
Abstract
In this paper mathematical models were created using Artificial Neural Network (ANN) for designing the thickener area of 
the clarifier by correlating the process control parameters, including the mean cell residence time (θc), initial suspended 
solids concentration (Co), underflow concentration (Cu), and recycling ratio (R). The test data were applied to the neural 
network for each value of θc and R. A feed-forward ANN model had been proposed to predict the performance of secondary 
clarifier. The training time was varied between 0.009 and 22 s. The epochs required for the trained feed-forward network 
varied between 100 and 500. Training specifications of the ANN model determined that the error was 1e−5 and the train-
ing data required 139 epochs. The simulation results obtained by the ANN coincided well with the experimental data. This 
narrow band of error measured throughout the groups for the modelled parameters was an indication of the robustness of 
the ANN. Models such as the one developed in this study allow plant operators to assess the expected plant effluent, given 
the quality of the waste stream at input locations.
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1.  Introduction

1.1  Background
With the ever-increasing social awareness of environ-
mental protection issues, proper operation and control 
of wastewater treatment plants (WWTPs) have come 
under scrutiny. The process industries are forced to adopt 
advanced techniques to improve their global competitive-
ness due to the increased cost of energy and increasingly 
strict environmental regulations. Recently, long-range 
predictive control algorithms are being considered by 
industries to improve the overall plant operability, energy 
efficiency, waste and effluent minimization, and control 
performance1–9. Optimizing every stage of the WWTP 
demands systematic investigation and determination of 
control strategies10 that will lead to minimization of mul-
tiple objective criteria. Improper operation of a WWTP 
may bring about serious environmental and public 
health problems, as its effluent to a receiving water body 
can cause or spread various diseases to human beings. 

Several algorithms9,11 and modeling approaches12,13 have 
been developed to tackle the complex technical prob-
lems associated with the control of industrial plants. In 
particular, artificial neural network (ANN)-based models 
have shown promising results in industrial wastewater 
treatment process and its performance evaluation14–24. 
Therefore, an improved performance and adherence to 
stringent standards for process effluents as well as mini-
mized operational costs and environmental impacts, are 
needed for most WWTPs.

1.2  Motivation 
In the recent years, neural networks (NN) have been pro-
posed as a promising tool for identifying empirical process 
models from process data4,25. NN are very useful because of 
their ability to model complex non-linear processes, even 
when process understanding is unlimited. These neural 
network models can be used for prediction, provided the 
process correlation structure does not change. The main 
objective in using neural network modeling is to accurately 
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predict steady-state or dynamic process behavior in order 
to monitor and improve process performance. Given 
their inherent ability to approximate any non-linear con-
tinuous function without requiring any prior knowledge, 
NN, in the last few years, have increasingly deserving the 
attention of the control community, leading to the imple-
mentation of several neural-based control strategies21,26–28. 
Although NNs are obtained by fitting data, some nota-
ble differences exist between NNs and typical empirical 
models. Recent developments have provided significant 
insights into the nature of neural learning, through the 
proof of mathematical properties29,30 and examinations 
of the relationships between neural learning and math-
ematical approximation theory31,32. Hence, it was thought 
of worthwhile to develop ANN-based predictive model 
to approximate the thickener area of a secondary settling 
tank. Models such as the one developed in this study allow 
plant operators to assess the expected plant effluent, given 
the quality of the waste stream at input locations.

1.3  Related Works
A three-stage analysis approach integrating fuzzy logic, 
genetic algorithms, and neural networks was employed 
for modeling industrial WWTPs15. This approach was 
used for generating a representative state function, 
searching a set of multi-objective control strategies, and 
automatically tuning the fuzzy control rule base used for 
controlling a treatment plant. The developed model was 
successfully applied on a case study in Taiwan. An intel-
ligent wastewater treatment concept aided by two sets of 
neural networks with the aim of controlling the plant in 
terms of previously selected parameters was proposed6. 
ANN models was developed to predict the effluent con-
centrations of biochemical oxygen demand (BODs) and 
suspended solids (SS) for WWTP which cover a range of 
data for training and testing purposes18. Artificial neural 
networks were developed through the use of universal 
approximators (sigmoidal MLP networks) or linear com-
binations of expanded input variables (monomers at 
FLN) for modeling the inner mapping between input and 
output variables33.

1.4  Problem Statement and Solution Phase
Combining models to improve prediction accuracy was 
an idea by Jones et al.34 which demonstrated how model-
ing results can be used to guide the design of monitoring 
protocols and monitoring results can, in turn, be used to 

refine models. The primary goal of this research study is 
to construct accurate models that predict the thickener 
area of the secondary settling tank using NNs as they have 
been widely used for complex processes that are poorly 
described by first principle models such as wastewater 
biological treatment systems5. The study was conducted 
in three phases to build-up a methodology for the design 
of secondary clarifier pertaining to paper and pulp mill 
using ANN approach as no one applies this technique in 
paper and pulp making industries. During the first phase 
of work, a methodology has been proposed to predict the 
performance of secondary clarifier by correlating process 
control parameters using feed-forward NN model. In the 
second phase of the work, experiments were conducted 
on paper and pulp mill wastewater in the stationary phase 
of the microbial growth. To fully evaluate the thickening 
characteristics of an activated sludge, the zone settling 
velocity (ZSV) was measured at several concentrations 
of solids. In the third phase, an ANN-based predictive 
model was ��������������������������������������������developed����������������������������������� ����������������������������������to predict the performance of sec-
ondary clarifier by correlating process control parameters 
obtained from experiments end result, from which for 
any value of Cu, Co, R and qc, the area of the secondary 
clarifier can be determined by using the ANN model. 

The final optimized model was approved by an Indian 
pulp and paper manufacturer M/s. Seshasayee Paper and 
Boards Ltd, a South Indian based paper making industry 
situated in Erode which signalled the practical compat-
ibility of this research project. The ANN approach helped 
the WWTP engineers of the above paper manufacturing 
industry to be glad about the performance enhancement of 
the secondary clarifier, which was possible because of the 
optimized WWTP design. The details of this endeavour are 
briefly presented in this research article. This ANN tech-
nique provides a new direction to the WWTP designer, 
especially for new design and new application, without 
immediately going for physical trial. This attempt has been 
done with the intention of helping the pulp and paper 
industry to sustain in the competitive global market.

2.  Overview and Contributions 
The efficiency of WWTP strongly depends on the inlet 
flow and the component concentrations of the effluent. 
The forecasting of WWTP load provides promising 
opportunities to accomplish relevant operational actions 
automatically or manually and permits the use of 
more realistic estimations of future disturbances8. The 
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non-linearity of WWTP operation could be taken into 
account for calculating the predicted output because 
of the available estimates of the model, which depend 
on the input flow rate and concentration. Every specific 
plant has its own process environmental conditions and 
process operations, making it difficult to develop an 
accurate general model. In recent years, neural networks 
have been successfully applied to various biochemi-
cal processes11,14,23. They have a distinct ability to model 
non-linear dynamic systems without requiring a struc-
tural knowledge of the process to be modelled. NNs can 
map a set of input patterns onto a corresponding set of 
output patterns on the basis of historical data. The ANN-
based models are widely applied for WWTP in global 
scenario1,8,18–20,26,34. This paper presents predictive models 
based on the concept of ANN, a widely used application 
of artificial intelligence that has shown fairly a prom-
ise in a variety of applications in paper making process  
identification7,11,18,33.

3. ANN Model Development
An ANN is a computational tool capable of estimating 
and predicting engineering properties that are a func-
tion of many variables and parameters. ANNs have the 
ability to learn from existing data and to be adopted for 
mapping a set of input parameters into a set of output 
parameters, without knowing the intricate relationship 
among them. One of the most common types of NN is 
the feed-forward, where information is transmitted only 
in a forward direction3,18. In this study, a feed-forward 
algorithm5, consisting of one input layer, one hidden layer 
and one output layer, all connected with no feedback 
connections, has been applied. The weighted sums of the 
inputs are transferred to the hidden neurons, where it is 
transformed by using an activation function. The outputs 
of the hidden neurons, in turn, act as inputs to the output 
neuron where it undergoes another transformation. The 
output of a feed-forward NN with one hidden layer and 
one output NN is given by Equation (1).

	 Iki = wijk Oki + wiok� (1)

Where
wijk, Oki - �weight of the link between ith input and jth 

hidden neuron
k - number of input neurons

wiok - �weight of the link between jth hidden neuron 
and oth output

A linear activation function was selected for the 
output neuron because it is appropriate for continu-
ous valued targets. The learning abilities of multi-layer 
feed-forward neural networks depend on the types of 
activation functions35. The two important stages in ANN-
based model development are model training and testing 
the trained model as illustrated in Figure 1. The training 
of an ANN-based model requires input data. 

3.1  Selection of Model Input and Output
Output(s) are selected on the basis of operational needs, 
relevant literature and data availability4. ANN models are 
trained by minimizing the errors between the predicted 
and actual values of model output variables. However, 
this technique yields better results when a single output is 
modelled. Once the model output has been selected, model 
input is selected from the available variables. Model input 
selection is based on the existence of a known or assumed 
relationship among the output variables, relevant litera-
ture and data availability. In this study, recirculation ratio 
(R), underflow concentration (Cu, g/L) and limiting solid 
flux (GL, kg/m2h) were selected as input variables. Area 
of secondary clarifier required per unit flow (A/Q) was 
selected as an output variable.

3.2 � Selection and Organization  
of Data Patterns

The modelling data sets can be constructed after the model 
input and output variables are identified. Each data pat-
tern or record should initially be examined for erroneous 
entries, outliers and blank entries2,22–24,27. Outlier detec-
tion involves a high degree of subjectivity, for example, all 
values that are outside a range of ±2 standard deviation 
from the mean of a variable may be excluded from the 
data set. Alternatively, scatter plots of each variable can 
be used to detect outlier values. Data patterns that con-
tain questionable data should be removed and a record 
of the removed patterns should be maintained for future 
reference and analysis. There are two important stages in 
model development using an ANN as discussed in pre-
ceding section: The first stage is training the model and 
the second stage is testing of trained model. Training of 
an ANN requires input data, namely, R, Cu and GL. To 
develop the model for the thickener area of secondary 
settling tank, the parameters R, Cu, Co and A/Q were cor-
related. The models were developed for various qc (5–13 
days) and R (0.25–1.0) values.
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3.3  Feed-forward Architecture
Models considering the main treatment units separately 
and estimating multiple parameters have not been suc-
cessfully developed yet. In-spite of some successful 
practical applications, there is still no all-inclusive proce-
dure or method to design such intelligent controllers by 
far because of its semi-empirical nature. The idea behind 
using feed-forward NN is to formulate a model which 
could find the results of A/Q under any different param-
eters of R, GL and Cu in a specified range. This network is 
static. The input vectors are considered to be concurrent. 
In short, the NN required here is made to be simple by 
considering the network fed with the single input vector. 

In this proposed network model, the inputs are pre-
sented as a matrix of concurrent vectors and the weights 
are updated only after all the inputs are fed which is called 
as batch mode3,8,10,11,23,30. Once the NN model has been 
created, the analysis shall be done for different values 
of R, GL and Cu. With the trained network, any change 
in the input will be sensitized with utmost care by the 
neural network and the results could be evaluated for a 
huge data in a shorter duration with greater accuracy7. 
Network training is a process by which the connection 
weights and biases of the ANN are adopted through a 
continuous process of simulation by the environment 
in which the network is embedded. The primary goal of 
training is to minimize an error function by searching 
for a set of connection strengths and biases that cause 
the ANN to produce outputs that are equal or close 
to targets4. The model architecture, training method 
and training rates are determined using a trial-and-
error approach. The amount by which each connection 
weight is adjusted depends on the learning rate (η), the 
momentum value (μ), the epoch’s size (ε), the derivative 
of the transfer function and the node output. Training 
was stopped when there was no further improvement 
(reduction in root mean square error (RMSE)) in the 
forecasts obtained by using an independent test data 
set. This value, which is the model predicted value, was 
compared to the correct value for the given patterns and 
the connection weights were modified to decrease the 
sum of the squared error. The output signal produced 
was then compared with the desired output signal with 
the aid of an error (mean square error) function shown 
in Equation (2).

	 ( ) ( ) ( )( )2j j
1E t d t y t
2

= -Â � (2)

Where

E(t) - global error function at discrete time, t
yj(t) - predicted network output at discrete time, t
dj(t) - desired network output at discrete time, t

In this study, ANN models were trained for each qc 
of 5, 7, 9, 11 and 13 days and for the R values of 0.25, 
0.4, 0.55, 0.7, 0.85 and 1.0. After all the data were trained, 
new sets of data were tested. Among the 4230 data sam-
ples, 2230 were used as training data and the remaining 
2000 as testing data. The computation of regression coef-
ficient, i.e., R2 = 0.992 for the train data and test data was 
obtained from Minitab 16, which exhibits the robustness 
of the ANN model.

4.  Materials and Methods

4.1  Effluent Source
Effluent samples were obtained from Seshasayee Paper 
Mill, Erode, Tamilnadu, an integrated pulp and paper 
industry based in South India. The paper and pulp effluent 
from the outlet of the primary settling tank was used for 
the investigation. The sample was collected using a sterile 
plastic container and was stored at 4°C until required.

4.2  Settling Studies
Wastewater is first treated in settling tanks where the 
solids, which settle, are removed36. The partially treated 
wastewater is then processed in a biological treatment 
plant, where micro-organisms degrade the organic water 
to biomass (sludge) and water (plus gases). Further set-
tling follows. This biological treatment is by far the most 
common treatment process for municipal and industrial 
wastewater33,34. More precise flow rates can be deter-
mined from industry using continuous processes than 
from industry using batch processes. Each industry 
is individual, and a wastewater survey is obligatory to 
determine flow rates and pollution load. It is desirable to 
develop a flow duration curve and also a pollution load 
duration curve at specific points along the waste streams. 
Experiments were conducted on paper and pulp mill 
wastewater with mean cell residence time (θc) values of 
5, 7, 9, 11, and 13 d in the stationary phase of the micro-
bial growth curve. Batch reactors (20 L capacity) were run 
with a food to micro-organism (F/M) ratio of 0.2 (range: 
0.2–0.6) in the stationary phase. The desired θc was main-
tained (i.e., qc = VQ  Qw) by wasting a portion of the mixed 
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liquor (Qw) from the reactor. To fully evaluate the thicken-
ing characteristics of an activated sludge, the zone settling 
velocity (ZSV) were measured at several concentrations 
of solids38,39. Therefore, after attaining steady state condi-
tions, column settling tests were conducted to generate 
the settling flux data. Sludge samples (2–20 g/L) were 
added in 1 g/L increments to a glass column (22.5 mm 
diameter, 650 mm height), and the interface height was 
recorded as a function of time. 

Settling curves were plotted connecting the solids 
concentration and interface height for qc values of 5–13 d  
in the stationary phase. The slope of the linear portion 
of each batch settling curve was determined graphically, 
and was designated as the ZSV associated with the cor-
responding solids concentration (Figure 1). The gravity 
solid flux was determined as the product of the ZSV and 
the corresponding solids concentration (Figure 2). Each 
value of GL represents the gravity settling flux per unit 
area of the clarifier that would be expected to occur at the 
corresponding activated sludge concentration.

4.3 � Secondary Clarifier Design by Solid 
Flux Analysis

The secondary clarifier plays an important role in achiev-
ing the strict efficiency standards of WWTPs. The design 
and operation of the secondary clarifier are commonly 
based on solid flux theory3,27,37,38,39. The values of the 

initial suspended concentration (Co) and the area of the 
secondary clarifier required per unit flow (A/Q) were 
determined for each combination of underflow concen-
tration (CU, in g/L), limiting solid flux (GL, in kg/m2h), 
and recirculation ratio (R) values from the material 
balance Equations:

	 o u
RC = C

1+R
� (3)

	 u

L

RCA =
Q G

� (4)

5.  Case Study

5.1  Performance Evaluation of ANN Model
Larger networks take more time to train and require 
more data to efficiently estimate the connection weights. 
A general relationship between the inputs and outputs 
contained in the training data set can be obtained after 
a network has been trained4. Consequently, for real-
time forecasting applications, it is advisable to retain the 
model as new data become available. The most widely 
used performance measures for ANN models are RMSE 
in Equation 5 and the average absolute error (AAE) in 
Equation 6 between the actual and predicted values. 

Figure 1.  Settling velocity curve for MCRT (qc).
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( )n 2

i ii=1
t o

RMSE =
n

Â –
� (5) 

	 ( )
n

i i
i=1

1AAE = t –o
n Â � (6)

Where
ti - target (actual) value
oi - predicted value
n -  number of records

In this study, it is found that RMSE≈4.53% and  
AAE≈0.72% for all groups. This narrow band of error mea-
sured throughout the groups for the modelled parameters 
was an indication of the robustness of the ANN31. The train-
ing records contain sufficient patterns to allow the ANN 
model to adequately mimic the underlying relationships 
between the output and input variables. The test records 
were not applied to the networks during training, but after 
the training was completed, they were used to test the per-
formance of the trained network for its forecasting ability of 
output variables. Representative data for training and test 
data for the developing ANN model are given in Table 1. 

The training time varied between 0.009 and 22.6 s 
(Table 2). The test data were applied to the network for 
each value of θc and R. The simulation results obtained by 

the ANN coincided well with the experimental data. For a 
given value of qc and different values of R = 0.25–1.0, the 
feed-forward NN was trained and the trained network 
was tested with the test data. The comparison of test data 
with the train data for qc = 13 days, R = 0.25–1.0 is given 
in Figure 3(a−f). Similar results were obtained for other qc 
values. 

Training specifications of the ANN model for qc = 11 
days, R = 0.4 are given in Figure 4 from which it could 
be determined that the error was 1e-5 and the training 
data required 139 epochs. Results were similarly obtained 
for the remaining ANN data. The epochs required for the 
trained feed-forward network varied between 100 and 
500. The accuracy of the results was in the range of 1e−3. 
To develop the ANN model for the thickener area of the 
secondary clarifier3,26, the parameters A/Q, Cu, Co, and 
R were correlated. To evaluate the model performance, 
actual values of A/Q in the testing data sets were com-
pared to the values predicted by the NN models.

The quality of match between the ANN-modeled 
and experimentally measured values were determined 
by regression analysis for qc = 5 days, R = 0.4 (Figure 5), 
which reveals that the ANN models resulted in a good 
fit for the experimentally measured A/Q. Similar results 
were obtained for other qc’s and R = 0.25, 0.55, 0.7, 0.85 
and 1.0. 

Figure 2.  Solid flux curve for MCRT (qc).
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Table 1.  Representative data for training and testing ANN model (θc = 7 day, R= 0.4).

Trial 
No

ANN train data ANN test data
CU GL CO E (A/Q) ANN A/Q Error CU GL CO E (A/Q) ANN A/Q Error

1 10 29.1 2.86 0.1376 0.1375 1E-04 10.1 28.7 2.88 0.1407 0.1408 −1E-04

2 11 22.2 3.14 0.1982 0.1982 0 11.3 21.1 3.23 0.2142 0.2142 0

3 12 19.3 3.43 0.2486 0.2487 −0.0001 12.6 18.65 3.6 0.2792 0.2792 0

4 13 17.2 3.71 0.302 0.302 0 13.8 14 3.94 0.3942 0.3943 −1E-04

5 14 13.3 4 0.421 0.4211 −1E-04 14.1 13 4.03 0.4338 0.4338 0

6 15 10.4 4.29 0.576 0.5769 −0.0009 15.3 9.3 4.37 0.658 0.6581 −1E-04

7 16 8.1 4.57 0.79 0.7901 −1E-04 16.6 7.35 4.74 0.9034 0.9034 0

8 17 6.7 4.86 1.014 1.0149 −0.0009 17.8 6 5.09 1.1866 1.1867 −1E-04

9 18 5.9 5.14 1.22 1.2203 −0.0003 18.2 5.7 5.2 1.2771 1.2772 −1E-04

10 19 4.9 5.43 1.54 1.551 −0.011 19.4 4.55 5.54 1.7054 1.7055 −1E-04

11 20 4.1 5.72 1.948 1.95 −0.002 20.3 3.8 5.8 2.1368 2.1368 0

12 21 3.45 6 2.43 2.4348 −0.0048 21.8 2.8 6.23 3.1142 3.1143 −1E-04

13 22 2.7 6.29 3.25 3.2593 −0.0093 22.7 2.4 6.49 3.7833 3.7833 0

14 23 2.3 6.57 4 4 0 23.4 2.15 6.8 4.427 4.4279 −9E-04

15 23.5 2.2 6.7 4.2727 4.2727 0 23.6 2.1 6.83 4.5523 4.5524 −1E-04

Table 2.  Training and simulation time for various MCRT (qc).

 

Figure 6 shows the representative error distribution keep-
ing R = 0.7 and qc = 5 days for experimental A/Q and 
ANN A/Q. 

5.2  Evolution of the Mathematical Model
It should be noted that, theoretically, using an infinite 
number of independent variables to explain the change 
in a dependent variable would result in a high correlation 
coefficient (R2) of 1 for the modelling data sets. In other 

words, the R2 value can be manipulated and should 
be assumed. The adjusted R2 value40 can be used as an 
attempt to correct this shortcoming, because it will not 
always increase when additional model parameters are 
added. In contrast to R2, the adjusted R2 increases only 
if the additional model parameters improve the regres-
sion results significantly in order to compensate for the 
increase in regression degrees of freedom. Nevertheless, 
there is no similar statistical parameter to perform reliable 
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Figure 3 (a−f).  Comparison of test data with the train data for qc = 13 days.

Figure 4.  Training specifications of ANN model for qc = 11 days, R = 0.4.
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comparative analyses of the predictive performances of NN 
models and the methods proposed in the literature usu-
ally lead to contradictory results. The comparative analysis 
of statistical and NN models are based on R2 values esti-
mated from the validation (and test) data sets. The quality 
of match between the ANN model values and experimen-
tally measured values was verified with the mathematical 

model using SPSS software (Ver.15.0). Mathematical model 
for thickener area of secondary settling tank was obtained 
by correlating the parameters R, Cu, Co and A/Q. �������� The net-
work was trained using different operational parameters4 
and the findings indicated that the developed ANN model 
provided high performance criteria (R 2 ≈ 0.96). These 
models are depicted in Equations (7–12).

Figure 5.  Match between experimental versus ANN model of thickener area of secondary clarifier (A/Q) for qc = 5 day.

Figure 6.  Error distribution of A/Q between experimental and ANN.
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MATHEMATICAL MODELLING  
FOR EXPERIMENTAL DATA

)(Alog –2.967 2.405 log C 1.505 log C –1.097 logu o cQ q= + +

)(Alog –2.967 2.405 log C 1.505 log C –1.097 logu o cQ q= + + , R2 = 0.917� (7)

( )Alog –3.401 3.909 log C  1.000 log R –1.097 logu cQ q= + +

( )Alog –3.401 3.909 log C  1.000 log R –1.097 logu cQ q= + + , R2 = 0.918� (8)

( )Alog –2.245 3.881 log C 1.568 log R 1.097 logo cQ q= + + -

( )Alog –2.245 3.881 log C 1.568 log R 1.097 logo cQ q= + + - , R2 = 0.913� (9)

MATHEMATICAL MODELLING  
FOR ANN DATA

( )Alog –3.018 2.553 log C 1.505 log C –1.225 logu o cQ q= + +

( )Alog –3.018 2.553 log C 1.505 log C –1.225 logu o cQ q= + + , R2 = 0.968� (10)

( )Alog –3.452 4.058 log C 1.000 log R –1.225 logu cQ q= + +

( )Alog –3.452 4.058 log C 1.000 log R –1.225 logu cQ q= + + , R2 = 0.969� (11)

( )Alog –2.252 4.029 log C 1.665 log R–1.225 logo cQ q= + +

( )Alog –2.252 4.029 log C 1.665 log R–1.225 logo cQ q= + + , R2 = 0.964� (12)

6.  Conclusion
In the present study, two models based on ANN and 
experimental investigations were developed to predict 
the area of the secondary clarifier for unit flow for a major 
paper and pulp mill WWTP. The ANN models provided 
a robust tool for prediction in which the prediction error 
varied slightly and smoothly over the range of data sizes 
used in training and testing. Once the feed-forward archi-
tecture for the training data was created, the feed-forward 
NN architecture could be utilized for identifying the A/Q 
value for any given input data. The test data applied to 
the A/Q values coincided very well with the experimen-
tal values. ANN has proven to be a very useful tool in 
overcoming some of the limitations of conventional math-
ematical models for effluent treatment plants because of 
their complex mechanisms, variability and dynamics. The 
secondary clarifier area can be designed using the mod-
els proposed in this study for any values of Cu, Co, R and 
qc. The predicted models give a rational approach to the 

design of a secondary clarifier. The developed models are 
shown to perform consistently well in the face of vary-
ing accuracy and size of input data. Using these models, 
the plant operators will be able to have an assessment of 
the expected plant effluent, given the quality of the waste 
stream at input locations.
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