
Abstract
One of the greatest challenges of FPGA is the crave for a platform, which runs a system, handles a software and co-ordinates
exchange with peripherals. To explore this advantage on FPGA with energy efficiency, this work aims at developing
multithreading on ARM cortex dual core A9 processor present in Zedboard FPGA. To enhance the speed of execution on
this processor and to allow concurrency, multithreading is developed using intel thread building blocks(TBB) library
which aids in creating task based parallelism on FPGA being the first of its kind. In the first step towards this process,
the processor is booted with Ubuntu 12.04 linux operating system making it as a standalone processor. This system is
enabled with graphical user interface using xillinux IP library FPGA code kit. To test the efficiency of multihreading on the
processing system of Zedboard, an application known as 2D – raytracer is developed using the parallel-for loop scheduling
method which aids in running all the iteration loops in the code into chunks and runs each chunk as a separate thread
under intel TBB. In this application an image was parallelized by speculating each pixel running in parallel resulting in
excellent speedup. The newly implemented multithreading achieves a speedup of 53% compared to sequential execution
on the same processor. This method explores the flexibility of parallel processing on FPGA.

*Author for correspondence

Indian Journal of Science and Technology, Vol 7(12), 2015–2019, December 2014
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Implementation of Multi-threading on
Hybrid ARM Cortex Dual Core A9–FPGA

architecture for Energy Efficiency

V. Jean Shilpa* and P. K. Jawahar

Department of Electronics & Communication, B. S. Abdur Rahman University, India;
jeanshilpa@bsauniv.ac.in, hodece@bsauniv.ac.in

1.  Introduction

Traditional CPU designs employed methods such as
increased clock frequency and silicon size to enhance
the performances of CPU designs but at the expense
of limitations on power wall, memory wall, instruction
level parallelism and time to market1. To solve this
issue the next generation of multi-core processors hit
the market to achieve extremely high computational
requirements and to aid many computation intensive
applications such as multimedia, physical simulation
and financial modeling2, but at the expense of time to
market. Additionally embedded and real time system

designers are continuously challenged to provide
systems to satisfy price/performance ratios3. To reduce
time to market, with good amount of price/performance
ratio, this work aims at developing new techniques of
energy efficiency and parallelization on the Zedboard
FPGA chip4. The demand of today’s technology craved
for a system that has a fusion of processing system and a
programming logic on a single board with less cost, which
is full-filled by Zynq – 7000 all programmable system
on board popularly known as zedboard11,7. Zedboard
is a Zynq evaluation and development board which
uses ARM cortex dual A9 processor12 in the processing
system of FPGA, configurable by the user. Hence as the

Keywords: Dual Cortex A9 ARM(Advanced RISC machines) Processor, Field Programmable Gate Array(FPGA), Intel
TBB(Thread Building Blocks), Software Development Kit(SDK), Xilinx Platform Studio(XPS), ZedBoard(Zynq Evaluation and
Development Board)

Implementation of Multi-threading on Hybrid ARM Cortex Dual Core A9–FPGA architecture for Energy Efficiency

Indian Journal of Science and TechnologyVol 7 (12) | December 2014 | www.indjst.org2016

processors capabilities have increased, the pressure on
software developers began to invent methods to always
keep the processor busy, since the processors wasted
much of the time running single tasks and waiting
for certain events to complete5, but as the cost and
time involved in designing multi core processors with
multithreading are huge. We go for a new design on
Zedboard aiming at developing multithread processing
on Zedboard using Intel thread building blocks which
is a library enabling task based parallelism to improve
the processing speed and the utilization of FPGA as a
multi core processor with less time to market and aiding
hardware developers to go with thread level parallelism
design on the re-configurable processors like FPGA for
the first time.

2.  Design Methodology

2.1  ZedBoard – Processing System
This work is developed on Zedboard which is known as
a programmable system on chip13.One of the important
peripherals of Zed board is 28-nm ARM cortex dual – A9
processing system8, this processor runs at 1GHz pro-
grammable logic. The two cores are hard IP components
embedded on the Zynq processing system9. The Figure 1.
shows the architecture of ARM cortex dual A9 proces-
sor which is hard core on the Zedboard, as a first step in
our project an OS will be booted on this processor whose
image will be loaded on the SD card.

2.1  Booting OS from Zync – 7000 series
To boot the operating system for the processor, here we
use SD(Secure Digital) card slot which essentially requires
four items to be placed on the SD card namely linux kernel
image, the linux file system, a BOOT.BIN file and com-
piled device tree11. To complete this function we require
a PC running with Linux distribution. To begin this work
we have installed Ubuntu 12.04.To format the SD card
for the purpose of booting the dual cortex processor with
embedded operating system, we first partition the SD
card into two portions, one for having the FAT file sys-
tem which atleast requires 1GB and the second partition
contains a ext4 file system, which requires atleast 3GB.
Figure 2. shows the partition made on the SD card. As the
first step in formatting the SD card device , the device
node is identified, after which all the previous partitions
are removed. This new method avoids wired connection
from PC to boot the processor on the Zedboard.

The next process is to install the custom drivers essen-
tial for the zedboard peripherals. Prior to this process
ARM GNU tools chain will be installed and then the
BOOT.BIN file, which configures the programmable logic
and the processing systems in both the partition. After
which the ZedBoard Linux Hardware Design is developed
which enables linux to communicate with the peripher-
als on the Zed board. Finally the device tree which is a
data structure of the hardware peripherals is installed for
the linux kernel to understand the drivers for every node,
hence during the boot up this device tree initializes the
drivers for all the nodes. The SD card is now inserted into
the Zedboard. And the jumper settings are made as speci-
fied MIO 6: set to GND ,MIO 5: set to 3V, MIO 4: set to
3V, MIO 3: set to GND, MIO 2: set to GND, VADJ Select:
Set to 1V, JP6: Shorted ,JP2: Shorted and all other jumpers
should be left unshorted. To configure the terminal set-
tings as Baud is set to 115200.Since we’re using a Linario

Figure 1.  Cortex-A9 Dual MP Core Architecture. Figure 2.  Partition of SD Card.

V. Jean Shilpa and P. K. Jawahar

Indian Journal of Science and Technology 2017Vol 7 (12) | December 2014 | www.indjst.org

system we connect peripherals such as HDMI, mouse,
keyboard and USB to USB OT hub. Waiting for the boot
process to complete, now the linux system will be running
on the Zedboard.

To enable the FPGA board with graphical user inter-
face, xillinux software which is an FPGA code kit is
installed with the linux. Figure 3. shows the booting of
Ubuntu with Xillinux from SD card.

2.3 � Configuring the Design of Processing
System using Xilinx Plan Ahead

This work is developed with Xilinx14.2 version. Initially
the board support package for the zedboard is loaded into
the too15. The specification for the processor, interfaces,
timing and address ranges are generated by XPS. The tool
outputs the HDL netlist of the processing system which
is fed as input to the ISE(Integrated software environ-
ment) to generate the processing system bit file. Then the
Plan ahead generates the RTL netlist for the processing
system. Now the XPS runs software application on the
processing system by employing the software develop-
ment kit of Xilinx EDK. In the process of development of
multithreading applications, language of programming is
selected as C++. Figure 4. clearly indicates the image of
processing system ARM cortex dual A9 processor gener-
ated by plan ahead tool of Xilinx 14.2.

2.5 � Parallelism by MultiThreading on
Zedboard with Intel TBB

Multithreading on FPGA is developed with the principle
of coding the program written for an application in a

such a way were in instances of its routine called threads
can execute concurrently. Instead of creating threads and
manipulating them, this burden is left to the multithread-
ing library. In this design intel thread building blocks
library is used for the first time on FPGA providing a rich
and complete approach to explore parallelism in hard core
processors17. Intel TBB is not just a multithreads library
rather, it represents task based parallelism that abstracts
platform details and threading mechanisms for perfor-
mance and scalability. Intel TBB is a library that supports
scalable parallel programming using standard C++ tem-
plate. Additionally, it fully supports nested parallelism, so
you can build larger parallel components from smaller
parallel components. To use the library, tasks are speci-
fied in the application developed, not threads, and let the
library map tasks onto threads most efficiently reducing
the burden of the designer. In this process of implement-
ing multi threading on Zedboard and testing its efficiency,
we have developed an application known as 2D raytracer,
using parallel_for loop scheduling method available in
intel TBB. The syntax of the parallel_for employed to
design the 2D raytracer is given below

#include “tbb/parallel_for.h”
Func parallel_for(Index first,Index_type last,Index

step,
constFunc& f[, partitioner[, task_group_context&

group]]);

This parallel_for loops recursively splits the range into
subranges to the point such that is divisible. When worker
threads are available, parallel_for executes iterations is Figure 3.  Booting of Xilinux from SD card.

Figure 4.  XPS generated ZedBoard Processing system
assembly view.

Implementation of Multi-threading on Hybrid ARM Cortex Dual Core A9–FPGA architecture for Energy Efficiency

Indian Journal of Science and TechnologyVol 7 (12) | December 2014 | www.indjst.org2018

non-deterministic order. This application takes an image
input and it is parallelized by speculating each pixel
running in parallel resulting in excellent speedup. The
output screens are show along with time of execution
of single thread, dual threads and multi threads. Figure
5 shows the execution of sequential thread without
adding any parallelism techniques. Sequential the image
2D raytracer is executed with thread level parallelism
on ARM cortex dual A9 processor. This specific image
contains 7386 objects.

Next the application is designed to split itself and run
on the available number of processors. Being ARM cortex
dual A9 processor, number of threads created are dual.
Figure 6. shows the parallel version that uses intel TBB’s
parallel_for loop and block_range to parallelize tasks.
This develops group of scan lines to run on the avail-
able number of processors. The figure clearly indicates
two threads running simultaneously on the processors.
For this application in the program the TBB_NUM_
THREADS environment variable sets the desired number
of threads and the TBB_GRAINSIZE sets the number of
grains in the image. Grain size refers to number of scan
lines running in parallel.

In the third process instead of parallelizing the scan
line, the number of tasks are increased by employing intel
tbb with blocked_2D functions to parallelize the tasks
into rectangular block.Figure 7 shows the parallel version
code with increased grain size and number of threads.

The graph in Figure 8 shows that with single thread
implementation, the time take to open the image is higher

than multithreads. Calculating from the graph the time
saved by imlementing multi threads is 53% using intel
TBB instead of using the conventional multithreading
libraries. Hence the processing time is reduced more than
double the time, which is a very great advantage of the
hybrid ARM – FPGA unit. The execution time for run-
ning the applications is shown in Table 1.

4.  Conclusion and Future Work

In this article, the efficiency for multi threading on
Zedboard is explored very efficiently. This can be fur-
ther extended to image processing applications using
extensive parallelism on FPGA. Secondly this design
was only implemented on the processing system portion
of zedboard, but the programmable logic portion of the
Zedboard is left free, hence forth to increase the number
of processors on Zedboard, multiple softcore proces-
sors can be invoked with the programmable logic part of
FPGA and communicate with the hardcore ARM cortex
dual A9 processor. Thirdly with linux installed any C++
application which can make extensive use of parallelism
can be easily implemented on Zedboard.

Figure 7.  Multi thread Execution.

Figure 6.  Dual thread Execution.

Figure 5.  Sequential thread Execution.

Figure 8.  Graphical view Time Taken for Execution with
multi threads.

V. Jean Shilpa and P. K. Jawahar

Indian Journal of Science and Technology 2019Vol 7 (12) | December 2014 | www.indjst.org

5.  References
  1.	� Asanovic K, et al. The landscape of parallel computing

research: A view from Berkeley. Technical Report, EECS
Department, University of California, Berkeley, 2006 Dec.
Report no: UCB/EECS-2006-183.

  2.	� Tsoi KH, Axel WL. A heterogeneous cluster with fpgas and
gpus. acm 978-1-60558-911-4, fpga’10, 2010 Feb 21–23.

  3.	� Andrews D, et al. Programming models for hybrid FPGA-
CPU computational components: A missing link. IEEE
Computer Society, 2004.

  4.	� Fletcher BH. FPGA Embedded Processors: Revealing True
System performance. Embedded Systems Conference;
2005; San Francisco.

  5.	� Intel® Hyper-Threading Technology. Technical User’s
Guide. 2003 Jan.

  6.	� Kingyens J, Steffan JG. The Potential for a GPU-Like
Overlay Architecture for FPGAs. International Journal of
Reconfigurable Computing. 2011.

  7.	� Russell M, Fischaber S. OpenCV Based Road Sign
Recognition on Zynq. 11th IEEE conference on industrial
informatics; 2013.

  8.	� Pham KD, Jain AK, Cui J, Fahmy SA, Maskell DL.
Microkernel Hypervisor for a Hybrid ARM-FPGA
Platform. IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP);
2013.

  9.	� Daul-Core ARM cortex MPCore Processor. 2012 Oct.
10.	� Available from: www.xillybus.com
11.	� Zync Evaluation and Development.Hardware user’s guide.

Version 2.2, 2014.
12.	� Zynq-7000 All Programmable SoC Technical Reference

Manual. Xilinx Inc; 2013.
13.	� Getting Started With Embedded Linux – ZedBoard, 2013.
14.	� Vincke R, Messiaen A, Boydens J. Hybrid FPGA/Multi-core

CPUs for Industrial Applications. Annual journal of elec-
tronics. 2013.

15.	� Xilinx. Plan ahead user guide(UG632) 2012.
16.	� Ababei C. Speeding Up FPGA Placement via Partitioning

and Multithreading. International Journal of Reconfigurable
computing. 2013; 2009:1–9. Article ID 514754.

17.	� O’Reilly, Intel thread building Block, Outfitting C++ for
multicore processor parallelism, 2007

Table 1.  Execution time of threads
Type of Execution Time taken for execution

in (sec)
Sequential thread execution 7.969
Dual thread execution 4.268
Multi thread execution 4.022

