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Abstract
One of the core issues for robust cryptographic systems is to deal with the rate of diffusion and distribution of keys. We try 
to strengthen this aspect by increasing the length of block ciphers. We present a new encryption and decryption algorithm 
for block cipher that supports 27 bit block size. All components in our system are chosen to be based on cellular automata 
so as to achieve higher parallelism and to simplify the in hardware and software implementation for applications with high 
degree of security. The main objective of this paper is to increase the complexity by novel schemes of mixing (reversible 
cellular automata) RCA and (non-uniform reversible cellular automata) NRCA. We apply set of different bit permutation 
methods for this purpose .This paper establishes the proof for existence of yet another approach for a high quality pseudo-
random bit sequences generated by non uniform cellular automata.

Keywords: Cryptographic System, NRCA-non Reversible CA, Pseudorandom Number, RCA-Reversible Cellular 
Automata.

1.  Introduction
Two main cryptography systems are used today: symmetric 
systems (aka secret key systems) and public-key systems. 
An extensive overview of currently known or emerging 
cryptography techniques used in both type of systems can 
be found in [1, 9]. One of such a promising cryptography 
technique is applying cellular automata (CAs). 

The main concern of this paper is secret key systems. 
In such systems the encryption key and the decryption key 
are same (symmetric key). The encryption process is based 
on generation of pseudorandom bit sequences, and CAs 
can be effectively used for this purpose. Cellular Automata 
(CA) is an organized lattice of cells and each cell have finite 
number of states, such as “TRUE” (T) or “FALSE” (F). The 
lattice dimensions can be of any finite value. Each cell within  
a collection of cells is called as hood. It is characterized  

relatively with respect to a particular cell. To start with at 
time t=0, a state is assigned to the cells. The new states of 
the cell depend on its own previous state and states of its 
neighborhood. The new states are assigned based on some 
predefined rule using mathematical calculations. 

Encryption, by theory requires highly complex actions 
such as permuting, flipping and altering data in such a way 
that it is undecipherable and provides complex relationship 
with the original text and the keys. This relationship should 
be non-linear so that decryption is as tough as possible. The 
encryption process must be faster in time and cheaper in 
terms of the components involved [2, 7]. CA provides a basic 
structure for highly parallel and complex operations upon 
which a basic encryption scheme can be built. The message 
encryption is done by Pseudo Random Number Generators 
(PRNGs) using CA. The generation of new states in One-
Dimensional (1-D) CA, can be considered as a sequence of  
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random numbers [3]. Different security schemes have been 
proposed including symmetric key, hash functions and 
public key cryptography as observed by Sarkar, [3]. Further 
as stated by Wolfram [4, 5], Rule 30 promotes the use of 
large integers in the pseudo random number generation. 
Owing to this interesting chaotic property of the peculiar 
CA, Wolfram states that, this kind of CA is used as random 
number generator.

The structure of the paper is as follows: Section II 
describes studies of symmetric key algorithms and its per-
formances; Section III depicts our proposed algorithm in 
detail. Finally, conclusion is expressed.

2.  Terms, Models and Methods
Here we discuss the terminology used in the paper for eas-
ier reading.

2.1  Lightweight Cellular Automata 
Symmetric-key Encryption
One-dimensional cellular automata encryption algorithm 
called as Lightweight Cellular Automata-based Symmetric-
key Encryption (LCASE) is described in [2]. Here rule 30 
is used for encrypting plain-text with keys. The fundamen-
tal design objective of LCASE is to effectively optimize the 
performance requirements of both software and hardware. 
However, the algorithm also has to address the conven-
tional security constraints. Different issues considered for 
designing the proposed algorithm are:

a.	 High speed performance and minimum code density
b.	 Defiant to attack such as conventional cryptanalysis and 

timing attack
c.	 Simple and code effective implementation

The implementation of cipher in either of hardware or 
software has to satisfy two important design considerations 
[2]. The algorithm should be fast and easy to implement. In 
order to address these constraints parallel processing meth-
ods are used. CA elements are found to be effective in the 
design process. Number of loops used in LCASE consists of 
two rounds namely, 1. Last-half (LH) 2. First- half (FH). The 
term ‘r’ refers to a complete round and ‘r+1’ round refers to 
FH. The selection of  ‘r’ value is shown in the Table 1. 

This encryption is a reversible two way process, decryp-
tion is obtain as the result of this. Each encryption round uses 
1-D (3-neighbourhood) 32 bits periodic boundary CA. The 

basic element of a round uses Reversible Cellular Automata 
(RCA), Bit Permutation (BP), Non-autonomous Cellular 
Automata (NCA) and Reverse Substitution (RS). The rules 
used in LCASE for different operations are given in Table 2.

In order to effectively obtain the non linearity prop-
erty, suitable rules from Table 2 have to be chosen for the 
selected operators. In this cipher, RCA and NCA are the 
preferred operators over the conventional XOR, as the later 
is not suitable for non linear operations.

3.  Main Algorithm
We construct the main algorithm based on following  
terminologies.

3.1  Next State Generation by Various Ca 
Rules
Our proposed method uses CA rules 30, 45,218 as men-
tioned as in [2] and 86, 90,105,150,165 as in [6] for NRCA 
and RCA operation. The next state generation of these 8 
rules is given in Table 3. 

Table 1.  Selection of  ‘r’ value

Keys size in bits 128 192 156
‘r’ value 12 14 16

Table 2.  Selection of rule for different operations

Operation  Rule
RCA(second order) 30

Skewed 30
Skewed 45

NCA 218

Table 3.  Next State Configuration for CA Rules 30, 45, 
218, 90,150,145,165 and 86

Neigh- 
borhood  
State: 

111 110 101 100 011 010 001 000 Rule No.

Next State : 0 0 0 1 1 1 1 0 30
Next State : 0 0 1 0 1 1 0 1 45
Next State : 0 1 0 1 0 1 1 0 86
Next State : 0 1 0 1 1 0 1 0 90
Next State : 0 1 1 0 1 0 0 1 105
Next State : 1 0 0 1 0 1 1 0 150
Next State : 1 0 1 0 0 1 0 1 165
Next State : 1 1 0 1 1 0 1 0 218
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3.2  RCA Key Schedule
RCA is the one in which the preceding pattern can be 
recovered from the given current pattern (s). Our proposed 
algorithm utilizes RCA (second order) [10]. The ‘ith’ state 
of n bit pattern is determined by the clock cycles as shown 
in Table 4. Given below is an example of a 3-neighborhood 
second order RCA [2]

	 xi (t - 1) =f (xi-1 (t),( xi (t), xi +1 (t)) )XOR xi (t + 1)

	 xi (t + 1) =f (xi-1 (t),( xi (t), xi +1 (t)) )XOR xi (t - 1)

Here, the states xi(t + 1) and xi(t - 1) are denoted respec-
tively by the terms ξi and yi and ‘f ’ is from Table 5.

ξ is obtained based on two initial patterns of (Y, X) at 
time steps (t - 1) and t. Then, using two successive patterns 
(ξ, X), the initial pattern Y can be figured out. This opera-
tion is denoted as follows [2].

	 ξ = RCA (Y, X); Y = RCA (ξ, X).

Elementary CA rule 30 based second order periodic 
boundary 4-cell RCA logic diagram is depicted in Figure 1.

The RCA key schedule generates 16 bytes of key for 
each encryption and decryption round. For each round of 
key generation we applied different rule which is selected 
sequentially from Table 5. RCA key schedule is explained 
in “Figure 2” and the RCA operation between two 8 bits 
sub- block is shown in Figure 3.

Pseudocode:
Pseudocode for RCA key schedule in Figure 2.

Input: K(ki : i:=1 to 16);//K=user selection 128 bits 
key and k1,k2…….,k16 are 8 bits words//
Output: ki

L (i=1 to 16);// k1
L,k2

L,……,k16
L

 are 8 bits 
words key schedule generated for Lth round//
L= number of rounds

    BEGIN
    // computation of encryption key//
      for r:=1 to L-1 do
        for i:=1 to 16 do
          if (i:=16) do
            Ki

r+1:=RCA(Ki
r ,K1

r);
          endif
          if(i >16) do
            Ki

r+1:=RCA(Ki
r ,K1+1

r);
          endif
        endfor
      endfor

//Determination of decryption key //
//DK= decryption key and k= encryption key//
      For r:=1 to 16 do
        DK1

r:=k1
|r-(L+1)|;

      endfor
    END

//For each round of encryption and decryption the 
RCA key schedule generates sixteen keys each of 
eight bits.
The next key schedule is generated from the previous 
key schedule.//

Figure 1.  Combintiraal circuit for 4-cell periodic boundary 
RCA based on. Rule 30, represented by the state equation  
xi (t + 1) = f(xi-1 (t)XOR( xi (t) ⁄ xi +1 (t)) )XOR xi (t - 1)

Table 4.  State Determination

Clock cycles ‘ith’ state of n bit pattern

t + 1 States of neighbourhood pattern at ‘t‘ & current 
cell at (t - 1)

t – 1 patterns at t & (t + 1) clock cycle

Table 5.  Next State Function for cellular Automata 
Rules from Table 3

Rule No. Next state function(f)

30 xi(t+1) = xi−1(t) XOR (xi(t) ⁄ xi+1(t))
45 xi(t + 1) = xi−1(t) XOR (xi(t) ⁄ x¬i+1(t))
86 xi(t + 1) = xi¬(t) Ÿ ( xi−1(t)XOR xi+1(t))⁄ xi(t) Ÿx¬i+1(t)
90 xi(t + 1) = xi−1(t) XOR xi+1(t)
105 xi(t + 1) = xi(t) XNOR (xi−1(t) XOR xi+1(t))
150 xi(t+1) = xi−1(t) XOR xi(t) XOR xi+1(t)
165 xi(t + 1) = xi−1(t) XNOR xi+1(t)
218 xi(t + 1) = (xi(t) Ÿ (xi+1(t)) ⁄(xi−1(t) XOR xi+1(t))
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Figure 2.  RCA key schedule.

Ki
L= ith 8 bits sub block for Lth round.

Figure 3.  RCA operation between two 8 bits sub- block.

Ki
L= ith 8 bits sub block for Lth round.

3.3  Modulo Prime Operation for 
Permutation 
The Bit-Permutation (BP (input[32 bits])) operation per-
mutes the ith bit into ((9* i mod 31)+1)th bit. The idea behind 

this permutation is to place the three consecutive bits into 
three different locations. This increases the rate of diffusion 
and makes differential cryptanalysis very complex for our 
encryption scheme. Moreover the realization of permutation 
is obtained by connecting wire crossings appropriately.

Figure 4 shows an example of bit permutation which 
involves 4 bytes (32 bits). Here the three neighborhoods 
bits in position 1,2 and 3 are transferred into 10, 19 and 28 
positions. 

3.4  Non-Uniform Reversible Cellular 
Automata 
NRCA is a RCA operation in which we applied 8 differ-
ent rules to each bit of each byte from Table 5. Each bit 
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being applied with a unique rule. The transition function 
are computed parallel in all bits as shown in the Figure 5 
Each block receives 8 bits and produces 8 bits.

3.5  Reversible Bit Permutation (RBP) 
The Reversible Bit-Permutation (RBP) operation is the pro-
cess of re-permuting the distributed bits into its original 
position. The idea behind is to restore original position.

Figure 4 shows an example of bit permutation which 
involves 4 bytes, in RBP, the three distributed bit in posi-
tion10, 19 and 28 is transfer into its original position that is 
1, 2 and 3 position as shown in Figure 6.

Algorithm for Reversible bit permutation.
Step 1: Assign j from 1 to 31 in the input word RBP 
input [32 bits]
Step 2: Compute k as ((9*j mod 31)+1) 
Step 3: RBP output[j] = RBP input[k]

Figure 5.  NRCA operation in 8 bits block.

30,40,86,90,105,150,165 are rules use in RCA
K = encryption key for the round for the block

3.6  Main algorithm 
Using the above method we describe the encryption pro-
cess with one-dimensional reversible cellular automata 
(1D RCA) as shown in Figure 7. Our entire encryption 
round comprises simple XOR, Bit Permutation, RCA key 
schedule, NRCA. The ‘r’ values are chosen from the Table 
1. Here we used 8 different rules from Table 3 for NRCA 
and RCA operation . Each encryption round uses the 8 
different rules to each byte for NRCA operation. In RCA 
key generator, for each encryption round a rule is selected 
sequentially in cyclic order from the Table 3 for generat-
ing next key. 

3.7  Decryption 
Since we used RCA (reversible cellular automata), 
NRCA(non-uniform RCA), XOR and reversible BP(bit 
permutation), we can decrypt the cipher text to plain 
text in reverse way using the decryption key which is 
explained in pseudo code of RCA key schedule. The 
cipher text can be decrypted from the cipher text and 
the key. The computational flow of decryption scheme is 
given in Figure 8.

4.  Conclusion
The above routines are tested and we have comparable 
results based on these proposed algorithms. In this paper 
we have tried with a light weight cryptographic algorithm 
based on symmetric key based on non-uniform cellular 
automata and dynamic key generation. This approach 
decreases the space requirements especially for small 
devices and increases the better results with the rate of 

Input Bit Position

Figure 4.  Bit permutation in 32 bits.

Output Bit Position

Figure 6.  Reversible bit permutation.

Output Bit Position

Input Bit Position
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Figure 7.  128 key bits Encryption scheme applying CA rules.

 Pi: i
th 8-bit plain text sub-block 		  ci :i

th 8-bit cipher sub-block
 Ki

L: ith 8-bit key sub-block in Lth round	   : Boolean XOR operation
 BP: Bit Permutation 			   RCA: Reversible CA
NRCA: Non-uniform RCA

// Uppercase alphabet set represent 128 bit block and cor-
responding lowercase sets specify 8 bit words.//

Input:Plaintext block, P(pi: i=1 to 16);
        K: User 128 bits key;

Output: Cipher block, C(ci: i= 1 to 16);
Intermediate cipher text : IC(Ici: i=1 to 16);
BP1, BP2, BP3, BP4 are 32 bits words
bp1,bp2………bp16 8 bits words

BEGIN
  READ pi;
  READ K;
  //Apply RCA key schedule//
  IC:=P; 
 � Keyschedule(ki) , (i=1 to 16); //16 8 bits block gen-

erated by key generator for Lth round//
  For L:=1 to end of round do
 � S1:=Ic1   k1; S2:=Ic2   k2; S3:=Ic3   k3; 
  S4:=Ic4   k4; S5:=Ic5   k5; S6:=Ic6   k6; 
  S7:=Ic7   k7; S8:=Ic8   k8; S9:=Ic9   k9;
  S10:=Ic10   k10; S11:=Ic11   k11; S12:=Ic12   k12; 
  S13:=Ic13   k13; S14:=Ic14   k14; S15:=Ic15   k15; 

  S16:=Ic16   k16;

// create four BPi//

  BP1:=BP(S1,S2,S3,S4); //S1,.....,S16 are 8 bits wards//
  BP2:=BP(S5 ,S6,S7,S8);
  BP3:=BP(S9,S10,S11,S12);
  BP4:=BP(S13 ,S14,S15,S16);
//corresponding lowercase specify 8 bit//
  BP1(bp1,bp2,bp3,bp4);
  BP2(bp5,bp6,bp7,bp8);
  BP3(bp9,bp10,bp11,bp12);
  BP4(bp13,bp14,bp15,bp16);
//corresponding intermediate cipher text//
  for i: = 1 to 16 do loop
      Ici:= NRCA(bpi,ki);
    end loop
  endfor
  for i:=1 to 16 do
    ci:=Ici;
  endfor
  END

Pseudocode:
Pseudo code for realising the CA rules found in Figure 6.
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diffusion and distribution of keys. Moreover the differ-
ent rule of neighborhood has been applied for cellular 
at each byte position for encryption and decryption. 
Hence our proposed method strengthens the simplic-
ity for establishing the implementation in software and 
hardware.
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Figure 8.  128 key bits Decryption scheme applying CA rules.

Pi: i
th 8-bit plain text sub-block		  ci : i

th 8-bit cipher sub-block
Ki

L: ith 8-bit key sub-block in Lth round	   : Boolean XOR operation
RBP: Reversible Bit Permutation		  RCA: Reversible CA
NRCA: Non-uniform RCA
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