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Abstract
Conventional symmetric cryptographic algorithms are designed considering the cryptographic technicalities alone rather 
than the computing capabilities of the modern processing devices. Hence the performances of these algorithms are incon-
sistent and vary enormously when implemented in different computing systems with different processing capabilities. 
Parallelized adaptive cryptographic algorithms that can be related with the characteristics of the present day comput-
ing devices are in great demand. “Parallelized Adaptive Cipher with Modular Arithmetic, Transposition and Substitution” 
(PACMATS) is a different class of cryptographic algorithm involving traditional techniques, which addresses these issues 
effectively. The size of the key and the plain text blocks are each 1024-bits. This symmetric block cipher is made adaptive 
by incorporating flexibility in deciding the size of the key and plain text sub-blocks and the number of rounds. Degree of 
Intra-packet parallelization, variety in grain size and the required security strength are achieved by suitably deciding the 
sub-block size. Flow of the algorithm is made dynamic by determining the execution steps through each key value at the 
runtime. The performance of the PACMATS is analyzed with implementations in shared memory parallel programming 
environment using OpenMP, Java Threads and MPI.

*Author for correspondence

1.  Introduction 
Cryptography deals with the art and science of hid-
ing Information. Cryptographic techniques enable 
to preserve the confidentiality, integrity, authentic-
ity and validity of our information in move or in store. 
Cryptographic algorithms are broadly classified into 
Symmetric or Private Key Algorithms and Asymmetric 
or Public Key Algorithms. The Private Key algorithms 
make use of a single key for encryption and decryption 
and they depend on the safe exchange and handling of 
the key. Private key algorithms can be further classified 
into stream ciphers which deal with single byte at a time 
and block ciphers which handle a group of bytes at a time. 
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Asymmetric key algorithms make use of two keys. A pub-
lic key is used to encrypt the message and it is available 
to all. The secret key is known only to the receiver and it 
is used to decrypt the information. Thus the issue of key 
distribution is overcome in asymmetric cryptography1–3.

PACMATS is a Symmetric Block Cipher, which uti-
lize reversible operations involving Modular Arithmetic, 
Substitution and Transposition techniques. Modular 
Arithmetic operations revolve around the remainder of 
division operation. Modular arithmetic operations are 
denoted using the relation: x mod m = r. Here ‘x’ is an 
integer from the set of integers ‘Z’. A positive integer ‘m’ 
known as modulus is used to divide the value ‘x’ to pro-
duce a positive integer known as residue ‘r’ from the set 
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of residues ‘Zm’. The set of residues comprises all the ele-
ments between 0 and m-1. Modular arithmetic allows 
three binary operations such as addition, subtraction and 
multiplication to be applied on the elements of Zm. After 
applying each operation, the result obtained is mapped 
to Zm with the help of the modulus operator. There is 
always a many-to-one relationship between the elements 
of ‘Z’and ‘Zm’ and this relationship is referred to as con-
gruence.

Addition and multiplication modulo operations can 
be used in cryptography, selecting a value from the set 
of residues ‘Zm’ as key. In order to perform decryption 
the same operation is carried out with the inverse of the 
element as the key. Therefore it is essential to find the 
additive or multiplicative inverse of the key for decryp-
tion. Each element in modular arithmetic has a unique 
additive inverse and at times, the additive inverse of an 
element is the element itself. If ‘x’ and ‘y’ are two elements 
of the set ‘Zm’, ‘x’ is said to be the additive inverse of ‘y’ and 
vice versa if: x+y = 0 (mod m).

An element may or may not have a multiplicative 
inverse. If ‘x’ and ‘y’ are the two elements of the set ‘Zm’, 
then ‘x’ is said to be the multiplicative inverse of ‘y’ and 
vice versa if x * m = 1 (mod m). The simple method to 
determine whether or not a number ‘x’ in ‘Zm’ has a mul-
tiplicative inverse is to compute the GCD of ‘x’ and ‘m’. 
If gcd (x, m) = 1 then ‘x’ and ‘m’ are said to be relatively 
prime and ‘x’ has a multiplicative inverse; otherwise, the 
multiplicative inverse for x in Zm does not exist and these 
values of ‘Zm’ cannot be used for the multiplicative mod-
ulo operations1–4.

Every symbol is replaced with another one in 
Substitution. But, transposition jumbles the symbols in a 
block of data. Substitution causes confusion by making it 
more difficult in to find a connection between the key and 
the cipher text from one end and the key and the plaintext 
from the other end. Transposition produces diffusion and 
makes sure that there is no connection between the sta-
tistics of the symbols in the plaintext and the ciphertext2,3.

Adaptive Cryptography is a trend in Cryptography, 
which makes the cryptographic algorithm and its key 
adaptive by dynamically scaling them, according to the 
requirements of the application or the processing device. 
Adaptive Cryptographic Techniques can be classified as 
(i) Inter-Algorithmic Adaptive Techniques and (ii) Intra-
Algorithmic Adaptive Techniques. Inter-Algorithmic 
Adaptive Techniques involve more than one algorithm 
for different applications or processing environments5. 

Intra-Algorithmic Adaptive Techniques are used within 
the same algorithm by dynamically changing the sub-
block size of the key or the plaintext based on the nature 
of the application or the processing environment in which 
it is executed. Intra-Algorithmic Adaptive Techniques are 
utilized in this research work.

Parallelism accelerates processing by simultane-
ous execution of multiple tasks. Implicit parallelism is 
achieved by the inherent resources and techniques in the 
processing hardware. Explicit parallelism is extracted by 
the external arrangements and codes utilizing the avail-
able parallel resources efficiently. Techniques used for 
explicit parallelism are (i) Per-Connection Parallelism (ii) 
Per-Packet Parallelism and (iii) Intra-Packet Parallelism.

Per-connection parallelism is a method in which each 
connection is provided with individual thread or process 
that executes separately on a single processor. This type of 
parallelization requires no changes to be effected in the 
existing algorithm or the software and. it does not make 
any effort to use sophisticated computing facilities. Per-
packet parallelism is a method in which the connections 
distribute their packet load to several processors, and each 
packet is handled separately. Several Cryptographic algo-
rithms available today support this type of parallelization. 
But cryptographic software that implements this type of 
parallelism is not yet available. Intra-packet parallelism 
is the most difficult concept to implement as it heavily 
depends on the algorithm design. It demands different 
approach in the implementation of the cryptographic 
algorithm, no longer relying on the flexibility of the hard-
ware or operating system over which it is executed6–9. 
Intra-packet parallelism is employed in PACMATS with 
the ability to adjust the operations according to parallel 
environment in which it is executed.

The design of this paper is given as follows. Section II 
gives the Related Works. Section III highlights the draw-
backs in Traditional Cryptography. Description of Parallel 
Adaptive Cipher with Modular Arithmetic, Transposition 
and Substitution (PACMATS) is given in section IV. 
Implementation and Discussion is found in section V and 
Section VI concludes the paper.

2.  Related Works
Efforts to parallelize existing cryptographic algorithms 
have been pursued by several researchers from year 2000 
onward. The prominent of these efforts are classified 
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broadly as Hardware or Software Parallel Cryptographic 
implementations involving several approaches under 
them as shown in figure 1.

HoWon Kim introduced a special-purpose micro-
processor optimized for the execution of the ciphers. 
This crypto processor is made up of a 32-bit RISC pro-
cessor block and a coprocessor block dedicated to SEED 
and Triple-DES algorithms10. Pionteck in their work 
has given a hardware design of AES with reconfigurable 
encryption/decryption engines which supports all key 
sizes. The reconfigurable crypt-engine is integrated in a 
32 bit RISC processor as a functional unit and can oper-
ate in parallel with the standard ALU. The Reconfigurable 
Cryptographic Unit (RCU) is integrated into 32 bit five 
stage pipeline RISC Processor and the area which is used 
for the RCU is less than 27% of the total area11.

Application-Specific Integrated Circuits (ASIC) 
are developed for specific use. When ASICs are used to 
implement cryptographic algorithms they provide robust 
operation and much of the overhead involved in hard-
ware implementation is reduced. The work carried out 
on ASIC implementation of DES, 3DES, IDEA and the 
candidates of AES by S. Mukherjee,, T. Ichikawa and B. 
Weeks et al are prominent in this category12–14.

Field Programmable Gate Array (FPGA) logic cells 
are reconfigurable platforms that provide cost and perfor-
mance effective methods for implementing cryptography. 
Ciphers such as DES, Triple DES, and AES are parallelized 
using FPGAs by Swankoski et al15. Virtex-II Pro, FPGA 
Platform with Verilog HDL and Block RAM resources 

are used for implementation. A hardware design of AES 
in chip is proposed by Kotturi Hierarchical simultaneous 
key generation is used for implementation in ten separate 
units in XC2VP70 device with speed grade 7 in Virtex II 
Pro FPGA. Every unit can run a single round of the algo-
rithm and ten rounds of the algorithm can be executed 
in parallel in a chip with external pipelined design. The 
throughput rate achieved in this method is higher than 
most other implementations16. In yet another implemen-
tation by Chi-Wu, 128-bit AES was decomposed into four 
32-bits to be executed in parallel. This outperformed all 
other recent works by requiring less than 20% reconfigu-
rable area and operated four times faster than 32-bit AES 
by providing double the throughput17.

Multi-core Processors and Graphical Processing Units 
(GPUs) are available at affordable prices. Considering the 
computational demands of the cryptographic algorithms, 
these parallel platforms are relevant to parallelize the 
existing algorithms to enhance the performance. CUDA 
programming is used to parallelize the algorithms in 
GPU18,19. OpenMP is used to extract parallelism from 
Multi-Core Processors20.

The most time-consuming portions of the crypto-
graphic algorithms without involving the I/O functions 
are the loops. Loop parallelization is done for crypto-
graphic algorithms such as DES, Triple DES, IDEA, AES, 
RC5, Blowfish, GOST and LOK191 by Bielecki. The Data 
Dependences are resolved before parallelizing the Loops. 
OpenMP was used to parallelize the loops in these algo-
rithms and Petit was used to resolve dependences in the 
loops. Speedup measurements were presented for all 
these implementations21,22.

Even though all the efforts to parallelize the existing 
conventional cryptographic algorithms with hardware 
and software techniques had given better results, they 
cannot be fully parallelized or implemented efficiently 
in present day computing systems. The dependency 
problems and the inability to efficiently modularize the 
sections of the algorithms hover around and haunt the 
parallelization.

3. � Drawbacks of Traditional 
Cryptography

Traditional view on the efficiency of a cryptographic algo-
rithm focuses only on the complexity of the algorithm and 
the strength and the secrecy of the key. All conventional 

Figure 1.  Classification of parallel implementations of 
cryptographic algorithms.
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symmetric cryptographic algorithms are developed before 
the year 2000 when computers were built around 8, 16 
or 32 bit processors. But now, Cryptographic algorithms 
can be executed much faster on modern computers. The 
Computers of today, and that of future, is not that of 32-bit 
desktops, but of multi-cored chips and multiprocessor 
machines whose processing capacity is 64 or 128 or more 
bits. Parallelizing the cryptographic algorithms is a means 
to utilize these systems effectively. Moreover, the rate of 
encryptions and decryptions carried out per unit time in 
communication systems has increased exponentially. This 
imposes additional overhead in the information exchange 
and causes congestion. A way out of this trouble is to 
develop a new class of adaptive parallel algorithms that 
can reduce the time for ciphering, without compromising 
the security strength6.

The computing capacity of the devices used for differ-
ent applications varies from low end hand held devices 
to the high end multi-processor systems with several 
hundreds of processors. A number of Cryptographic 
Algorithms are in existence today and different 
Cryptographic algorithms are implemented for different 
devices, applications and environments. When informa-
tion has to move through these differences it is inevitable 
that the enciphering and deciphering has to be preformed 
repeatedly several times to switch it over from one cipher 
to another5,6. This makes it evident the need for using the 
same cipher which is adaptive in all situations. The adap-
tive nature of such a cipher can be achieved by flexibly 
changing the sub-block size of the key and the plain-text.

4. �  Parallel Adaptive Cipher 
With Modular Arithmetic, 
Transposition and Substitution 
(PACMATS)

PACMATS is a symmetric block cipher with block 
length and key size each of 1024 bits. The behavior of the 
algorithm is decided dynamically by deriving the control 
information from the key. The granularity of the algo-
rithm is decided by forming sub-blocks of various sizes 
in the range 2n where n = 3 to 8. The processing resources 
available and the security strength required are used to 
decide the number of rounds and size of the sub-blocks. 
This is depicted in figure 2. The sub-block generation 
routine is run to generate key and plain text sub-blocks; 
before they are involved in operations at each stage.

Each round in PACMATS has eight stages as depicted 
in figure 3. In the first stage sub-blocks are divided into 
chunks of 8 bits and addition modulo 28 operations is 
performed with the key sub-blocks and the plain text sub-
blocks in the pattern decided by the initial and the final 
bits of the key. If both these bits are of same value then 
addition modulo operation is performed directly, other-
wise the plain text bits are reversed before the operation. 
The key bits are then rotated to right or left by b/2 posi-
tions within the key sub-blocks so that it can be used in 
the next stage. Here ‘b’ refers to the number of bits in each 
key sub-block. The direction of rotation is determined 
by the parity of the key. If the parity is odd the bits are 
rotated to the right, otherwise they are rotated to the left. 
In the second stage, transposition is carried between the 
sub-blocks. Following this an exchange manipulation 
is carried out between different key sub-blocks. In the 
third stage, addition modulo 216 operation is performed 
with key and plain text sub-blocks after dividing the sub-
blocks into chunks of 16 bits. The Intra sub-block rotation 
is carried for each key sub-block once again based on the 
key value as it is done before the second stage.

Figure 2.  General block diagram of PACMATS.

Figure 3.  Stages in each round of PACMATS.

 

 



J. John Raybin Jose and E. George Dharma Prakash Raj

Indian Journal of Science and Technology 103Vol 7 (S4) | April 2014 | www.indjst.org

In the fourth stage intra plain text substitution is 
carried out based on the key sub-block values. An inter 
sub-block rotation is performed for the key before the 
fifth stage and multiplication modulo 28+1 operation is 
performed in the fifth stage with plain text sub-blocks 
further divided into chunks of 8-bits based on control 
information derived from the key. Then key manipulation 
is performed with the key sub-blocks as it is done before 
for the second and the fourth stages. In the sixth stage 
Intra Sub-block transposition operation is carried out on 
the plain text sub-blocks. The key undergoes exchange 
sub-block key manipulation once again, as it is done just 
before the third stage. In the seventh stage multiplication 
modulo 216+1 operation is carried with key and plain 
text sub-blocks by dividing the plaintext sub-blocks into 
chunks of 16 bits. The key bits then experience Intra sub-
block rotation before they are utilized for intra sub-block 
rotation to the left or right based on the initial few bits 
of each key sub-block in the eighth and the final stage of 
each round. Brief algorithmic depiction of PACMATS 
with single round is given as follows:

Input : 1024 bit plain text block
Output : 1024 bit cipher text block
Sub-Block Generation:

1.	 Run environment identification routine to identify 
the number of processors/cores ‘p’, their data han-
dling capacities ‘c’ and clock speed ‘s’ to divide the 
1024 bits key and the 1024 bits plain text into sub-
blocks of ‘b’ bits.

2.	 if p==1 && c<16 bits && s≤10 MHz then b=8 bits.
3.	 else if p==1 && c≥16 bits && c<32 bits && s>10 

MHz && s≤100 MHz then b=16 bits.
4.	 else if p==1 && c≥32bits && c<64bits && s>100MHz 

&& s≤1000 MHz then b=32bits.
5.	 else if p≤4 && c≥64 bits && s>1GHz then b=64 bits.
6.	 else if p>4 && c ≥ 64 bits && s > 3GHz then b = 256 

bits
7.	 else display “resources unsuitable for implementing 

PACMATS”.
Steps in Single Round of PACMATS:
1.	 Addition modulo 28 operation with key and plaintext 

sub-blocks.
2.	 Intra sub-block rotation on key sub-blocks.
3.	 Inter sub-block Transposition on plaintext sub-

blocks.
4.	 Exchange sub-block operation on key sub-blocks.
5.	 Addition modulo 216 operation with key and plain-

text sub-blocks.

6.	 Intra sub-block rotation on key sub-blocks.
7.	 Intra sub-block substitution on plaintext sub-blocks.
8.	 Inter sub-block rotation on key sub-blocks.
9.	 Multiplication modulo 28+1 operation with key and 

plaintext sub-blocks.
10.	 Intra sub-block rotation on key sub-blocks.
11.	 Intra sub-block Transposition on plaintext.
12.	 Exchange sub-block operation on key sub-blocks.
13.	 Multiplication modulo 216+1 operation with key and 

plaintext sub-blocks.
14.	 Intra sub-block rotation on key sub-blocks.
15.	 Intra sub-block rotation on plaintext sub-blocks.

For all normal implementation of PACMATS in 
Personal Computers, single round execution is sufficient 
as it provides the required security level. Utilization of 
straight and reverse modulo arithmetic operations and 
inter sub-block and intra sub-block transpositions, sub-
stitutions and shift operations makes PACMATS both 
computation and communication intensive in between 
the different processing elements available for execution 
in parallel environments.

5.  Implementation and Discussion
PACMATS is implemented in shared memory architec-
ture using MPI, OpenMP and Java Threads programming 
with different plain text sub-block sizes and compared 
with sequential results. The speedup of various combina-
tions of executions are analyzed and compared and the 
results are given in Table 1. 

SUB-
BLOCK 

SIZE

SPEEDUP IN ECB MODE

MPI OpenMP JAVA 
Threads

ENC DEC ENC DEC ENC DEC

8 bits 3.32 3.36 2.78 2.82 2.17 2.22

16 bits 3.65 3.71 2.95 3.02 2.54 2.61

32 bits 3.91 3.97 3.42 3.47 2.89 2.95

64 bits 3.93 3.98 3.69 3.75 3.35 3.41

128 bits 3.88 3.96 3.51 3.55 3.21 3.26

256 bits 3.62 3.67 3.16 3.20 2.86 2.90

Table 1.  Implementation of PACMATS (Single 
Round)

ECB Mode: Electronic Code Book Mode
ENC : Encryption DEC : Decryption
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When PACMATS is implemented in a machine with 
multi-core processor with 4 cores yielded a better speedup 
in MPI than OpenMP and Java threads, as thread imple-
mentations behave better only for a communication 
intensive operation. For all implementations when the 
sub-block size is small the speedup is low but it gradually 
increases and reaches maximum as the sub-block size in 
increased to 64 bits for MPI, OpenMP and Java Threads. 
If the sub-block size is increased further the speedup 
decreased. A comparative representation of encryption 
using MPI, OpenMP and Java threads is shown in Figure 
4 and the decryption is shown in Figure 5.

The advantages of PACMATS are its adaptive nature, 
ability to run on all parallel architectures, flexibility in 
deciding the size of the key and plain text sub-blocks and 
the number of rounds. The level of Intra-packet paral-
lelization, variety in grain size and the required security 
strength are obtained by suitably deciding the sub-block 

Figure 4.  Performance of PACMATS encryption.

 

 

Figure 5.  Performance of PACMATS decryption.

size. Flow of the algorithm is made dynamic by deter-
mining the execution steps through each key value at the 
runtime.

The performance of parallelized traditional symmet-
ric block ciphers cannot be directly compared with that 
of PACMATS’ as those algorithms are static and cannot 
adapt themselves to the nature of the computing environ-
ments in which they are executed. Any how the results o
obtained by the research of Bielecki et al21,22 in similar 
environments are given in Table 2 for reference. soft Word 
document.

Cryptographic 
Algorithms

Speedup in ECB Mode

Encryption Decryption

DES 1.65 1.65

Triple DES 1.70 1.70

IDEA 1.65 1.70

AES – 128 bits 3.10 3.30

Table 2.  IPerformance of parallel implementations of 
traditional symmetric block ciphers.

6.  Conclusion
PACMATS is an adaptive cryptographic algorithm 
that provides better security strength and performance 
in parallel computing environments. It requires 5.7 X 
10288 years to break this cipher with brute force attack. 
PACMATS is a dynamic algorithm as its granularity and 
execution stages are decided during runtime using the 
bit patterns in the key. As the general reversible tech-
niques are used, this algorithm is scalable. The algorithm 
is exclusively designed for software implementations and 
to avoid dependency problems in the parallel process-
ing environments. PACMATS is a block cipher in which, 
computation and communication intensive operations 
are equally distributed over the different stages in each 
round of operations and hence the performance of MPI 
implementations are better than implementations with 
OpenMP and Java Threads.
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