
Abstract
An intrusion detection system is proposed using Decision Table/Naïve Bayes (DTNB). The Proposed system uses a hybrid
classifier DTNB that is used to identify possible intrusions. The system is trained using a subset of the NSL KDD Cup
dataset. The trained model is then tested using a subset of NSL KDD Cup dataset. The DTNB hybrid classifier is able to
detect intrusion with a superior detection rate.

*Author for correspondence

Indian Journal of Science and Technology, Vol 7(6), 781–789, June 2014
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Data Mining based Hybrid Intrusion
Detection System

Chandrashekhar Azad* and Vijay Kumar Jha

Dept. of Information Technology, Birla Institute of Technology, Mesra, Ranchi, Jhrakhand, India;
csazad@bitmesra.ac.in, vkjha@bitmesra.ac.in

1. Introduction

Mankind has become more technology dependent and
expects World Wide Web to handle daily requirements
like newspapers, marketing, online transactions etc. The
integrity, confidentiality and availability of all these web
based systems are to be protected against a number of
threats. Hackers and terrorists too have the purpose and
capability to carry out attacks on communication system.
Thus, the field of information security has become most
important for safety and security beside the need based.
The rapid development of electronic data processing
requires safe information and security systems through
the use of authentication, encryption, firewalls, intrusion
detection systems, and other hardware and software solu-
tions. Vulnerabilities in computer system such as software
bugs are often manipulated by malicious users. One com-
monly used defense measure against such malicious
attacks in the Internet is Intrusion Detection Systems
(IDS). Due to increasing incidents of cyber-attacks, build-
ing effective IDS are essential for protecting web based
application. IDS has emerged as a significant field of
research, because it is not theoretically possible to set up a
system with no vulnerabilities. One main difficulty in IDS

is that we have to find out the mask attacks from the large
amount of routine communication activities.

2. Intrusion Detection System
Intrusion detection is hardware or software system1 that
collects information from computer network analyzes it
and finds whether there exist any abnormal activity, which
violates the integrity, availability and confidentiality of the
computer network. Intrusion detection system monitors
communication activity and reduces possible attacks. IDS
are the most important part of the security infrastruc-
ture for the local network connected to the World Wide
Web or local network itself. IDS can be used to moni-
tor unauthorized network activities, particularly IDS uses
network traffic to detect, identify and track the intruder.
The main goal of IDS is to alarm the network administra-
tor if any suspicious activity happening. Mainly IDS can
be classified in to two categories anomaly detection and
misuse detection (signature detection)2. Signature based
IDS references a database of previous attack signatures
and known system vulnerabilities. The meaning of word
signature, when we talk about IDS is recorded evidence of
an attack. Each attack leaves a footprint behind (e.g., login

Keywords: Anomaly Detection, DTNB, IDS, Misuse Detection

Data Mining based Hybrid Intrusion Detection System

Indian Journal of Science and TechnologyVol 7 (6) | June 2014 | www.indjst.org782

failed, failed attempt to run an application, file access etc.).
These footprints are called signatures and can be used to
identify and prevent the same attacks in the future. Based
on these signatures Signature based IDS identify intrusion
attempts. Anomaly based IDS references a learned pattern of
normal system activity to identify active intrusion attempts.
Deviations from this pattern cause an alarm to be triggered.

Data mining plays a key role in the field of security and
a number of research has been carried out viz. Ye et al.2

in Host based intrusion detection system, Wang et al.3 in
PCA in computer security, Xiang et al.4 in Multilevel tree
classifier for intrusion detection system, Mabu s et al.5
in fuzzy class association rule mining using genetic
programming, Pastrana et al.6 in evaluating classifica-
tion algorithm for intrusion detection system MANET,
Perira et al.7 in open path forest framework, Koc et al.9 and
Sindhu et al.8 in Decision tree based light weight intrusion
detection using a wrapper approach, hidden naïve bayes
multiclass classifier, Altwaijry et al.10 in baysian based IDS
Mukherjee et al.11 in naïve bayes classifier with feature
reduction, Hussain et al.12 in hybrid IDS using snort with
Naïve Bayes to detect attacks.

2.1 Decision Table
Given a training sample containing labeled instances, an
induction algorithm builds a hypothesis in some repre-
sentation. The representation we investigate here is a
decision table with a default rule mapping to the major-
ity class, which we abbreviate as DTM. A DTM13 has two
components:

1. A schema, which is set of features.
2. A body which is a multiset of labeled instances? Each

instance consists of a value for each of the features in
the schema and a value for the label.

Given a unlabeled instances U, the label assigned to
the instance by a DTM classifier is computed as follows.
Let L be the set of labeled instances in the DTM exactly
matching the given instance I, where only the features in
the schema are required to match and all other features
are ignored . If L=0, returns the majority class in the DTM
, otherwise return the majority class in L. Unknown val-
ues are treated as distinct values in matching process.

2.2 Naive Bayes
A Naive Bayes classifier is a simple probabilistic classi-
fier based on applying Bayes theorem (from Bayesian

statistics) with strong (naive) independence assump-
tions14–15. A more descriptive term for the underlying
probability model would be ‘independent feature model’.
In simple terms, a Naive Bayes classifier assumes that the
presence or absence of a particular feature of a class (i.e.
attribute) is unrelated to the presence (or absence) of any
other feature. For example, a fruit may be considered to
be an apple if it is red, round, and about 4 inches in diam-
eter. Even if these features depend on each other or upon
the existence of the other features, a Naive Bayes classi-
fier considers all of these properties to independently
contribute to the probability that this fruit is an apple.
The advantage of the Naive Bayes classifier is that it only
requires a small amount of training data to estimate the
means and variances of the variables necessary for clas-
sification. Because independent variables are assumed,
only the variances of the variables for each label need to
be determined and not the entire covariance matrix.

The naive Bayesian classifier works as follows15:

1. Let D be a training set of tuples and their associated
class labels. As usual, each tuple is represented by
an n-dimensional attribute vector = (x1, x2, xn)
depicting n measurements made on the tuple from n
attributes, respectively A1, A2, , An.

2. Suppose that there are m classes C1, C2, , Cm. Given
a tuple, X, the classifier will predict that X belongs to
the class having the highest posterior probability, con-
ditioned on X. That is, the naïve Bayesian classifier
predicts that tuple X belongs to the class Ci if and only if

 Thus, we maximize . The class Ci for which
 is maximized is called the maximum posteriori hypo-

thesis. By Bayes’ theorem
3. As P(X) is the same for all classes, only P(X|Ci)P(C1)

need be maximized. If the class a priori probabilities,
P(Ci), are not known, then it is commonly assumed
that the classes are equally likely, that is, P(C1) =
P(C2) = ... = P(Cm), and we would therefore maximize
P(X|Ci). Otherwise we maximize P(X|Ci)P(C1). Note
that the class a priori probabilities may be estimated
by P(Ci) = |C(i,D)| / |D| where the |C(i,D)| is the number
of training tuples of the class Ci in D.

4. Given data sets with many attributes, it would be com-
putationally expensive to compute P(X|Ci). in order to
reduce computation in evaluating P(X|Ci)P(C1), the

P
C
X

C
X

for 1 j m, j ii j

 >

≤ ≤ ≠

P
C
X

i

P
C
X

i

Chandrashekhar Azad and Vijay Kumar Jha

Indian Journal of Science and Technology 783Vol 7 (6) | June 2014 | www.indjst.org

naive assumption of class conditional independence is
made. This presumes that the values of the attributes
are conditionally independent of one another, given the
class label of the sample. Mathematically this means that

We can easily estimate the probabilities
from the training set.

Here xk is value of the attribute Ak for tuple X.
(a) If Ak is categorical, then is the number of samples
 of class Ci in D having the value xk for attribute Ak,

divided by |Ci,D|, the number of sample of class Ci in D.
(b) If Ak is continuous valued, then we typically assume

that the values have a Gaussian distribution with a
mean μ and standard deviation σ defined by

 We need to compute μci and σci, which are the mean
and standard deviation of values of attribute Ak for
training samples of class Ci.

5. In order to predict the class label of X, P(X|Ci)P(C1) is
evaluated for each class Ci. The classifier predicts that
the class label of X is Ci if and only if it is the class that
maximizes P(X|Ci)P(C1).

2.3 DTNB Hybrid Classifier16

A DT (decision table) stores the input data in condensed
form based on a selected set of attributes and uses it as
a lookup table when making predictions. Each entry in
the table is associated with class probability estimates
based on observed frequencies. The key to learning a DT
is to select a subset of highly discriminative attributes.
The standard approach is to choose a set by maximiz-
ing cross-validated performance. Cross-validation is
efficient for DTs as the structure does not change when
instances are added or deleted, only the class counts
associated with the entries change. Similarly, cross vali-
dation for Naive Bayes (NB) is also efficient as frequency
counts for discrete attributes can be updated in constant

time. In our experiments we used forward selection to
select attributes in stand-alone DTs because it performed
significantly better than backward selection. Numeric
attributes in the training data (including those to be
modeled by NB) were discretized using MDL-based dis-
cretization (Fayyad & Irani 1993), with intervals learned
from the training data. The algorithm for learning the
combined model (DTNB) proceeds in much the same
way as the one for stand-alone DTs. At each point in the
search it evaluates the merit associated with splitting
the attributes into two disjoint subsets: one for the DT,
the other for NB. We use a forward selection, where, at
each step, selected attributes are modeled by NB and the
remainder by the DT, and all attributes are modeled by
the DT initially. Leave-one-out cross-validated AUC is
used to evaluate the quality of a split based on the prob-
ability estimates generated by the combined model. Note
that AUC can easily be replaced by other performance
measures. We chose AUC to enable a fair comparison to
NB (and hence only used two-class datasets in our exper-
iments). AUC was also used to select attributes for the
stand-alone DT. The class probability estimates of the DT
and NB must be combined to generate overall class prob-
ability estimates. Assuming XT is the set of attributes in
the DT and X⊥ the one in NB, the overall class probability
is computed as

where QDT(y|XT) and QNB(y|X⊥) are the class probabil-
ity estimates obtained from the DT and NB respectively,
α is normalization constant, and Q(y) is the prior prob-
ability of the class. All probabilities are estimated using
Laplace corrected observed counts.

In addition to the method described above, we also
consider a variant that includes attribute selection, which
can discard attributes entirely from the combined model.
To this end, in each step of the forward selection, an attri-
bute can be discarded rather than added to the NB model.

3. Dataset
KDD’99 is the mostly used data set for the anom-
aly detection methods, in contains around 2 million
records in test data and approximately 4,900,000 records
in training dataset, each of which contains 41 features
and one decision attribute. NSL-KDD is a data set

P X
C

P
x
C

P
x
C

P
x
C

P
x

i

k

k=1

n

i i

n

 =

×

× ×

∏
1

1 2 ...
CCi

P
x
C

, P
x
C

P
x
Ci i

n1 2

1

, ... ,

P
x
C

k

i

g (x,)= e

so that P
x
C

g(x , c , c)

x

k
k i 1

=

 =

− −()

µ,σ

πσ

µ σ

µ

σ
1

2

2

22

1

Q(y|X)= Q (y|X)
Q (y|X)

Q(y)DT
NB

α
T
×

⊥

,

Data Mining based Hybrid Intrusion Detection System

Indian Journal of Science and TechnologyVol 7 (6) | June 2014 | www.indjst.org784

starting and ending at some well-defined times with a
well-defined protocol. Further, every record is represented
by 41 different features and a special decision attribute.
Each record represents a separate connection and is hence
considered to be independent of any other record. The
training data is either labeled as normal or as one of the
22 different kinds of attacks similarly, the test data is also
labeled as either normal or as one of the 22 different kinds
of attacks. In our experiment NSL KDD data set is used to
train the model, by applying the DTNB hybrid classifier.
After model training we applied NSL KDD test data set
to test the model, our testing dataset contains 24999 ran-
domly chosen records. On testing data set DTNB model
gave 97.1399 % instance correctly classified and 2.8601 %
instance incorrectly classified. Table 1 shows the detailed
accuracy of the framework class. Table 2 shows the per-
formance of the DTNB based proposed framework, and
the Table 3 shows the confusion matrix generated by the
model.

4.3 Visualization of the Performance of
Model thrh Confusion Matrix

A confusion matrix is a specific rectangular layout that
allows visualization of the performance of a model or
algorithm. Each column of the matrix represents the
instances in a predicted class, while each row represents
the instances in an actual class.

suggested to solve some of the inherent problems of
the KDD’99 data set17. NSL KDD cup dataset18 does not
include redundant records in the train set and test set.
To test our IDS system we used the NSL KDD Intrusion
Detection Evaluation dataset, in our experiments we
used the 24999 randomly chosen records from NSL
KDD dataset.

4. Architecture of Proposed IDS

4.1 Steps for Experiment
Step1: Preprocessing
• Normalization – Scaling
• Class merging
• Role setting
• Data Filtering
Step2: Feature. Selection
Step3: Model Learning
• DBTN
Step4: Evaluation of Model
Step5: Compare with supervised method

4.2 Experiments and Result
For our experiments, we use the NSL KDD intrusion data
set. This data set is improved version of KDD 99 intru-
sion detection. Each record in the data set represents a
connection between source and destination IP addresses,

Figure 1. IDS framework.

Table 1. Testing result of NSL KDD
test datset
Parameter Result
Correctly Classified Instances 97.1399 %
Incorrectly Classified Instances 2.8601 %
Kappa statistic 0.9531
Mean absolute error 0.0047
Root mean squared error 0.0464
Relative absolute error 7.8043 %
Root relative squared error 26.8136 %
Coverage of cases (0.95 level) 99.12 %
Mean rel. region size (0.95 level) 6.5143 %

Chandrashekhar Azad and Vijay Kumar Jha

Indian Journal of Science and Technology 785Vol 7 (6) | June 2014 | www.indjst.org

Table 2. Dataset Description
Attribute Description Type
duration duration (number of seconds) of the connection Numeric
protocol_type type of the protocol, e.g. tcp, udp, etc. Nominal
service network service on the destination, e.g. http, telnet, etc. Nominal
src_bytes number of data bytes from source to destination Numeric
dst_bytes number of data bytes from destination to source Numeric
flag Normal or error flag status of the connection Nominal
land 1 if connection is from/to the same host/port; 0 otherwise Numeric
wrong_fragment number of ``wrong’’ fragments Numeric
urgent number of urgent packets Numeric
hot number of ``hot’’ indicators Numeric
num_failed_logins number of failed login attempts Numeric
logged_in 1 if successfully logged in; 0 otherwise Numeric
num_compromised number of ``compromised’’ conditions Numeric
root_shell 1 if root shell is obtained; 0 otherwise Numeric
su_attempted 1 if ``su root’’ command attempted; 0 otherwise Numeric
num_root number of ``root’’ accesses Numeric
num_file_creations number of file creation operations Numeric
num_shells number of logins of normal users Numeric
num_access_files number of operations on access control files Numeric
num_outbound_cmds number of outbound commands in an ftp session Numeric
is_host_login 1 if the login belongs to the ``hot’’ list; 0 otherwise numeric
is_guest_login 1 if the login is a ``guest’’login; 0 otherwise Numeric
count number of connections to the same host as the current

connection in the past two seconds
Numeric

srv_count sum of connections to the same destination port number Numeric
serror_rate % of connections that have ``SYN’’ errors Numeric
rerror_rate % of connections that have ``REJ’’ errors Numeric
same_srv_rate % of connections to the same service Numeric
diff_srv_rate % of connections to different services Numeric
srv_serror_rate % of connections that have ``SYN’’ errors Numeric
srv_rerror_rate % of connections that have ``REJ’’ errors Numeric
srv_diff_host_rate % of connections to different hosts Numeric
dst_host_count sum of connections to the same destination IP address Numeric
dst_host_srv_count sum of connections to the same destination port number Numeric
dst_host_same_srv_rate % of connections that were to the same service, among the

connections aggregated in dst_host_count
Numeric

dst_host_diff_srv_rate % of connections that were to different services, among the
connections aggregated in dst_host_count

Numeric

dst_host_same_src_port_rate % of connections that were to the same source port, among
the connections aggregated in dst_host_srv_count

Numeric

dst_host_srv_diff_host_rate % of connections that were to different destination
machines, among the connections aggregated in dst_host_
srv_count

Numeric

dst_host_serror_rate % of connections that have activated the flag s0, s1, s2 or s3,
among the connections aggregated in dst_host_count

Numeric

dst_host_srv_serror_rate % of connections that have activated the flag s0, s1, s2 or s3,
among the connections aggregated in dst_host_srv_count

Numeric

dst_host_rerror_rate % of connections that have activated the flag REJ, among the
connections aggregated in dst_host_count

Numeric

dst_host_srv_rerror_rate % of connections that have activated the flag REJ, among the
connections aggregated in dst_host_srv_count

Numeric

class Type of attacks Nominal

Data Mining based Hybrid Intrusion Detection System

Indian Journal of Science and TechnologyVol 7 (6) | June 2014 | www.indjst.org786

Table 3. Detailed Accuracy by Class
TP Rate FP Rate Precision Recall F-Measure MCC ROC

Area
PRC
Area

Class

0.959 0.002 0.998 0.959 0.978 0.955 1.000 1.000 normal
0.983 0.004 0.847 0.983 0.910 0.910 0.999 0.980 portsweep
0.995 0.000 1.000 0.995 0.997 0.996 1.000 1.000 neptune
0.969 0.002 0.947 0.969 0.958 0.957 0.998 0.982 satan
0.942 0.003 0.914 0.942 0.928 0.926 0.999 0.975 ipsweep
1.000 0.000 0.769 1.000 0.870 0.877 1.000 1.000 guess_pass
1.000 0.001 0.912 1.000 0.954 0.954 1.000 1.000 back
0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.016 land
0.600 0.006 0.021 0.600 0.041 0.112 0.972 0.103 imap
0.910 0.003 0.783 0.910 0.842 0.842 0.999 0.858 nmap
0.974 0.000 0.822 0.974 0.892 0.895 1.000 0.980 pod
1.000 0.000 0.989 1.000 0.994 0.994 1.000 1.000 smurf
0.000 0.000 0.000 0.000 0.000 0.000 0.807 0.000 ftp_write
0.250 0.001 0.053 0.250 0.087 0.114 0.946 0.013 rootkit
0.000 0.007 0.000 0.000 0.000 -0.001 0.952 0.004 warezmaster
0.667 0.002 0.075 0.667 0.136 0.224 0.957 0.534 buffer_overflo
0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 loadmodule
0.000 0.000 0.000 0.000 0.000 0.000 0.876 0.001 multihop
0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.013 phf
1.000 0.000 0.979 1.000 0.989 0.989 1.000 1.000 teardrop
0.971 0.001 0.986 0.971 0.978 0.965 1.000 0.995 Weighted Avg

Table 4. Confusion Matrix
a b c d e F g h i j k L m n o p q r s t classified as

12890 67 0 26 37 3 17 0 110 59 5 6 0 17 153 48 0 0 0 4 a=normal
0 577 1 4 0 0 0 0 2 1 0 0 0 0 2 0 0 0 0 0 b=portsweep
0 4 8240 7 0 0 0 0 25 0 0 0 0 0 6 0 0 0 0 0 c=neptune
4 3 0 666 0 0 1 0 0 7 3 0 0 1 2 0 0 0 0 0 d=satan
4 30 0 0 669 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 e=ipsweep
0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f=guess_pass
0 0 0 0 0 0 196 0 0 0 0 0 0 0 0 0 0 0 0 0 g=back
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 h=land
1 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 i=imap
0 0 0 0 26 0 0 0 1 274 0 0 0 0 0 0 0 0 0 0 j=nmap
0 0 0 0 0 0 0 0 0 1 37 0 0 0 0 0 0 0 0 0 k=pod
0 0 0 0 0 0 0 0 0 0 0 529 0 0 0 0 0 0 0 0 l=smurf
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m=ftp_write
2 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 n=rootkit
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o=warezmaster
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 p=bufferoverflo
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 q=loadmodule
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r=multihop
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s=phf
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 t=teardrop

Chandrashekhar Azad and Vijay Kumar Jha

Indian Journal of Science and Technology 787Vol 7 (6) | June 2014 | www.indjst.org

relative absolute error, root relative squared error, cover-
age of cases at 0.95 levels and mean rel. region size at 0.95
levels. Figures 5 provide the graphical representation of
confusion matrix; it shows the ratio of actual class and
predicted class in terms of correctly classified instance.

5. Discussion
In this paper, the following parameters are used to evalu-
ate the performance:

• Mean Absolute Error (MAE)
• Root Mean-Squared Error (RMSE)
• Correctly Classified Instances
• Incorrectly Classified Instances
• Kappa Statistic
• Relative absolute error
• Root relative squared error
• Coverage of cases (0.95 level)
• Mean rel. region size (0.95 level)

Table 5 shows the comparison of Naive Bayes and
Decision Stump with the hybrid classifier used in the pro-
posed IDS framework. Here we see that DTNB has better
accuracy as compared to the Naïve bayes and decision
stump.

Here we provide the graphical representation of vari-
ous parameters used for performance evaluation. Figure 2
shows the comparison of correctly classified instance and
incorrectly classified instance, We can see that DTNB
hybrid classifier 97.1399 %, Naïve Bayes 53.4261 % and
Decision Stump 83.9194 instance correctly classified.
Figure 3shows the comparison of kappa, mean absolute
error and root mean square error. Figure 4 shows the

Table 5. Comparison of DTNB and other Models
Parameter DTNB Naive Bayes decision

stump
Correctly Classified
Instances

97.1399 % 53.4261 % 83.9194 %

Incorrectly Classified
Instances

2.8601 % 46.5739 % 16.0806 %

Kappa statistic 0.9531 0.4297 0.7099
Mean absolute error 0.0047 0.0461 0.0281
Root mean squared
error

0.0464 0.2111 0.1185

Relative absolute
error

7.8043 % 77.0879 % 46.9274 %

Root relative squared
error

26.8136 % 122.0494 % 68.5196 %

Coverage of cases
(0.95 level)

99.12 % 57.0103 % 96.4359 %

Mean rel. region size
(0.95 level)

6.5143 % 5.4838 % 16.6879 %

Figure 2. Comparison of classified instance.

Figure 3. Comparison of Kappa, MAE, RMSE.

Figure 4. Comparison of RAE, RRSE, CC and MRRS.

Data Mining based Hybrid Intrusion Detection System

Indian Journal of Science and TechnologyVol 7 (6) | June 2014 | www.indjst.org788

6. Conclusion
In this paper data mining based intrusion detection
framework is proposed, framework is based on the
DTNB (Decision Table/ Naïve Bayes). NSL KDD dataset
is used to test the effectiveness of the DTNB based model.
Fundamental concept behind choosing NSL KDD data-
set is , there are so many errors in the KDD data set like
redundancy, Due to errors KDD dataset may give biased
result, that’s why here we chosen NSL KDD dataset to test
the effectiveness of the DTNB model. To analyses the per-
formance of discussed classifiers, in this paper different
parameters are used, are Correctly Classified instance,
Incorrectly Classified instance, Mean Absolute Error
(MAE), Root Mean Square Error (RMSE) and Kappa
Statistic. After analyses, the result of hybrid classifier used
in the proposed framework provides better performance
on behalf of following parameters correctly classified
instance, incorrectly classified instance, RMSE, MAE,
Time Taken and Kappa Statistic as compared to the Naïve
Bayes and Decision Stump.

7. References
 1. Available from: http://en.wikipedia.org/wiki/Intrusion_

detection_system
 2. Ye N, Emran SM, Chen Q, Vilbert S. Multivariate statistical

analysis of audit trails for host-based intrusion detection.
IEEE Transactions on Computers. 2002; 51.

 3. Wang W, Guan X, Zhang X. A novel intrusion detection
method based on principle component analysis in com-
puter security. Springer-Verlag Berlin Heidelberg. 2004;
657–62.

 4. Xiang C, Chong MY, Zhu HL. Design of multiple-level tree
classifiers for intrusion detection system. Proceedings of
the 2004 IEEE Conference on Cybernetics and Intelligent
Systems Singapore; 2004.

 5. Mabu S, Chen C, Lu N, Shimada K, Hirasawa K. An intru-
sion-detection model based on fuzzy class-association-rule
mining using genetic network programming. IEEE
Transactions on systems, MAN, and Cybernetics—Part C:
Applications and Reviews. 2011; 41.

 6. Pastrana S, Mitrokotsa A, Orfila A, Peris–Lopez P.
Evaluation of classification algorithms for intrusion
detection in MANETs. Knowledge Based Systems. 2012;
36:217–25.

 7. Pereira CR, Nakamura RYM, Costa KAP, Papa JP. An opti-
mum path forest framework for intrusion detection in
computer networks. Engineering Applications of Artificial
Intelligence. 2012; 25:1226–34.

 8. Sindhu SSS, Geetha S, Kannan A. Decision tree based light
weight intrusion detection using a wrapper approach.
Expert Systems with Applications. 2012; 39:129–41.

 9. Koc L, Mazzuchi TA, Sarkani S. A network intrusion
detection system based on a Hidden Naïve Bayes multi-
class classifier. Expert Systems with Applications. 2012;
39:13492–500.

10. Altwaijry H, Algarny S. Bayesian based intrusion detec-
tion system. Journal of King Saud University – Computer and
Information Sciences. 2012; 24:1–6.

Figure 5. Graphical representation of confusion matrix.

Chandrashekhar Azad and Vijay Kumar Jha

Indian Journal of Science and Technology 789Vol 7 (6) | June 2014 | www.indjst.org

15. Han J, Kamber M. Data mining concepts and techniques.
2nd ed.

16. Hall M, Frank E. Combining Naive Bayes and decision
tables. Proceedings of the 21st Florida Artificial Intelligence
Society Conference (FLAIRS); 2008.

17. Tavallaee M, Bagheri E, Lu W, Ghorbani A. A detailed anal-
ysis of the KDD CUP 99 data set. Submitted to Second IEEE
Symposium on Computational Intelligence for Security
and Defense Applications (CISDA); 2009.

18. Available from: http://nsl.cs.unb.ca/NSL-KDD/

11. Mukherjee DS, Sharma N. Intrusion detection using
Naive Bayes classifier with feature reduction. Procedia
Technology. 2012; 4:119–28.

12. Hussein SM, Ali FHM, Kasiran Z. Evaluation effectiveness
of hybrid IDS using snort with Naive Bayes to detect attacks.
IEEE. 2012.

13. Kohavi R. The power of decision tables. 8th European
Conference on Machine Learning. 1995. p. 174–89

14. John GH, Langley P. Estimating continuous distributions in
bayesian classifiers. Eleventh Conference on Uncertainty in
Artificial Intelligence. 1995; San Mateo. P. 338–45.

