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Abstract
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1. Primary Concepts

DEFINITION 1.1 Laplace transform of the function f(¢) is
defined as follows

LUf(t)st — s} = | e f(t)dt = F(s).

(1.1)
If L{f(t)}=F(s), then L'{F(s)} is given by
Fy=-""T e*Fs)ds,
2770 i (1.2)

where F(s) is analytic in the region Re(s) >c.

DEFINITION 1.2 For an arbitrary real number o >0
(n—1<a<n, neN) Caputo fractional derivative’

f(ﬂ)(x)
(t _ x)(lfn+1

1
(n-o)

D! f(H)= ]!

DEFINITION 1.3 The Dirac delta function is defined by
some authors as the function having the properties

*Author for correspondence

0 x=a
+oo x#a

1- J(x—a)z{

21— [Ox-a)p(x)dx=p(a). acR
3—  o)I(t—a)=¢(a)d(t —a)

Where ¢(x) is any continuous and bounded
function.

PROBLEM 1.4 Evaluate inverse Laplace transform of the
function

70
—AS
(4

F(s)= 7

; O<a<l, 0</4<1.

SoLUTION. Integrating over the close contour I" we have

o 0o
1 cHT 7% 1 —ARSY ,//
- j 7 CStdS'f'—‘ _[ T//I Re’” etRe d(g
27mi it S 27ic, (Re")
7 (0 i0(7=0)
1 fe_/"(re ) oo i(2-6)
27ir e’ e dr
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ueiu//)

1 e’
T Wwe’ﬁe” ad
zic, &e
a —ia(7-0)
1 Ref/( ¢ ) ey i)
-'-2721'j /e =0 e dr
¢ (1.3)

Now we show that the integrals along the arcs C,,Cy
tend to zero as R— co.

P10 IR cosaf plof tReosd
R® 050
e cos R e cos dﬂ,

e, | <7
|27i] 4

Cp|—

making a new change of variable 0./ =w one can rewrite
the above integral as below,

R1 7 a(z-0) , (R cos

|IC < J‘ e—AR coswe adW,
X 27700 o,

. . ) V4
again making a new change of variable ¢=5+wwe
have,

—_p o= 2p-7
Rl 4 - tRcos(L)
|ICR < e R 2 do
2ra aﬂl+£
2
_p e olz=0 _
R (7= )+2 Reo (ZZ -7,
<= ¢ | e “ dp.

270

ocﬂl+z
2

(1.4)

On the other hand, o, + <p<d(z- d")+ 5 there-

fore,¢9<———<7z J. ButwehaveR—)ooo"—>O and
o 20

7
consequently 4, — 750 -1< cos(

) <0. Substituting

in (1.4) and assuming R — oo we get hm |I Ce | =0. Similarly

one can prove that hm |I | =

r o \3 c+T

1
£)
<
N
L 4

Figure 1.1
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Now, let us evaluate the integral along the arc C,

1 (=0 e cosad) 1
| &7do,

I8k
27[ =0

which assuming ¢ — 0,6 — 0 can be rewritten as

-4 _,
[ do=o0,

e=0 27 %

lim|1 <
£—0 C

substituting in (1.3) and letting J — 0 we have

2 aei(x(nﬂ)") )

1 cti=e ™ 1 =e ¢

st _ i(7=0) _re'")
27 CL s’ ¢ dS_Zm' { /e 7=0) ¢ ¢ dr
() )
1 e _i(”_()-)em—iwwdr
27iy rPe P ’
or

1 ctHieo o ’/:Su 1 (= " o
—rt —f —Ar cosax
Zm / s’ 2ﬂ je T
Cc—ioo

{2i cos fr.sin(Ar® sinouz)) + 2isin fzz. cos(Ar® sin ouz))dr,J

thus, the final solution is obtained as below

o
c+z°c —4s

- J‘ slds_ (Ie rt 7,5 —ir® cosor Sln(ﬁﬂ'

270 i

+ Ar® sin om)Jdr.
(1.5)

PROBLEM 1.5 Evaluate the inverse Laplace transform of
the function
In(s+4)

F(s)=——=; O<u<A.
s+u

SOLUTION. By using the definition of the inverse Laplace
transform one has

LI iy LI
270 oo stu

but the function F(s) has a branch point at s, =—/ and a
simple pole at s, =—«. Now by integrating along the con-
tour I" shown in figure 1.2 we have

+iT
1 o ln(s+2)dsziyj o ln(s+2)ds

27i T st+u 27i yoir s+u
1 In(s+ 4 1 In(s+ 4
+— e“Mds+—. | e“Mds
27 ¢, s+u 27i ¢ s+u
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v

Figure 1.2

+L‘Je“Mds+L' J e“

27ic, s+u 27i A s+u

+LI ln(s+2)d e (),
278 cp s+u

In(s+ 4) ds

In (s+2)

in which e™ In(/ —x)=Res{e” ;s=—u}. One

can show that the integration along the arcs Cp,Crand C,
tends to zero. Therefore

y+iT
17 o ln(s+2)dS:_L o ln(s+2)ds

27i ylir s+u 27i AB s+u
1 In(s+ 4
-——Je" Mds—e"/” In(4 - p).
27i cp s+u (1.6)

It suffices to evaluate the integrals along the segments
AB,CD .We have

1 [ InGs+4) In(s+ 4) 1 . In(s+4)

I_ std J‘ std
27miap S+ u 27zz co Stu
:L_T£1n|x+2|+i” Xtdx-i-L' -j“’ In|x + A|—iz .
27 - x+u 27i -1 xX+u

making a new change of variable u=—x, one can rewrite
the above integration as below

I:L < In(x—A)+iz ,de_i ]" In(x—A)—iz e
2miiee pH—X 2minve HU—X

if ¢ tends to zero we have

1 = 27i = e
[=—— [ ey =e |
27y x— e U

du

— e—/lt ]’o de = _e—/eri ((,ﬂ - 1)t)’

(1-p)t W
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substituting in (1.6) we obtain

y+iT
L e InGHA) e i (=)= e In(i - )

=—(eE, (1~ )t) +1In(4 — ).

27i i s+

LEMMA 1.6 (TITCHMARSH) Let F(p) be an analytic
function having no singularities in the cut plane C\R .
Assume that F(p) = F(p) and the limiting values

F*(t)= lim F(te*™), F*(t)=F (t)

exist for almost all
(i) F(p)=o0(1) for |p|— <o and F(p)=o(p|") for |p| >0,
uniformly in any sector |arg p| <zm—1,7>5>0;

(ii) There exists ¢ >0 such that for every z—¢ <@ <7,

F(re™™)

eL'(R,), |F(re")|<a(r),

where a(r) does not depend on ¢ and a(rye” el (R,)
for any J > 0. Then, in the notation of the problem,

f&)=L"[F(s)]= J m[F" (i7)le™" dy.

PROOF. See 1316,

ProBLEM 1.7 Find inverse Laplace transform of the func-
tion discussed in problem 1.4

—As*

F(s):esﬂ . O<o<l, 0<pg<l.

by using Titchmarsh formula in lemmal.6.

SOLUTION. By using lemma 1.6 we have
LHF(s) t}= f(1)= iTIm[Jim, F(ze ™))" dy,
T o — 7

substituting the function F(s) in the above formula we
get

e*/is“ 1= e*/.'(//e_’”)“
LY sth=—[Im| ———— |e™"dy,
s’ V4 { (e ™Y 7

therefore, the result is obtained as

. a
—AS =/l cosarn
e 1<e

L {——th=— ] ———sin(zf + 4" sinzo)e™" dy,
s 7T o Vi
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one can observe that the result which obtained here is
exactly the same as relationship (1.5).

DIFINITION 1.8 Finite Fourier sine and cosine transforms
are defined as

EAf ()= E )= f)sin ™ dx,
E{f(x)n=F(n)=] f(x) cos " dx,
while their inverse are as below
FME (n)ix) = f(x) = % 3 E(nsin ™,

-1 = fx)= L 25 nzx
E {E(n),x}—f(x)—Lli(OHLZﬁ(n)cos I

n=1

DIFINITION 1.9 Laguerre differential equation is defined
as

xy”+(1-x)y"+ny=0; y(0)=nl,

which can be solved by using Laplace transform .Let us
assume that

L{y(x)} = L{L, (x)} = F(s),

taking Laplace transform of Laguerre differential equation
we obtain

Fi)=2a-Yy =1 (),
N N

LEMMA 1.10 : The following integral relations hold true.
1 7
Jx*bei(24/|Inx|)dx = 47" sin 47, 0< x <1
0

} bei(2,2/|\l/rlx| Jdx _ O
x

0
PROOF: Let us define the following integral
1 )
1(O) =] x*"'bei(24(|In x|¢)dx
0

Now, we calculate Laplace transform of the above rela-
tion to obtain

L@, s} = | e {x" bei(2 Inxld)dxlde

[
=[x s sin(|lnx|s™)}dx
0
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In the last integral, let us introduce the new variable,
w=-Inx
By setting the above change of variable in the last inte-
gral, we get
L&), st =s" T e ™ sin(s"'w)dw = !
’ 0 A5 +1

Upon inversion, one gets the following relationship

g A 1L €
I(H=L {J(sz+[2)}_jsmj

At this point, by setting £=1, one gets
1
Jx""bei(2(|In x|)dx = 4" sin 4™
0

For special case £/ =0.5, we obtain

}bei(2,1|lnx|)dx >ein2
—————=2sin
2Jx

0

2. Two Dimensional Laplace
Transform

DEFINITION 2.1 Two dimensional Laplace transform of
the function f(x,y) is defined as

+o0 400

F(p.q)=] | e"™ f(x, y)dxdy,

(2.1)
while its inverse is given by
1 C+ioo ¢'+ico -
feoy)=-— 1 [ F(p.qe™”dpdg,
27i c—ioo ¢’—joo (22)

where F(p,q) is analytic in the region Re p>¢,Reg>c"*.

LEMMA 2.2 Let us assume that L{f(t)}=F(s), then the
following relationship holds true

1 9 p
L7 +by)} = {F— —F—}.
oS (ax +by)} bp—aq ()-FC)
PROOF. By definition of two dimensional Laplace trans-
form we have

L flax+by)h= | [ e f(ax-+by)dxdy,

0 0

now, making a change of variables ax+by=u, in the
inner integral we obtain
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u—by

L;P"“{f<ax+by>}=§76”T‘f—?( ) fydudy,

changing the order of integrals to get

oo oy (0,
LZ(P’q){f(ax+by)}=é | flwe < Je (”

0

)dydu,
consequently, the final result is obtained as below

1 4 _pP
e

L(P,q) —
, PP f(ax+by)} bp—aa

EXAMPLE 2.3 Evaluate

412 4y*
LZ(M){ln(9x + 4xy+ y )

SOLUTION. By definition we have
2 2
L InE IR ) 00 a4 2y))
4xy
— 1 {In(4xp)},

from lemma 2.2 we can write
L9 {InGx +2y)} =— iln(ﬁ)— Eln(ﬂ)
2p=3qp \3/ g \2

3l

on the other hand, by using definition we know that

L9 {In(4xy)} = —i(ln(ﬂ) +1Ing +2}/),
pq\ 4

in which y =0.5772...1is the Euler constant. Therefore, the
final result will be

m 9x* +12xy+4y°

? 4xy

-2 {iln(ﬁ)—Eln(ﬂ)}+i(1n(£)+1nq).
2p=3q |p \3) q \2/| pq\ 4

PRrOPOSITION 2.4 The following relationship holds true

TTef(x2+2xycost9+yz)dxdy =— .
00 sind (2'3)
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Prookr. Consider the change of variables as below by
using matrix of spinning 45° around the origin

el L
2R
1 1’
N=—=X+—1=y

V2 V2 (2.4)

substituting in (2.3) one gets

x*+2xycosf+y' = +7° +(& -7 )cosb,|]| =1, (25)

in which J is the Jacobian determinant. Now, from defini-
tion 2.1 we have

L,{exp[-(x* +2xy cos &+ y*)]}

p(&ty) =<

= [[exp(-& =" = (" =E)cosDe & ¢ * dédy,
00

(2.6)
or one can rewrite the above equation as below

o gvz(cosb’—l)-%—g(piq) o —;/2(1+cost9)+7”(p+q)

Je Zodex e 2 dy
0

0

2_ 2
ENTEAW I
s s 24/2(1-cosd)?

ptq

xerfc| ———— |
24/2(1+cosd)?

(2.7)

Now, setting P=9=0, get the desired relationship

T

we )
J‘Je (x"+2xycost+y )dxdy= .
00 sind

THEOREM 2.5 Consider the function

h(x,y)= T flu—x)g(u— y)k(u)du,
max(x,y) (28)

the following relationship holds true
L9 {h(x, )} = [ POk [e ™ f(x)g(y)dxdy)du
0 00

PROOF. By definition of two dimensional Laplace trans-
form, one has

L(zp,q) {h(x, y)}= ]‘q]ce*pac*qy T fu—x)g(u—y)k(u)du,

max(x,y)

Indian Journal of Science and Technology I 88l -



Advances in Laplace Type Integral Transforms with Applications

now, we consider two cases for h(x,y):y>xand y<x
and integrate over these regions and add them together
to obtain

L(Zp,q) {h(x, y)} = ]?efqy f e P T f(u —x)g(u— y)k(u)dudxd)’

+ T e“”‘Te"” T flu—x)g(u— y)k(u)dudydx, (2.9)

0

changing the order of the inner integrals we have

oo

[eo T glu— y)k)] e fu—x)dxdudy

+ Te’p"off(u - x)k(u)T e ¥ g(u— y)dydudx,

by a change of variables —x =7 in the first triple integral
and u— y =¢ in the second triple integral, one gets

oo

= Te‘”” Je ™ g(u—y)k(u) T e” f(y)dydudy

u-y

=

o e —qu _ I as
Her e fu=okw) ] etgQdedudz ;)

now we change the order of outer integrals in both terms
of the above equation, to get

=Te"’”k(u)}e"”g(u—y) } e” f(y)dydydu

0 0 u-y

+ e k)] e ™ flu—x) | ¥ g(O)dcidxdu,

again by a change of new variables 4 —x =7 in the second
triple integral and u— y = ¢ in the first triple integral we
have

oo

=] e-“““q’k(u)zequ(@z e f()dydédu
+[e UKW (] g(Odeiydu,
it means that
L9 {h(x, y>}=Ie“(P*wk(u)(zequ(@zewf(mdmg
+ e”f(wi equ@dfd;;)du,

and consequently

I 852 | voi; (6) | June 2014 | www.indjst.org

L9 {h(x, )} = [ PPk {] e £(x) g (y)dxdy)du.

LeEMMA 2.6 The following relationship holds true

LK, (x+y)ix = p.y —q}
_ 1 [cosTp cos'q
g=p\\1-p" 1-¢’

PRroOF. By using the following integral representation
we have

(2.11)

K,(x+y)= Tcos((x + y)sinh /)dd.
0 (2.12)

Now, from definition of two dimensional Laplace
transform one has

L {Ky(x+ )= TTe"(P“'”) (T cos((x + y)sinh ﬂ)dﬂ) dxdy,
00 0

by using the following elementary relationship
cos(xsinh @+ ysinh &) = cos(x sinh &) cos( y sinh &)
—sin(x sinh )sin(ysinh &)
and changing the order of integrals, we can write

pq—sinh® &
o (p* +sinh® #)(g” +sinh® /)

LPO{K, (x+ )} =]

ZT p B q ao .
o\ p*+sinh*@ g’ +sinh’ @ )g—p

By manipulating similarly to what we have done in
lemma 2.2, one gets finally

cos™ p

L(Z"’”’){Ko(x+y);x—>p,y—>q}— cos_ q .
a-p\\i-p* J1-q

COROLLARY 2.7 The following relationship holds true

1| arccosp arccosq
L(qu) {K |X _ y|} _ [ J
’ ’ p+q\ J1-p° \/1 q (2.13)

PRrOOE. By using the following integral representation for
K, (x)

K, (x) = | cos(xsinh £)dd),
0 (2.14)
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we have

K,|x—y|= Tcos(|x — y|sinh &)dé.
0 (2.15)

Because of the symmetry property of the cosine func-
tion we can write

K, |x - y| = Tcos((x — y)sinh 0)do.
0 (2.16)

Now, from definition of two dimensional Laplace
transform and lemma 2.5 we have

LPK, |x—y|}

= TTe—(pxw) (T cos((x— y)sinh ﬂ)dﬂ) dxdy
00 0

1 [arccos P arccoqu

T p+a J1 J1

COROLLARY 2.8 The following relationship holds true

YK, ({Jx* +2xy cosO+ y* )}
P 2pqcosﬂ

sin” ¢ EIfC((p Q)\/_

Zsmf
2

(p+ q)f

2cos—
2

o=
2sin’ &

Jerfe(

ProoOEF. By using the following integral representation
for modified Bessel function of the second kind or the
Mac - Donald function of order zero

1= Z> dt
K, (z)==]exp(-t——)—, z>0,
(2) 2£ P 4t) t

and substituting z = \/x* +2xy cos#+ y* we have

KO(\/x2+2xycosH+y2)=%J at -
0

w X 2 12xy cosO+y? dt

now, by definition of Laplace transform we get

LK, (\Jx* +2xycos O+ y*)}
o 0o o _x 21 2xy cos O+ y*
=%_”e px— qy{J‘e m ﬂ}dxdy,
00

it suffices to change the order of integrals and use the
change of variables

Vol 7 (6) | June 2014 | www.indjst.org

to get the following relationship after some manipulations

LYK, (\/x2 +2xycosf+ y* )}

2 1=cosd - +cost/
_lje (J 2 q-pry 1“/ )(I g2 df)dt

20 t \o

now, considering two inner integrals as Laplace transform
of functions the final result will be

LYK, (\/x2 +2xycosf+y*)}

7R (maE p+q)f
28111 @ Zsmg ZCOSE

LEMMA 2.9 (Evaluation of convergent series by means of
two dimensional Laplace transform) Show that

§= 5 L,(x)L, (uy) ="~ 0(x =" y).

(2.17)
PRrROOF. From definition 1.9 we know that®
1 1
L{L,(x)}=—0-—)",
p P (2.18)
and consequently
1 A
L{L,(Ax)}=—(1-—)",
p P (2.19)

(Since L{f(f)
a

sional Laplace transform of series S to get

}=aF(ap)). Now, taking two dimen-

1p7is}=3 {la—i)" xl(l—ﬁ)"}
p P 9 9

n=0

=ii(1—i)"(1—§>",

=0 pq
and this is a geometric series which converges to
1 1 1
—X j = .
“ya=* Aq+pup—Aiu
q

Pq 1-qa-

Then taking the inverse two dimensional Laplace
transform leads to

1
S=L'{—
’ {Jq +ﬂp—iﬂ}

e[ e )
2700 e 270 o AQ+ pUp — Apt b |2

Indian Journal of Science and Technology I 883 -
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_1 X L,C fm exp(— 4= jﬂx)e‘”dq
MU 270 e Y24
e’ Ax

or by replacing x by y and y by x we get
“y

A

S=

J(x—%y).

LeMMA 2.10 The following relationship holds true

127 ber(JOK,2Dds _x
0 \/E 2

1
]o(g)-

ProoF. By making a change of variables \/E =u we have
I= ZT ber(\/ﬂ)Ko Qu)du,
0

now introducing the following integral by using a new
variable ¢

1(t) = 2] ber(\Jut K, (2u)du,

it suffices to take Laplace transform of I(t) with respect
to ¢ to obtain
2= u
L{I(t);t > s}==[ cos— K, (2u)du
so  4s

2 V.4 V4

s 1
s 2\/ —+4 2\/s2+
165 64

consequently, the final result will be obtained by taking
inverse Laplace transform and letting ¢ =1 as below

7
2 /52 +L
64

3. Mathieu Series

4 , %L
I=It=1)=L" ,s—>t—1}—2]0(8)-

Thefollowing infinite series

=%

. (JeR'
Zray  UeER)

(3.1)
is named after Emile Leonard Mathieu (1835-1890), who
is investigated in his work on elasticity of solid bodies. An
alternating version of Mathieu series (4.1) is in the form

I 854 | voi; (6) | June 2014 | www.indjst.org

2n

m, (zER)

S(4)=3% ()"

n=l (3.2)
our purpose is to obtain new integral representations for
the above series, it is obvious that the series are conver-
gent( see ' ).

LEMMA 3.1 The following relationship holds true for the
Mathieu series

= 2n
S=
DYy
1 r -4y 274 Y
:m { e ((2r—ye +y)cot5dy.

Proor. By definition of two dimensional Laplace trans-
form we have

F(p,q)= L(z"’q){sini(x + )}

= Te"’” (T sin A(x + y)e_‘”‘dx)dy
0 0

_Tow psindy+.4icosdy J
ie { P+ A 4
_ A(p+q)

(@ +27)(p*+ 4%

We know that (see 2)

1
e’ -1

i F(n,n)= T (T sin £ wdy)dw,
n=1 0 0

(3.3)
it means that

> 2n 1=wsinAw
== dw.
nz::l(n2+/22)2 i£ -1

(3.4)
Let us evaluate the following integral

©COSAW
I(4)=]—;

0o e —1

dw,
(3.5)

and then differentiate it with respect to {to get the

desired result. For this purpose, let us consider the com-
plex function

iiz

e
b
e’ -1

flz)=
(3.6)

with simple poles at points z =0,27i. Consider the follow-
ing integral along the path which is shown in figure 3.1

Indian Journal of Science and Technology
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L f2)dz=0.
27ir (3.7)

Moving along the path I'" counterclockwise we get

R ei/fw 27 HiA(R+iy) o piAdw+2zi)
:g[ ew _1 dW + -([ eR+iy ldy +J‘ w+27zi _1 dW
Y et/(27n+£e ) 2—e ei/f(iy)
+ f ———ige’dd— | ——idy
0 -1 & -1
0 em(ee ) )
+] ice”dd=0.
ze —1
2 (3.8)

Oneobtainsthefollowingrelationshipif R — +e0,& — 0
in (3.8)

s

too eixiw 5 ;+t><: ei/fw 5 o
| —dw—e"] dw+ [ ie?™d0d
oe —1 0 e — 0
2 oA 0
—if dy+ [idd=0,
0o e’ —1 z
2 (3.9)
Consequently, we have
Aw . 2 oA
-W)j ¢ dw—z—(1+e i S dy=o,
e” 0e’ —1
(3.10)

The above relationship can be rewritten as following
after simple manipulations

oo ei/[w 72,1+e—27:/
| dw=i————
0e”" -1 21—
"y 1 2e " (cosy—1—isiny)
i
1-e? o (cosy—1)* +sin’ y

At this point, it suffices to take real part of the above
relationship, to obtain

= COS AW 1 2 e7siny

dw=———]
o e" -1 1—e?™ 3 2(1- cosy) (3.11)

Figure 3.1

Vol 7 (6) | June 2014 | www.indjst.org

differentiating (3.11) with respect to /£ and then
multiplying by % we get
+owsin A w
[
o e —1

-1 e (e (y-27)- y)siny |
All—e™) 5 2(1—cos y) & (3.12)

1
J

now, from (3.4) it is clear that

-1 e (e (y—27) — y)smyd
All—e?™) 5 2(1—cos y) & (3.13)

or we may write

1 2z . o y
=—— [ e (Qr-y)e ™™ + y)cot=dy.
A=) { (2z-y) y)cot=-dy 1

LEMMA 3.2 The following relationship holds true for
alternating Mathieu series

S_v n—-1 2n
S_ﬂz:l( D (n +z2)

-1 . o y
=—7 - Me V(e (y—27x)— y)tan=dy.

PROOF. Similarly to lemma 3.1 from the following inte-
gral representation for alternating Mathieu series

= 2n 1=wsindAw
_1 n—1 - w,
nZ‘:I( ) (n2+j2)2 Ao e’ +1 (316)
we have to evaluate
©COSAW
I1(4)= f dw,

(3.17)

and then differentiate with respectto / to get the desired
result.
Let us consider the complex function

ei/:z
g(z)=——moy,
e +1 (3.18)

with simple pole at point z=7i . Consider the following
integral along the path which is shown in figure 3.2

—95g(z)dz 0.
27ir (3.19)
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Figure 3.2

Similarly to lemma 3.1 and after performing all the
calculations, we get the desired result

~ = 2n
S=Y (-1 ————
nzzll( ) (nZ JZ)Z
1 .
:24(1 =y | je N(Q2r—y)e? +y)tan dy

4, Generalized Stieltjes and Post
Widder Integral Transforms

DEFINITION 4.1 Generalized Stieltjes transform is
defined as follows

F(y)=S,{f(t)t = y}= Ig)dt

)ﬂ

that has as its inverse transform(see )

|arg )/| <z

-1 1 —1 77
S, {F(y);y—)t}z—gt/’j(1+y)/’ F'(ty)dy. p>0
C

In the special #=1 case the transform in the above
relation reduces to the Stieltjes transform

SUf (1)t — y}=T%dt. .
0 4.1

It is well- known that the second iterate of the Laplace
transform is Stieltjes transform, that is

CAfOs 3= LI @sub y} = SO (4

ExXAMPLE 4.2 Evaluate Stieltjes transform of the function

cos(a/x).

SOLUTION. By definition we have

S{cos(av/x);x > z} = Icos(a\/_)

0o Xtz

| June 2014 | www.indjst.org

making a change of variables x =u” we get

S{cos(a/x);x — z} = ZT >
ou

u
cos(au)du,
+z

by cosine Fourier transform it can be written in the form

2 —uf

1
S{COS(Q\/;);X—>Z}=2FC{ZL;L¢—>a}——7m e
u +z 4

EXAMPLE 4.3 Solving the following Stieltjes type singular
integral equation.

1 1
(20 4o e
0X+z 4/;

SoLUTION. We know that Stieltjes transform is the sec-
ond iterate of Laplace transform, so we have

1

rra-Yrdy: s n=ra- Ly
n n n

and consequently

1

1 _L
LY (1——)tr 1;t%x}zx "
n

it means that

ra-Hre .
¢(x)=L_1{—J— Nz xt=x".
z

DIFINITION 4.4 We define the convolution of two func-
tions f,g™"

g()

(f®gXﬂ=f®I L +(ﬂf

provided that the integrals exist.

LEMMA 4.5 (Convolution) Let f,ge L (R,) and let the

Stieltjes transform of f(t)j g( ) u and g(t)[——=d f(u)

ou—t
be absolutely convergent. Then there exists the Stieltjes

transform of the convolution f ® g and it holds that

S(f ®g)=5(1)S(g).

PROOF. See .
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EXAMPLE 4.6 Evaluate inverse Stieltjes transform of the

1
Js(s+a)’

SOLUTION. By using lemma 4.5 we have

function foraeR .

Gl s st
N {\/;(Ha),s%t} S {\/;}®S {S+a},

on the other hand the Stieltjes transform is the second
iterate of Laplace transform, so that

S =

therefore, the final solution can be written in the form

S {—} o(t—a),

1 1
S {—\/E(s+ ),s—>t} ot — a)f J—(u t)

L‘]"J(u—a)d
Nty (u—t)

By a change of variables u* = x in the first integral we
have
o(t—a) N 1
N NACE)

S {m;s—)t}z—

DEFINITION 4.7 The generalized Post-Widder transform
is defined as

P {f(x)ix = sh=] ﬁmy : .
4.3

In the special case p =1 the transform in (5.3) reduces
to the Post-Widder transform

Pf(x)x —> 5} = Tﬁ“) (44)

EXAMPLE 4.8 Evaluate Post Widder transform of the
function x+/x .

SOLUTION. By definition we have

P{x/x;

X,

s%)

x
—=u we have
s

By a change of variables

3o
52

PixJx;x —> s} = du,

e
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it can be considered as Mellin transform of the function
—u

—u 5
Wy Mgy Py

Let us define the function f(u)=arccotu then it is

3
clear that P{x</x} =—s5M{uf’(u);u - ng} which is

52 5
ESZM {arccotusu — p= 5} ,therefore the final result is

3
P{x\/;;x%s}=§\/§sz.

LEMMA 4.9 The inverse of generalized Post-Widder
transform is as following

f(x)=P{F(s);s = x} = —ﬁqS(H sy F’(xs)ds.
7T (4.5)
PROOF. By definition we have
R
+5) (4.6)

by a change of variables x* =u,s* = w the above equation
can be rewritten in the form

f(\/_)
F(p, >
(pyw)= {2( +w)/’ )

this is a generalized Stieltjes transform which inverse is

1 uﬂ p—1 17

— f(Nu)=———¢A+w)""F'(uw)dw,

2 27i v (4.8)
where I is a closed contour containing origin. Now sub-
stitute x> = u,s* = w to obtain

f)=P{E(s);s — x}

2x¥

=51+ Y F(x’s?)ds.
7 T (4.9)

For the special case p=1the inverse of Post-Widder
transform is in the form

22

PYF(s);s > x}=

7T
COROLLARY 4.10 The following relationship holds true

f(X) =p! {F(s);s > x} = L'{F(xe*iﬂ) _ F(xei”)},
7Tl
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PROOF. By using lemma 4.9 we have

2
PHF(s);s > x}= —zi_gﬁsF'(xzs2 )ds,
7T

it suffices to make a change of variables F(x’s*)=u to get
PR s — ) = ———fd(F ().
7t

where I' is a contour containing origin that could be
chosen, for instance, to be unit circle.
Note that it is not really a closed contour because F(s)
has a branch cut along the negative real axis (see '2).
Therefore, we have the result as follows

PT{E(s);s — x} = L.{F (x’e™") = F(x’¢")}.
ViA)

LEMMA 4.11 Let us assume that S{f(x);x — s}=F(s),
then we have the following relationship

1 . )
(x)=——1{F(xe™)— F(xe™)y.
fx 27[1{ xe xe } (10)

PROOF. By definition we know that
STHE(s);s — x} = ——— [ E"(sw)dw,
27ic

by a change of variables F(sw) =7, the following equation
will be in the form

S’I{F(s);s%x}z—ﬁidfy, i)

where C is a contour containing origin that has a branch
cut along the negative real axis.
Therefore we have the result as follows

-1 . _L —izy\ _ in
N {F(s),s%x}—zﬂl_{F(xe )— F(xe™)}.

LEMMA 4.12 The following relationship holds true

P{M;X—)j}

X

T
=ﬂfo(zﬁ)[10<zﬁ)+]0(zﬂ)].

PRroOE. Define the function

bei(2.[77x bei(2\[ux) "

X+ 47

I(/M)=I )

I sss | voi; (6) | June 2014 | www.indjst.org

now by taking two dimensional Laplace transform with
respect to 7, we have

LI, 4007 = popt — g}

(4.13)

On the other hand by using the following integral
relationship

< CoSmx VA
| 5——Fdx="—e™
0 X"+ A 24

and substituting in (4.13) we obtain

_4
»

e A
cosh—.

L {I(y,p)} = 290 .

By taking inverse two dimensional Laplace transform
we can write

I, 00)=L; ; ‘

L o ,if 1 o cosh —

/4 C 1°°e C +ioo

e B 1
24 27l p | 27icle g

from table of inverse Laplace transforms we get ( see *)

=L@ LeJan+ @i ]

now it suffices to let 77 =« =1to get the desired relation-
ship as below

0 X+ 47

, {(bei(zﬁ )’ > } _7 (bei2Vx))"
X

T
=L DLV +1,eID]

LEMMA 4.13 (Convolution for Post-Widder trans-

form) Let f g eL (R,) and let the Stieltjes transform of

f(\/?)zﬁdu and g(ﬁ)zﬁdu be absolutely
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convergent. Then there exists the Post-Widder transform
of the convolution f ® g and it holds that

P{f(t)® g(t)} =2P(f)P(g).

PROOF. By definition we know that

P} =] 7Y

—dt} =~ S{f(f) u— s,
(4.14)

(making a change of variables t* =u). So it can be fol-
lowed that

PU®)® g(0)} =3 SN ® gy '),
now from lemma 4.4 we get the following relation
PU©® g0} = S (ki IS(gagiu— ),

again from (4.14) we obtain

Hﬂﬂ®ﬂﬂ%‘@PUUH—HD@HﬁOt+ﬂ)
=2P(f)P(g).

EXAMPLE 4.14 Evaluate the inverse Post Widder trans-

form of the function H(s)= ﬁ
s+a

SOLUTION. By using lemma 4.13, let us consider two

functions F(s)=s+/s,G(s) = L , then we have
s+a

P{H(s);s = x} =P {F(s)} ® P"{G(s)},

but performing some manipulations we obtain

p {F(s)}—ixf PG =2

7ZX+

therefore from lemma 4.13 we get the following relation-
ship

1

PUH(s);s — x} = T

(u+a’ )(u x)

V20s

2(x+a)o (u—x)

u,

accordingly, the final result is obtained as

Vol 7 (6) | June 2014 | www.indjst.org

1 X 5
It 10803
(x+a) '

PYH(s);s > x}=—
tH(s) } 278 x+a’

5. Main Result

In this section, we implement joint Laplace — Fourier sine
transform for solving certain fractional wave equation for
vibration of a wire of finite length.

PrOBLEM 5.1 Consider the following fractional PDE
which describes the vibrations of a wire of length b with
both ends fixed which at point x =bhas been moved up
for ¢ and released

"u_o0u sl
P
X (5.1)

with boundary and initial conditions

u(0,t)=u(L,t)=0,

u,(x,0)=0,
;0<x<b
u(x,0)=
M b<x<L
b-L (5.2)

SoruTION. Taking finite Fourier sine transform of (5.1)
we have

nzx
sm —dx,
L

aZa
]

d _2
oatza CJ

0 0x°

now by integrating by parts we get

2 2
B—L;}Jg? ' @d =—(%)2Fs,x{u(x,t)}.

0

Substituting in (5.1) one will obtain the following rela-
tionship
200 2.2 2

S U+ cnr

in which U(n,t)=F, {u(x,t)}. Now take Laplace trans-
form of the above equation with respect to ¢

U(n,t)=0,

; nzb  JI’ntn’

— el .
s**U(n,s) ——————sin— + —

U(n,s) =0,
w’7’b(L-b) L (1.5)

in which U(n,s)=L{U(n,t);t — s} . Therefore
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el . nzb 1
—  sin—| ————|,
n’7*b(L—b) L | ,, cn’n
et

Un,s)=

by using Schouten-Vanderpol theorem we have

_ 1
L l{ﬁ;s —> t}
e  CNT
s+ )
L
1= 1 1
ZZ_m'Ie " T o ntrt b,
0 ;720ceZzwz+ ; ;72&6—21(171_'_ .
L L
hence, the solution is as follows
1 & . nzxs _ 1
u(x,t)=—7y sin— e " ————
L7i j=1 L o 20 2i0z , EN T
T

7 2 2
Zae—ziazr+c nrz

LZ

6. Conclusion

The paper is devoted to study applications of one and two
dimensional Laplace, finite Fourier, sine transform, gener-
alized Stieltjes and Post-Widder transforms in details and
their applications. Integral transforms provides a power-
ful method for analyzing linear systems. The authors also
discussed Mathieu series-and introduced new integral
representations for the above mentioned series.
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