
Abstract
An intrusion detection system is proposed using Decision Table/Naïve Bayes (DTNB). The Proposed system uses a hybrid 
classifier DTNB that is used to identify possible intrusions. The system is trained using a subset of the NSL KDD Cup 
dataset. The trained model is then tested using a subset of NSL KDD Cup dataset. The DTNB hybrid classifier is able to 
detect intrusion with a superior detection rate.
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1. Introduction

Mankind has become more technology dependent and 
expects World Wide Web to handle daily requirements 
like newspapers, marketing, online transactions etc. The 
integrity, confidentiality and availability of all these web 
based systems are to be protected against a number of 
threats. Hackers and terrorists too have the purpose and 
capability to carry out attacks on communication system. 
Thus, the field of information security has become most 
important for safety and security beside the need based. 
The rapid development of electronic data processing 
requires safe information and security systems through 
the use of authentication, encryption, firewalls, intrusion 
detection systems, and other hardware and software solu-
tions. Vulnerabilities in computer system such as software 
bugs are often manipulated by malicious users. One com-
monly used defense measure against such malicious 
attacks in the Internet is Intrusion Detection Systems 
(IDS). Due to increasing incidents of cyber-attacks, build-
ing effective IDS are essential for protecting web based 
application. IDS has emerged as a significant field of 
research, because it is not theoretically possible to set up a 
system with no vulnerabilities. One main difficulty in IDS 

is that we have to find out the mask attacks from the large 
amount of routine communication activities.

2. Intrusion Detection System
Intrusion detection is hardware or software system1 that 
collects information from computer network analyzes it 
and finds whether there exist any abnormal activity, which 
violates the integrity, availability and confidentiality of the 
computer network. Intrusion detection system monitors 
communication activity and reduces possible attacks. IDS 
are the most important part of the security infrastruc-
ture for the local network connected to the World Wide 
Web or local network itself. IDS can be used to moni-
tor unauthorized network activities, particularly IDS uses 
network traffic to detect, identify and track the intruder. 
The main goal of IDS is to alarm the network administra-
tor if any suspicious activity happening. Mainly IDS can 
be classified in to two categories anomaly detection and 
misuse detection (signature detection)2. Signature based 
IDS references a database of previous attack signatures 
and known system vulnerabilities. The meaning of word  
signature, when we talk about IDS is recorded evidence of 
an attack. Each attack leaves a footprint behind (e.g., login 
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failed, failed attempt to run an application, file access etc.). 
These footprints are called signatures and can be used to 
identify and prevent the same attacks in the future. Based 
on these signatures Signature based IDS identify intrusion 
attempts. Anomaly based IDS references a learned pattern of 
normal system activity to identify active intrusion attempts. 
Deviations from this pattern cause an alarm to be triggered. 

Data mining plays a key role in the field of security and 
a number of research has been carried out viz. Ye et al.2 

in Host based intrusion detection system, Wang et al.3 in 
PCA in computer security, Xiang et al.4 in Multilevel tree 
classifier for intrusion detection system, Mabu s  et  al.5 
in fuzzy class association rule mining using genetic 
programming, Pastrana et al.6 in evaluating classifica-
tion algorithm for intrusion detection system MANET, 
Perira et al.7 in open path forest framework, Koc et al.9 and 
Sindhu et al.8 in Decision tree based light weight intrusion 
detection using a wrapper approach, hidden naïve bayes 
multiclass classifier, Altwaijry et al.10 in baysian based IDS 
Mukherjee et al.11 in naïve bayes classifier with feature 
reduction, Hussain et al.12 in hybrid IDS using snort with 
Naïve Bayes to detect attacks.

2.1 Decision Table
Given a training sample containing labeled instances, an 
induction algorithm builds a hypothesis in some repre-
sentation. The representation we investigate here is a 
decision table with a default rule mapping to the major-
ity class, which we abbreviate as DTM. A DTM13 has two 
components: 

1. A schema, which is set of features.
2. A body which is a multiset of labeled instances? Each 

instance consists of a value for each of the features in 
the schema and a value for the label.

Given a unlabeled instances U, the label assigned to 
the instance by a DTM classifier is computed as follows.
Let L be the set of labeled instances in the DTM exactly 
matching the given instance I, where only the features in 
the schema are required to match and all other features 
are ignored . If L=0, returns the majority class in the DTM 
, otherwise return the majority class in L. Unknown val-
ues are treated as distinct values in matching process.

2.2 Naive Bayes
A Naive Bayes classifier is a simple probabilistic classi-
fier based on applying Bayes theorem (from Bayesian  

statistics) with strong (naive) independence assump-
tions14–15. A more descriptive term for the underlying 
probability model would be ‘independent feature model’. 
In simple terms, a Naive Bayes classifier assumes that the 
presence or absence of a particular feature of a class (i.e. 
attribute) is unrelated to the presence (or absence) of any 
other feature. For example, a fruit may be considered to 
be an apple if it is red, round, and about 4 inches in diam-
eter. Even if these features depend on each other or upon 
the existence of the other features, a Naive Bayes classi-
fier considers all of these properties to independently 
contribute to the probability that this fruit is an apple. 
The advantage of the Naive Bayes classifier is that it only 
requires a small amount of training data to estimate the 
means and variances of the variables necessary for clas-
sification. Because independent variables are assumed, 
only the variances of the variables for each label need to 
be determined and not the entire covariance matrix.

The naive Bayesian classifier works as follows15:

1.  Let D be a training set of tuples and their associated 
class labels. As usual, each tuple is represented by 
an n-dimensional attribute vector = (x1, x2, ... . . xn) 
depicting n measurements made on the tuple from n 
attributes, respectively A1, A2, ... ... , An.

2.  Suppose that there are m classes C1, C2, ... ... , Cm. Given 
a tuple, X, the classifier will predict that X belongs to 
the class having the highest posterior probability, con-
ditioned on X. That is, the naïve Bayesian classifier 
predicts that tuple X belongs to the class Ci if and only if

 Thus, we maximize . The class Ci for which 
 is maximized is called the maximum posteriori hypo-

thesis. By Bayes’ theorem
3.  As P(X) is the same for all classes, only P(X|Ci)P(C1) 

need be maximized. If the class a priori probabilities, 
P(Ci), are not known, then it is commonly assumed 
that the classes are equally likely, that is, P(C1) = 
P(C2) = ... = P(Cm), and we would therefore maximize 
P(X|Ci). Otherwise we maximize P(X|Ci)P(C1). Note 
that the class a priori probabilities may be estimated 
by P(Ci) = |C(i,D)| / |D| where the |C(i,D)| is the number 
of training tuples of the class Ci in D.

4.  Given data sets with many attributes, it would be com-
putationally expensive to compute P(X|Ci). in order to 
reduce computation in evaluating P(X|Ci)P(C1), the 
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naive assumption of class conditional independence is 
made. This presumes that the values of the attributes 
are conditionally independent of one another, given the 
class label of the sample. Mathematically this means that 

We can easily estimate the probabilities 
from the training set.

Here xk is value of the attribute Ak for tuple X.
(a)  If Ak is categorical, then             is the number of samples
 of class Ci in D having the value xk for attribute Ak, 

divided by |Ci,D|, the number of sample of class Ci in D. 
(b)  If Ak is continuous valued, then we typically assume 

that the values have a Gaussian distribution with a 
mean μ and standard deviation σ defined by

  We need to compute μci and σci, which are the mean 
and standard deviation of values of attribute Ak for 
training samples of class Ci.

5.  In order to predict the class label of X, P(X|Ci)P(C1) is 
evaluated for each class Ci. The classifier predicts that 
the class label of X is Ci if and only if it is the class that 
maximizes P(X|Ci)P(C1).

2.3 DTNB Hybrid Classifier16

A DT (decision table) stores the input data in condensed 
form based on a selected set of attributes and uses it as 
a lookup table when making predictions. Each entry in 
the table is associated with class probability estimates 
based on observed frequencies. The key to learning a DT 
is to select a subset of highly discriminative attributes. 
The standard approach is to choose a set by maximiz-
ing cross-validated performance. Cross-validation is 
efficient for DTs as the structure does not change when 
instances are added or deleted, only the class counts 
associated with the entries change. Similarly, cross vali-
dation for Naive Bayes (NB) is also efficient as frequency 
counts for discrete attributes can be updated in constant 

time. In our experiments we used forward selection to 
select attributes in stand-alone DTs because it performed 
significantly better than backward selection. Numeric 
attributes in the training data (including those to be 
modeled by NB) were discretized using MDL-based dis-
cretization (Fayyad & Irani 1993), with intervals learned 
from the training data. The algorithm for learning the 
combined model (DTNB) proceeds in much the same 
way as the one for stand-alone DTs. At each point in the 
search it evaluates the merit associated with splitting 
the attributes into two disjoint subsets: one for the DT, 
the other for NB. We use a forward selection, where, at 
each step, selected attributes are modeled by NB and the 
remainder by the DT, and all attributes are modeled by 
the DT initially. Leave-one-out cross-validated AUC is 
used to evaluate the quality of a split based on the prob-
ability estimates generated by the combined model. Note 
that AUC can easily be replaced by other performance 
measures. We chose AUC to enable a fair comparison to 
NB (and hence only used two-class datasets in our exper-
iments). AUC was also used to select attributes for the 
stand-alone DT. The class probability estimates of the DT 
and NB must be combined to generate overall class prob-
ability estimates. Assuming XT is the set of attributes in 
the DT and X⊥ the one in NB, the overall class probability 
is computed as

where QDT(y|XT) and QNB(y|X⊥) are the class probabil-
ity estimates obtained from the DT and NB respectively, 
α is normalization constant, and Q(y) is the prior prob-
ability of the class. All probabilities are estimated using 
Laplace corrected observed counts. 

In addition to the method described above, we also 
consider a variant that includes attribute selection, which 
can discard attributes entirely from the combined model. 
To this end, in each step of the forward selection, an attri-
bute can be discarded rather than added to the NB model. 

3. Dataset
KDD’99 is the mostly used data set for the anom-
aly detection methods, in contains around 2 million 
records in test data and approximately 4,900,000 records 
in training dataset, each of which contains 41 features 
and one decision attribute. NSL-KDD is a data set  

P X
C

P
x
C

P
x
C

P
x
C

P
x

i

k

k=1

n

i i

n











 =






















×










× ×

∏
1

1 2 ...
CCi













P
x
C

, P
x
C

P
x
Ci i

n1 2

1



































, ... ,

P
x
C

k

i













g (x, )= e

so that P
x
C

g(x , c , c )

x

k
k i 1

=











 =

− −( )

µ,σ

πσ

µ σ

µ

σ
1

2

2

22

1

Q(y|X)= Q (y|X )
Q (y|X )

Q(y)DT
NB

α
T
×

⊥

,



Data Mining based Hybrid Intrusion Detection System

Indian Journal of Science and TechnologyVol 7 (6) | June 2014 | www.indjst.org784

starting and ending at some well-defined times with a  
well-defined protocol. Further, every record is represented 
by 41 different features and a special decision attribute. 
Each record represents a separate connection and is hence 
considered to be independent of any other record. The 
training data is either labeled as normal or as one of the 
22 different kinds of attacks similarly, the test data is also 
labeled as either normal or as one of the 22 different kinds 
of attacks. In our experiment NSL KDD data set is used to 
train the model, by applying the DTNB hybrid classifier. 
After model training we applied NSL KDD test data set 
to test the model, our testing dataset contains 24999 ran-
domly chosen records. On testing data set DTNB model 
gave 97.1399 % instance correctly classified and 2.8601 % 
instance incorrectly classified. Table 1 shows the detailed 
accuracy of the framework class. Table 2 shows the per-
formance of the DTNB based proposed framework, and 
the Table 3 shows the confusion matrix generated by the 
model.

4.3  Visualization of the Performance of 
Model thrh Confusion Matrix

A confusion matrix is a specific rectangular layout that 
allows visualization of the performance of a model or 
algorithm. Each column of the matrix represents the 
instances in a predicted class, while each row represents 
the instances in an actual class. 

suggested to solve some of the inherent problems of 
the KDD’99 data set17. NSL KDD cup dataset18 does not 
include redundant records in the train set and test set. 
To test our IDS system we used the NSL KDD Intrusion 
Detection Evaluation dataset, in our experiments we 
used the 24999 randomly chosen records from NSL 
KDD dataset.

4. Architecture of Proposed IDS

4.1 Steps for Experiment
Step1: Preprocessing
• Normalization – Scaling
• Class merging
• Role setting
• Data Filtering
Step2: Feature. Selection
Step3: Model Learning
• DBTN
Step4: Evaluation of Model
Step5: Compare with supervised method

4.2 Experiments and Result
For our experiments, we use the NSL KDD intrusion data 
set. This data set is improved version of KDD 99 intru-
sion detection. Each record in the data set represents a 
connection between source and destination IP addresses, 

Figure 1. IDS framework.

Table 1. Testing result of NSL KDD 
test datset
Parameter Result
Correctly Classified Instances 97.1399 %
Incorrectly Classified Instances 2.8601 %
Kappa statistic 0.9531
Mean absolute error 0.0047
Root mean squared error 0.0464
Relative absolute error 7.8043 %
Root relative squared error 26.8136 %
Coverage of cases (0.95 level) 99.12 %
Mean rel. region size (0.95 level) 6.5143 %
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Table 2. Dataset Description
Attribute Description Type
duration  duration (number of seconds) of the connection  Numeric
protocol_type  type of the protocol, e.g. tcp, udp, etc.  Nominal
service  network service on the destination, e.g. http, telnet, etc.  Nominal
src_bytes  number of data bytes from source to destination Numeric
dst_bytes  number of data bytes from destination to source  Numeric
flag  Normal or error flag status of the connection Nominal
land  1 if connection is from/to the same host/port; 0 otherwise  Numeric
wrong_fragment  number of ``wrong’’ fragments  Numeric
urgent  number of urgent packets Numeric
hot  number of ``hot’’ indicators Numeric
num_failed_logins  number of failed login attempts  Numeric
logged_in  1 if successfully logged in; 0 otherwise  Numeric
num_compromised  number of ``compromised’’ conditions  Numeric
root_shell  1 if root shell is obtained; 0 otherwise  Numeric
su_attempted  1 if ``su root’’ command attempted; 0 otherwise  Numeric
num_root  number of ``root’’ accesses  Numeric
num_file_creations  number of file creation operations  Numeric
num_shells number of logins of normal users Numeric
num_access_files  number of operations on access control files  Numeric
num_outbound_cmds number of outbound commands in an ftp session  Numeric
is_host_login  1 if the login belongs to the ``hot’’ list; 0 otherwise  numeric
is_guest_login  1 if the login is a ``guest’’login; 0 otherwise  Numeric
count  number of connections to the same host as the current 

connection in the past two seconds 
Numeric

srv_count sum of connections to the same destination port number Numeric
serror_rate  % of connections that have ``SYN’’ errors  Numeric
rerror_rate  % of connections that have ``REJ’’ errors  Numeric
same_srv_rate  % of connections to the same service  Numeric
diff_srv_rate  % of connections to different services  Numeric
srv_serror_rate  % of connections that have ``SYN’’ errors  Numeric
srv_rerror_rate  % of connections that have ``REJ’’ errors  Numeric
srv_diff_host_rate  % of connections to different hosts  Numeric
dst_host_count sum of connections to the same destination IP address Numeric
dst_host_srv_count sum of connections to the same destination port number Numeric
dst_host_same_srv_rate % of connections that were to the same service, among the 

connections aggregated in dst_host_count
Numeric

dst_host_diff_srv_rate % of connections that were to different services, among the 
connections aggregated in dst_host_count

Numeric

dst_host_same_src_port_rate % of connections that were to the same source port, among 
the connections aggregated in dst_host_srv_count

Numeric

dst_host_srv_diff_host_rate % of connections that were to different destination 
machines, among the connections aggregated in dst_host_
srv_count

Numeric

dst_host_serror_rate % of connections that have activated the flag s0, s1, s2 or s3, 
among the connections aggregated in dst_host_count

Numeric

dst_host_srv_serror_rate % of connections that have activated the flag s0, s1, s2 or s3, 
among the connections aggregated in dst_host_srv_count

Numeric

dst_host_rerror_rate % of connections that have activated the flag REJ, among the 
connections aggregated in dst_host_count

Numeric

dst_host_srv_rerror_rate % of connections that have activated the flag REJ, among the 
connections aggregated in dst_host_srv_count

Numeric

class Type of attacks Nominal
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Table 3. Detailed Accuracy by Class
TP Rate FP Rate Precision Recall F-Measure MCC ROC 

Area
PRC 
Area

Class

0.959 0.002 0.998 0.959 0.978 0.955 1.000 1.000 normal
0.983 0.004 0.847 0.983 0.910 0.910 0.999 0.980 portsweep
0.995 0.000 1.000 0.995 0.997 0.996 1.000 1.000 neptune
0.969 0.002 0.947 0.969 0.958 0.957 0.998 0.982 satan
0.942 0.003 0.914 0.942 0.928 0.926 0.999 0.975 ipsweep
1.000 0.000 0.769 1.000 0.870 0.877 1.000 1.000 guess_pass
1.000 0.001 0.912 1.000 0.954 0.954 1.000 1.000 back
0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.016 land
0.600 0.006 0.021 0.600 0.041 0.112 0.972 0.103 imap
0.910 0.003 0.783 0.910 0.842 0.842 0.999 0.858 nmap
0.974 0.000 0.822 0.974 0.892 0.895 1.000 0.980 pod
1.000 0.000 0.989 1.000 0.994 0.994 1.000 1.000 smurf
0.000 0.000 0.000 0.000 0.000 0.000 0.807 0.000 ftp_write
0.250 0.001 0.053 0.250 0.087 0.114 0.946 0.013 rootkit
0.000 0.007 0.000 0.000 0.000 -0.001 0.952 0.004 warezmaster
0.667 0.002 0.075 0.667 0.136 0.224 0.957 0.534 buffer_overflo
0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 loadmodule
0.000 0.000 0.000 0.000 0.000 0.000 0.876 0.001 multihop
0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.013 phf
1.000 0.000 0.979 1.000 0.989 0.989 1.000 1.000 teardrop
0.971 0.001 0.986 0.971 0.978 0.965 1.000 0.995 Weighted Avg

Table 4. Confusion Matrix
a b c d e F g h i j k L m n o p q r s t classified as

12890 67 0 26 37 3 17 0 110 59 5 6 0 17 153 48 0 0 0 4 a=normal
0 577 1 4 0 0 0 0 2 1 0 0 0 0 2 0 0 0 0 0 b=portsweep
0 4 8240 7 0 0 0 0 25 0 0 0 0 0 6 0 0 0 0 0 c=neptune
4 3 0 666 0 0 1 0 0 7 3 0 0 1 2 0 0 0 0 0 d=satan
4 30 0 0 669 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 e=ipsweep
0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f=guess_pass
0 0 0 0 0 0 196 0 0 0 0 0 0 0 0 0 0 0 0 0 g=back
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 h=land
1 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 i=imap
0 0 0 0 26 0 0 0 1 274 0 0 0 0 0 0 0 0 0 0 j=nmap
0 0 0 0 0 0 0 0 0 1 37 0 0 0 0 0 0 0 0 0 k=pod
0 0 0 0 0 0 0 0 0 0 0 529 0 0 0 0 0 0 0 0 l=smurf
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m=ftp_write
2 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 n=rootkit
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o=warezmaster
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 p=bufferoverflo
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 q=loadmodule
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r=multihop
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s=phf
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 t=teardrop
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relative absolute error, root relative squared error, cover-
age of cases at 0.95 levels and mean rel. region size at 0.95 
levels. Figures 5 provide the graphical representation of 
confusion matrix; it shows the ratio of actual class and 
predicted class in terms of correctly classified instance.

5. Discussion
In this paper, the following parameters are used to evalu-
ate the performance:

• Mean Absolute Error (MAE) 
• Root Mean-Squared Error (RMSE)
• Correctly Classified Instances
• Incorrectly Classified Instances
• Kappa Statistic 
• Relative absolute error
• Root relative squared error
• Coverage of cases (0.95 level)
• Mean rel. region size (0.95 level)

Table 5 shows the comparison of Naive Bayes and 
Decision Stump with the hybrid classifier used in the pro-
posed IDS framework. Here we see that DTNB has better 
accuracy as compared to the Naïve bayes and decision 
stump.

Here we provide the graphical representation of vari-
ous parameters used for performance evaluation. Figure 2 
shows the comparison of correctly classified instance and 
incorrectly classified instance, We can see that DTNB 
hybrid classifier 97.1399 %, Naïve Bayes 53.4261 % and 
Decision Stump 83.9194 instance correctly classified. 
Figure 3shows the comparison of kappa, mean absolute 
error and root mean square error. Figure 4 shows the  

Table 5. Comparison of DTNB and other Models
Parameter DTNB Naive Bayes decision 

stump
Correctly Classified 
Instances

97.1399 % 53.4261 % 83.9194 %

Incorrectly Classified 
Instances

2.8601 % 46.5739 % 16.0806 %

Kappa statistic 0.9531 0.4297 0.7099
Mean absolute error 0.0047 0.0461 0.0281
Root mean squared 
error

0.0464 0.2111 0.1185

Relative absolute 
error

7.8043 % 77.0879 % 46.9274 %

Root relative squared 
error

26.8136 % 122.0494 % 68.5196 %

Coverage of cases 
(0.95 level) 

99.12 % 57.0103 % 96.4359 %

Mean rel. region size 
(0.95 level)  

6.5143 % 5.4838 % 16.6879 %

Figure 2. Comparison of classified instance.

Figure 3. Comparison of Kappa, MAE, RMSE.

Figure 4. Comparison of RAE, RRSE, CC and MRRS.
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6. Conclusion
In this paper data mining based intrusion detection 
framework is proposed, framework is based on the 
DTNB (Decision Table/ Naïve Bayes). NSL KDD dataset 
is used to test the effectiveness of the DTNB based model. 
Fundamental concept behind choosing NSL KDD data-
set is , there are so many errors in the KDD data set like 
redundancy, Due to errors KDD dataset may give biased 
result, that’s why here we chosen NSL KDD dataset to test 
the effectiveness of the DTNB model. To analyses the per-
formance of discussed classifiers, in this paper different 
parameters are used, are Correctly Classified instance, 
Incorrectly Classified instance, Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE) and Kappa 
Statistic. After analyses, the result of hybrid classifier used 
in the proposed framework provides better performance 
on behalf of following parameters correctly classified 
instance, incorrectly classified instance, RMSE, MAE, 
Time Taken and Kappa Statistic as compared to the Naïve 
Bayes and Decision Stump. 
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