA 2010); 2010 Oct 3-5; Penang, Malaysia.

6.	 Seidel EC, Gregg JN. Preparing tomorrow’s cryptography:
parallel computation via multiple processors, vector
processing, and multi-cored chips.2003 May 13.

7.	 Rauber T, Runger G. Parallel programming – for multicore
and cluster systems. New Delhi: International Edition.
Springer (India) Pvt. Ltd. 2010.

8.	 Wilkinson B, Allen M. Parallel programming – techniques
and applications using networked workstations and parallel
computers. 2nd ed. New Delhi: Pearson Education. 2005.

9.	 Grama A, Gupta A, Karypis G, Kumar V. Introduction
to Parallel Computing. 2nd ed. New Delhi: Pearson
Education. 2003.

10.	 Kim HW, Choi YJ, Chung K, Ryu HS. Design and
implementation of a private and public key crypto
processor and its application to security system. The
3rd International Workshop on Information Security
Applications (WISA 2002); 2002 Aug 28-30; Jeju, Korea. p.
515–31.

11.	 Pionteck T, Staake T, Stiefmeier T, Kabulepa LD, Glesner
M. Design of reconfigurable AES encryption/decryption
engine for mobile terminals. Paper presented at the
proceedings of the International Symposium on Circuits
and Systems ISCAS; 2004.

12.	 Mukherjee S, Sahoo B. A survey on hardware
implementation of IDEA Cryptosystems. Information
Security Journal: A Global Perspective. 2011; 20(4-5):210–
8.

13.	 Ichikawa T, Kasuya T and Matsui M. Hardware evaluation
of the AES finalists. Proceedings of Third Advanced
Encryption Standard Candidate Conference (AES3); 2000

