
A New Reformulation and an Exact Algorithm
for the Quadratic Assignment Problem

Zakir Hussain Ahmed

Department of Computer Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU),
P.O. Box No. 5701, Riyadh-11432, Kingdom of Saudi Arabia; E- mail: zhahmed@gmail.com

Abstract
In this paper, we consider the quadratic assignment problem (QAP), one of the hardest NP- hard combinatorial optimiza-
tion problems. We first present a new reformulation of the problem. Then a Lexisearch Algorithm (LSA) is developed for
obtaining exact optimal solution to the problem. Finally, a comparative study has been carried out to show the efficiency
of the algorithm against an existing algorithm for some medium sized instances from the quadratic assignment problem
library, QAPLIB. The comparative study shows the efficiency of the proposed LSA based on the reformulation.

Keywords: Quadratic Assignment Problem, NP- hard, Reformulation, Exact Algorithm, Lexisearch, Alphabet Table,
Bound.

1. Introduction
Koopmans and Beckmann [27] first introduced the qua-
dratic assignment problem (QAP) as a mathematical model
related to economic activities. The problem can be defined
as follows: There are a set of n facilities and a set of n loca-
tions. For each pair of locations, a distance is specified and
for each pair of facilities a weight or flow is specified (for
example, amount of supplies transported between two
facilities). The problem is to assign all facilities to different
locations with the goal of minimizing the sum of the dis-
tances multiplied by the corresponding flows.

The QAP is one of the most difficult combinatorial opti-
mization problems. Sahni and Gonzales [38] had shown
that it is NP- hard and that, unless P = NP, it is not pos-
sible to find an f- approximation algorithm, for a constant f.
Several NP- hard problems can be modeled as QAPs. It has
appeared in several practical applications - backboard wir-
ing [39], scheduling problems [20], typewriter keyboards
and control panels [35], hospital planning [17], arche-
ology [28], economic problems [24], statistical analysis

[25], forest parks [9], analysis of reaction chemistry [19],
 numerical analysis [11], placement of electronic compo-
nents [30, 16] etc.

Due to practical importance and complexity, the QAP
has been drawing attention of many researchers – who
developed several exact and heuristic algorithms for solving
the problem. In general, instances of size n > 30 cannot be
solved optimally by an exact algorithm in reasonable time.
Though large sized instances cannot easily be solved opti-
mally by an exact algorithm, but there are some situations
where only exact optimal solutions are required. Hence, we
seek exact optimal solution to the problem. Branch- and-
 bound [22], Branch- and- cut [18], lexisearch [32, 3] are
 well- known exact algorithms for solving combinatorial opti-
mization problems. The LSA has been successfully applied
to many combinatorial optimization problems [4, 5, 7].

This paper presents a reformulation of the problem
based on bias removal method used by Ahmed [5] for the
travelling salesman problem (TSP). The TSP can be viewed
as a particular case of the QAP when the flow between any
pair of facilities is 1. Since the bias- removal method is found

* Corresponding author:
Zakir Hussain Ahmed (zhahmed@gmail.com)

Indian Journal of Science and Technology

Zakir Hussain Ahmed 4369

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (4) | April 2013

to be useful for TSP, a reformulation of the QAP based on
the bias removal method is supposed to be effective. Then
we apply LSA to obtain exact optimal solution to the prob-
lem. The efficiency of our LSA against implementation of
integer programming formulation (IPQAPR- IV, therein)
using CPLEX 9.0 by Zhang et al. [41] has been examined
for medium sized instances from the quadratic assignment
problem library, QAPLIB.

This paper is organized as follows: Section 2 presents
a brief overview of the literatures on the quadratic assign-
ment problem. Problem definition and reformulation of
the problem is presented in Section 3. Section 4 presents
a LSA for obtaining exact optimal solution to the problem.
Computational experience for the LSA has been reported
in Section 5. Finally, Section 6 presents comments and con-
cluding remarks.

2. Literature Review
The Quadratic Assignment Problem (QAP) is one of the
hardest NP- hard combinatorial optimization problems.
So, finding exact optimal solution for the large instances
is almost impossible. However, there are quite situations
where exact optimal solutions are very important, for
example, laying out circuits in a VLSI chip, location of
large plants and storage facilities done once in lifetime for
an organization.

Several methods used to achieve exact optimal solution
for the QAP as well as combinatorial optimization problem
include branch- and-bound, cutting planes or combinations
of these methods, like branch- and-cut, dynamic program-
ming, and LSA. Out of them branch- and- bound are the
most known and used algorithms and are defined from
allocation and cutting rules, which define lower bounds
for the problem. Gilmore [21] developed enumerative
schemes that use lower bounds to eliminate undesired
solutions. Various literatures concerning QAP branch- and-
 bound algorithms are available [12, 33, 34, 10, 22, 23]. In
recent years, procedures that combine branch- and- bound
techniques with parallel implementation are being widely
used. Due to the combination, the best results for the QAP
are being achieved. However, it is also important to observe
that the success for the instances of bigger sizes is related to
the hardware technological improvements [37, 33, 14].

Dynamic programming is often used for the special
cases of QAP, where the flow matrix is the adjacency matrix
of a tree. Christofides and Benavent [13] studied this
case using a mixed integer linear programming (MILP)

approach to the relaxed problem. Then it was solved using
dynamic programming by taking advantage of the poly-
nomial complexity of the instances. This technique was
also used by Urban [40].Some literature proposed differ-
ent integer programming formulation to solve the problem
[1, 2]. Recently, Zhang et al. [41] proposed integer pro-
gramming formulation of the problem and solved using
CPLEX 9.0 and found very good results.

Bazaraa and Sherali [8] proposed cutting plane meth-
ods, but did not find satisfactory results. However, they
contributed in the formulation of some heuristics that
use MILP and Benders decomposition. The convergence
of the employed technique is slow; hence, it is not widely
used so far. Of course, it presented good quality of solu-
tions for small sized QAP instances. Miranda et al. [30]
use Benders decomposition algorithm to deal with a
motherboard design problem, including linear costs in
the formulation.

Padberg and Rinaldi [31] proposed a branch- and-cut,
a variation of the cutting plane methods, which appears
to be an alternative cutting strategy that exploits the poly-
tope defined by the feasible solutions of the problem. Its
main advantage over cutting planes is that the cuts are
associated with the polytope’s facets. Cuts associated with
facets are more effective than the ones produced by cutting
planes, so the convergence to an optimal solution is accel-
erated. The lack of knowledge about the QAP polytope is
the reason why polyhedral cutting planes are not widely
used for this problem. In this context, some researchers
have been describing basic properties of the polytope that
can contribute to future algorithm development [26, 18].
However, most of the above methods are based on lower
bounds.

The lexicographic search (lexisearch, for short) is a
 systematic branch and bound approach, developed by [32],
first for Loading Problem, popularly known as knapsack
problem, before branch and bound approach of Little et al.
[29] was published. Das [15] developed a LSA for obtaining
exact optimal solution to the QAP. But, no computational
experience has been reported.

3.  Problem Definition and 
Reformulation
The problem is defined in the context of assigning n facili-
ties to n locations. Let fij be the flow between facilities i
and j, and dkl be the distance between locations k and l.
Let a a a a n= { (), (),......., ()}1 2 be an assignment, where a(i)

A New Reformulation and an Exact Algorithm for the Quadratic Assignment Problem4370

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (4) | April 2013

represents the location of the facility i. The problem is to
assign to each location exactly one facility so as to minimize
the cost

Z f da ij a i a j

j

n

i

n
= ∑∑

==
() ()

11
(1)

Since there are n! assignments, so complete enumeration
method is impossible for n>14, even if both flow F = [fij]
and distance D = [dkl] matrices are symmetric. We pro-
pose a reformulation of the problem which is based on bias
removal method used by Ahmed [5] for the travelling sales-
man problem (TSP). It is found that bias removal method is
effective for the TSP. So, our reformulation is supposed to
be effective for the QAP also. Following is a reformulation
of the problem.
Let

 f f u vij ij i j= + +’
 (2)

 d d x yij ij i j= + +’
 (3)

Then Za becomes

Z f d x f y fa ij a i a j a i ij a j ij
i

n

j

n

j

n

i

n

j
= + + ∑∑∑∑

=====

’
() ()

’
() ()

11111

nn

i

n

i a i a j
j

n

i

n

j a i a j
i

n

j

n
u d v d

∑∑

+ ∑∑ + ∑∑

=

== ==

1

11 11
() ()

’
() ()

’

(4)

Also let

u j n f for i ni ij= ≤ ≤ =

min
, , , ,,1 1 2 3

(5)

v i n f u for j nj ij i= ≤ ≤ − =

min
(), , , ,,1 1 2 3

(6)

x j nd for i ni ij= ≤ ≤ =

min
, , , ,,1 1 2 3

(7)

y i n d x for j nj ij i= ≤ ≤ − =

min
(), , , ,,1 1 2 3

(8)

ai ij

j

n
f for i n= ∑ =

=1
1 2 3, , , ,,

(9)

b j ij

i

n
f for j n= ∑ =

=1
1 2 3, , , ,,

(10)

gi a i a j

j

n
d for i n= ∑ =

=
() ()

’ , , , ,,
1

1 2 3

(11)

d j a i a j

i

n
d for j n= ∑ =

=
() ()

’ , , , ,,
1

1 2 3

(12)

Then Za becomes

Z f d x y

u

a ij a i a j i a i j a j
j

n

i

n

j

n

i

n

i i

= + + ∑∑∑∑

+

====

’
() ()

’
() ()a b

g

1111

ii

n

j j
j

n

ij a i a j a
j

n

i

n

v

f d s

= =

==

∑ + ∑

= +∑∑

1 1

11

d

’
() ()

’

(13)

where sa is the cost of an assignment with respect to a sur-
plus matrix S = [sij] with

 s x y u vij i j i j i j i j= + + +a b g d (14)

We further reduce the matrix S as follows.

fi ijj n s for i n= ≤ ≤ =

min
, , , ,,1 1 2 3

(15)

y fj ij ii n s for j n= ≤ ≤ − =

min
(), , , ,,1 1 2 3

(16)

 s s i j nij ij i j
’ , ,= − − ≤ ≤f y 1 (17)

The reduced matrix S’ = [s’ij] becomes non- negative with
at least one zero in each row and each column. So, sa
becomes

s s c sa i j a

j

n

i

n

s a= + +∑∑ = +
==

f y ’ ’

11
(18)

where cs is constant and s’a is the cost of an assignment with
respect to the reduced surplus matrix S’. Hence it is enough
to minimize

Z f d sa ij a i a j

j

n

i

n

a= +∑∑
==

’
() ()

’ ’

11
(19)

For the flow and distance matrices given in Table 1 and
Table 2 respectively, all the step- by- step calculations to
obtain reduced surplus matrix are shown in Table 1 to
Table 6. We have cs = 46.

Table 1. The flow matrix F with α and β

Facility 1 2 3 4 5 αi

1 X 5 0 6 1 12
2 5 X 3 0 4 12
3 2 3 X 0 0 5
4 4 0 0 X 1 5
5 1 2 0 5 X 8
βj 12 10 3 11 6

Zakir Hussain Ahmed 4371

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (4) | April 2013

4. An LSA for the QAP
In LSA, the set of all possible solutions to a problem is
arranged in a hierarchy, such that each incomplete word
represents the block of words with this incomplete word as
the leader. For the QAP, each location is considered as a let-
ter in an alphabet and each assignment can be represented

as a word with this alphabet. Thus the entire set of words
in this dictionary (namely, the set of solutions) is parti-
tioned into blocks. Bounds are computed for the values of
the objective function over the blocks of words, which are
then compared with the ‘best solution value’ found so far.
If no word in the block can be better than the ‘best solution
value’ found so far, jump over the block to the next one. If
the current block, which is to be jumped over, is the last
block of the present super- block, then jump out to the next
 super- block. Further, if the value of the current leader is
already greater than or equal to the ‘best solution value’;
no need for checking the subsequent blocks within this
 super- block. However, if the bound indicates a possibility
of better solutions in the block, enter into the sub block
by concatenating the present leader with appropriate letter
and set a bound for the new sub- block so obtained [4, 32].

4.1 Incomplete Word and Block
An incomplete assignment { (), (),......, ()}a a a k1 2 of k facili-
ties into first k locations, where k≤n, is called an incomplete
word or a leader of length k. This incomplete word is
also called a leader of length k. A block Q with a leader
{ (), (), ()}a a a1 2 3 of length three consists of all the words
beginning with { (), (), ()}a a a1 2 3 as the string of first three
letters. The block P with leader { (), ()}a a1 2 of length 2 is the
immediate super- block of Q and includes Q as one of its
 sub- blocks. The block R with leader { (), (), (), ()}a a a a1 2 3 4 is
a sub- block of Q. The block Q consists of many sub- blocks
{ (), (), (), ()}a a a a r1 2 3 one for each a(r). The block Q is the
immediate super- block of block R.

4.2 Alphabet Table
Alphabet matrix, T = [t(i,j)], is a square matrix of order n
formed by the positions of the elements of the reduced sur-
plus matrix S’ of order n. The ith row of the matrix T consists
of the positions of the elements in the ith row of the matrix
S’ when they are arranged in the non- decreasing order of
their values. If t(i,r) stands for the rth element in the ith row

Table 2. The distance matrix D with X and Y

Location 1 2 3 4 5 xi
1 X 1 1 2 5 1
2 1 X 4 1 2 1
3 1 2 X 1 3 1
4 2 1 1 X 5 1
5 3 2 2 1 X 1
yj 0 0 0 0 1

Table 3. The reduced flow matrix F΄ with U and V

Facility 1 2 3 4 5 ui

1 X 5 0 6 1 0
2 4 X 3 0 4 0
3 1 3 X 0 0 0
4 3 0 0 X 1 0
5 0 2 0 5 X 0
vj 1 0 0 0 0

Table 4. The reduced distance matrix D΄ with γ and δ

Location 1 2 3 4 5 γi
1 X 0 0 1 3 4
2 0 X 3 0 0 3
3 0 1 X 0 1 2
4 1 0 0 X 3 4
5 2 1 1 0 X 4
δj 3 2 4 1 7

Table 5. The surplus matrix S with φ and ψ

Facility\Location 1 2 3 4 5 φi

1 15 14 16 13 31 13
2 12 12 12 12 22 12
3 5 5 5 5 8 5
4 5 5 5 5 16 5
5 8 8 8 8 14 8
ψ j 0 0 0 0 3

Table 6. The reduced surplus matrix S΄

Facility\Location 1 2 3 4 5

1 2 1 3 0 15
2 0 0 0 0 7
3 0 0 0 0 0
4 0 0 0 0 8
5 0 0 0 0 3

A New Reformulation and an Exact Algorithm for the Quadratic Assignment Problem4372

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (4) | April 2013

of T, then t(i,1) corresponds to the smallest element in the
ith row of the matrix S’. Alphabet table “[(,)], (,)

’t i j si t i j− ” is
the combination of elements of the matrix T and their val-
ues [4].For the reduced surplus matrix S΄ in Table 6, the
alphabet table is shown in Table 7.

4.3 Lower Bound
In LSA, solution does not depend on lower bound, unlike
branch- and- bound algorithm. The lower bound for each
block leader on the objective function value is set to skip
as many subproblems in the search procedure as possible.
A subproblem is skipped if its lower bound exceeds the
‘best solution value’ found so far (i.e., upper bound) in the
process. The higher the lower bound the larger the set of
subproblems that are skipped. There are two parts in equa-
tion (19) – one consists of f ’ijd’a(i)a(j) and other s’a. For the first
part, we construct a matrix M from the matrices F’ and D’
as follows. Sort each row elements of F’ excluding diagonals
in ascending order and store in F” = [f ”ij]. Also, sort each
column elements of D’ excluding diagonals in descend-
ing order and store in D” = [d”ij]. Then the elements of the
matrix M = [mij] are calculated as

m f dij ik kj

k

n
= ∑

=

−
’’ ’’

1

1

(20)

It is seen that for some instances either all elements of the
matrix M are zero or elements of each row are same. For
that case, it will not help to accelerate the search process.
So, we add f d f dij ij ji ji

’ ’ ’ ’+ to the elements mij. Thereafter, ele-
ments of each row are sorted in ascending order. For the
F and D matrices given in Table 1 and Table 2, the sorted
matrix M is shown in Table 8.

Now, suppose an incomplete assignment is
{ (), (),....., ()}a a a k1 2 1− and the location a(k) is selected for
concatenation. Before concatenation, we check the bound
for the leader { (), (),......, (), ()}a a a k a k1 2 1− . For that, we start
our computation from (k+1)th row of the ‘alphabet table’

and traverse up to the nth row, consider the value of first
‘unassigned’ location in each row. The lower bound for the
leader can be calculated as:

L s mk i t i p

i k

n

ip
i k

n
= ∑ + ∑

= + = +
, (,)

’

1 1
(21)

where t(i, p) is the first ‘unassigned’ location the ith row in
matrix T
The value of the incomplete assignment { (), (),......, ()}a a a k1 2
can be calculated as

Z f d sk ij a i a j

j

k

i

k

i a i
i

k
= ∑∑ + ∑

== =

’
() ()

’
, ()

’

11 1
(22)

4.4 The Algorithm
Let F and D be the flow and distance matrices respec-
tively, and S’ be the reduced surplus matrix as discussed in
section 3. The steps of the LSA can be written as follows.

Step 0: Form the ‘alphabet table’. Initialize the ‘best solution
value’ (Za) as large as possible, k as one, and value of
assignment (Zk-1) as zero.

Step 1: With the incomplete assignment of length (k-1)
take as leader; consider the first ‘unassigned and
unchecked’ location in the kth row of the alphabet
table. If (value of the location + Zk-1) is greater than
or equal to Za, go to step 4, else, compute the value
of present ‘incomplete assignment’ (Zk), after tem-
porarily concatenating the present location to the
current leader, and the ‘lower bound’ (Lk) for the
temporary leader, go to step 2. If there is no any
‘unassigned and unchecked’ location found in that
row, go to step 4.

Step 2: If ‘(Zk+Lk)<Za’, go to step 3, else, drop the location
which was temporarily concatenated in step 1,and
jump over the block, i.e., go to step 1.

Step 3: Go into the sub- block, i.e., augment the current
leader; concatenate the considered location per-
manently to it, lengthening the leader by one, that
is, k is increased by one. If the current ‘incomplete

Table 7. The alphabet table (P is the location and V is
the value of the location)

Facility P - V P - V P - V P - V P - V

1 4-0 2-1 1-2 3-3 5-15
2 1-0 2-0 3-0 4-0 5-7
3 1-0 2-0 3-0 4-0 5-0
4 1-0 2-0 3-0 4-0 5-8
5 1-0 2-0 3-0 4-0 5-3

Table 8. The matrix M

Facility\Location 1 2 3 4 5

1 0 1 1 1 8
2 0 3 3 3 13
3 0 0 0 0 1
4 0 0 0 0 1
5 0 0 0 0 2

Zakir Hussain Ahmed 4373

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (4) | April 2013

assignment’ is a complete assignment, then replace
Za = Zk and go to step 4, else, go to step 1.

Step 4: Jump out to the next super- block, i.e., decrement
k by 1 (one), rejecting all the subsequent assign-
ments from this block. If k<1, go to step 5, else go to
step 1.

Step 5: Current assignment gives the optimal assignment
sequence, with Za as the optimal solution value, and
stop.

4.5 Illustration of the LSA
Working of the above LSA is explained through the example
given in Table 1 and Table 2. We suppose that ‘best solution
value’ (Za) is 9999. Table 9 gives the ‘search table’, and the
symbols used therein are listed below:

GS: Go into the sub- block.
JB: Jump over the block.
JO: Jump out to the next super- block.

As illustration of the example, we initialize Za=9999,
k=1, and Z0=0. We start from 1st row (i.e., 1st facility) of the
‘alphabet table’. Here, t(1,1) = 4, i.e., location 4 with value
b’14 = 0 and (Z0+ s’14) <Za. The value for the present incom-
plete assignment (Z1)=0. Now we go for bound calculation
for the present leader {4}. The bound will guide us whether
the facility 1 will be assigned to location 4. Lower bound for
the present leader is

L1= (s’21+ s’31+ s’41+ s’51)+(m21+ m31+ m41+ m51)

 = (0+0+0+0)+(0+0+0+0) = 0

Since, (Z1+L1 = 0 + 0 = 0) <Za, we accept the location 4 that
leads to the incomplete assignment {4} with Z1 = 0.Next,
we go to 2nd row (i.e., 2nd facility) of the ‘alphabet table’.
Here, t(2,1) = 1, i.e., location 1 with value =s’21 = 0 and
(Z1+ s’21) <Za. The value for the present incomplete assign-
ment (Z2) = 9. Now we go for bound calculation for the
present leader {4, 1}. The bound will guide us whether
the facility 2 will be assigned to location 1. Lower bound for
the present leader is

L2= (s’32+ s’42+ s’52)+(m32+ m42+ m52)

 = (0+0+0)+(0+0+0) = 0

Since, (Z2+L2=9+0=9) <Za, we accept the location 1 that
leads to the incomplete assignment {4, 1} with Z2 = 9.
Proceeding in this way we obtain the 1st complete assign-
ment as {4, 1, 2, 3, 5} with Z5 = 37 <Za, so we replace
Za = 37. Now, we jump out to the next higher order block, i.e.,

Table 9. The search table

Leaders
Zk Lk Za Remarks

1 2 3 4 5

4-0 (0) 0 0 9999 GS
1-0 (0) 9 0 9999 GS

2-0 (9) 9 0 9999 GS
3-0 (9) 9 5 9999 GS

5-3 (12) 37 0 9999 GS
37 JO

5-8 (17) 35 0 37 GS
3-0 (35) 41 0 37 JB, JO

3-0 (9) 9 0 37 GS
2-0 (9) 9 5 37 GS

5-3 (12) 36 0 37 GS
36 JO

5-8 (17) 35 0 36 GS
2-0 (35) 36 0 36 JB, JO

5-0 (9) 24 0 36 GS
2-0 (24) 24 0 36 GS

3-0 (24) 32 0 36 GS
32 JO

3-0 (24) 24 0 32 GS
2-0 (24) 40 0 32 JB, JO

2-0 (0) 0 0 32 GS
1-0 (0) 1 0 32 GS

3-0 (1) 1 5 32 GS
5-3 (4) 15 0 32 GS

15 JO
5-8 (9) 27 0 15 JB, JO

3-0 (0) 12 0 15 GS
1-0 (12) 21 5 15 JB
5-8 (20) JO

5-0 (0) 3 0 15 GS
1-0 (3) 12 0 15 GS

3-0 (12) 26 0 15 JB, JO
3-0 (3) 3 0 15 GS

1-0 (3) 4 0 15 GS
4 JO

3-0 (0) 0 0 4 GS
1-0 (0) 1 0 4 GS

2-0 (1) 1 5 4 JB
5-8 (9) JO

2-0 (0) 12 0 4 JB
5-0 (0) 6 0 4 JB, JO

5-7 (7) JO

(continued)

A New Reformulation and an Exact Algorithm for the Quadratic Assignment Problem4374

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (4) | April 2013

Leaders
Zk Lk Za Remarks

1 2 3 4 5

2-1 (1) 1 0 4 GS
1-0 (1) 1 0 4 GS

3-0 (1) 2 0 4 GS
4-0 (2) 2 5 4 JB

5-8 (10) JO
4-0 (1) 7 0 4 JB
5-0 (1) 17 0 4 JB, JO

3-0 (1) 20 0 4 JB
4-0 (1) 1 0 4 GS

1-0 (1) 7 0 4 JB
3-0 (1) 2 0 4 GS

1-0 (2) 2 5 4 JB
5-8 (10) JO

5-0 (1) 11 0 4 JB, JO
5-7 (8) JO

1-2 (2) 2 3 4 JB, JO
3-3 (3) 3 0 4 GS

1-0 (3) 3 0 4 GS
2-0 (3) 6 0 4 JB
4-0 (3) 9 0 4 JB
5-0 (3) 19 0 4 JB, JO

2-0 (3) 20 0 4 JB
4-0 (3) 3 0 4 GS

1-0 (3) 9 0 4 JB
2-0 (3) 6 0 4 JB
5-0 (3) 13 0 4 JB, JO

5-7
(10)

JO

5-15
(15)

STOP

Table 9. (Continued)

{4, 1, 2} with Z3 = 9, and try to compute another complete
 assignment with lesser cost. Proceeding in this way, we
obtain the optimal assignment as {4, 2, 5, 3, 1} i.e., facility 1
to location 4, facility 2 to location 2, facility 3 to location 5,
facility 4 to location 3, and facility 5 to location 1, with value
Za = 4. Hence, the optimal assignment cost with respect to
the given original matrices is Za + Cs = 4 + 46 = 50.

5. Computational Experience
The LSA has been encoded in Visual C++ on a Pentium IV
personal computer with speed 3 GHz and 448 MB RAM
under MS Windows XP, and tested with some [36] instances

of various sizes. We carry out a comparative study between
our LSA and implementation of integer programming
 formulation by Zhang et al. [41] (IPQAPR- IV, therein) in
Table 10. We report known solution reported in QAPLIB;
and the solution value, Total Computational Time (TotTime)
and the computational time when the optimal solution is
seen for the First Time (FirstTime) in seconds for solving
the instances by our LSA in the table. The table also copies
computational times (formulation setup times + IP CPU
times) in seconds, and solutions as were reported by Zhang
et al. [41] on a laptop with Intel Pentium M-1.70 GHz pro-
cessor and 1.23 GB RAM using CPLEX 9.0.Table 10 also
presents percentage of errors of the solution obtained by
the algorithms for the instances. The error (%) is given by
the formula Error BestSol OptSol OptSol(%) ()/ %= − ×100 ,
where BestSol denotes the best solution obtained by the
algorithms and OptSol denotes the optimal/best known
solution reported in QAPLIB.

Table 10 presents results obtained by the algorithm for
twenty two instances of sizes from 12 to 32. Both algorithms
hit optimal solution to the same thirteen instances. Of course,
for some of them optimality could not be proved by both algo-
rithms. For the remaining nine instances, there is a difference
in solution qualify. Among these nine instances, maximum
percentage of error of the solution is 78.57% (to esc32b) by
 IPQAPR- IV formulation using CPLEX 9.0 whereas only
52.31% error (to esc32a) by LSA. On the average, LSA obtains
solutions which are 10.29% away from the optimal solutions,
whereas, IPQAPR- IV formulation obtains solutions which
are12.24% away from the optimal solutions. Hence, on the
average, our algorithm obtains better solutions.

In terms of computational time, direct comparison is
not possible since the algorithms have been run in differ-
ent machines. If we assume that the performances of the
machines are equivalent, then for the instances whose opti-
mality are proved, LSA is found to be better. It shows that
our LSA can compete with stat- of- art methods in the lit-
erature. Also, solution by our algorithm does not rely on
commercial math software, whereas solution by IPQAPR- IV
formulation implementation relies on CPLEX.

In general, the LSA first finds an optimal solution and
then proves the optimality of that solution, i.e., all the
remaining subproblems are discarded. The table shows
that, on average computational time, LSA found opti-
mal solution within 42% of the total solution time. That
is, LSA spent at least 58% of total time on proving opti-
mality of the solutions. Therefore, for these QAPLIB
instances, LSA spends a relatively large amount of time on

Zakir Hussain Ahmed 4375

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (4) | April 2013

 proving an optimal solution, and hence, a large number of
subproblems are thrown by LSA. Also, it is seen that our
algorithm produces two groups of instances of same size
in terms of computational times with a big gap between
the groups; one group takes very low computational time,
whereas other group takes very high computational time.
However, similar observations are reported for the travel-
ing salesman problem and its some variations [4, 5].

6. Conclusion
We reformulate the quadratic assignment problem such
that LSA can be applied efficiently to the problem, and
then apply a LSA to obtain exact optimal solution to the
problem. As lower bound plays a vital role in skipping the
subproblems and hence, accelerates the search process, a

lower bound for leader of blocks on the objective function
is proposed. Then the performance of the LSA is compared
with implementation of the IPQAPR- IV formulation by
Zhang et al. [41] using CPLEX 9.0 for some medium sized
QAPLIB instances. Computational experience shows the
effectiveness of our algorithm.

We have investigated using LSA that only some medium
sized instances can be solved optimally within stipulated
time limit. For some small sized instances optimality of the
solution could not be proved within four hours by our algo-
rithm, for example, instances esc16 b- d of size 16; whereas
the instance esc32g of size 32 could be solved within
0.45second. We investigated why some small sized instances
could not be solved, whereas some medium sized instances
could be solved very quickly, but, we did not come to any
conclusion. This definitely, depends on the data structure.

Table 10. Comparison of different algorithms

Instance OptSol LSA IPQAPR- IV [41]

BestSol Error(%) FirstTime TotTime BestSol Error(%) TotTime
esc16a 68 68 0.00 0.60 625.30 68 0.00 14405.1
esc16b 292 292 0.00 29.10 14400.00 292 0.00 14412.9
esc16c 160 160 0.00 840.50 14400.00 160 0.00 14406.6
esc16d 16 16 0.00 2.50 14400.00 16 0.00 2687.8
esc16e 28 28 0.00 0.56 14.30 28 0.00 1004.6
esc16f 0 0 0.00 0.00 0.00 0 0.00 0.5
esc16g 26 26 0.00 0.00 0.50 26 0.00 351.1
esc16h 996 996 0.00 1.10 6228.20 996 0.00 14430.2

Partial Average 0.00 109.30 6258.54 0.00 7712.4
esc32a 130 198 52.31 12058.80 14400.00 194 49.23 15128.2
esc32b 168 204 21.43 14093.60 14400.00 300 78.57 15653.3
esc32c 642 662 3.12 12339.60 14400.00 736 14.64 16033.2
esc32d 200 234 17.00 4931.80 14400.00 236 18.00 15543.1
esc32e 2 2 0.00 1.25 26.05 2 0.00 68.7
esc32f 2 2 0.00 2.03 25.32 2 0.00 68.9
esc32g 6 6 0.00 0.44 0.45 6 0.00 327.7
esc32h 438 574 31.05 4099.20 14400.00 532 21.46 16140.6

Partial Average 15.61 5940.84 9006.48 22.74 9870.5
kra30a 88900 118820 33.66 3874.31 14400.00 107350 20.75 15908.9
kra30b 91420 118930 30.09 4099.42 14400.00 115870 26.74 15812.7
kra32 88700 115310 30.00 6170.01 14400.00 123590 39.33 16693.5

Partial Average 31.25 4714.58 14400.00 28.94 16138.0
scr12 31410 31410 0.00 0.14 0.27 31410 0.00 31.9
scr15 51140 51140 0.00 77.88 81.70 51140 0.00 611.8
scr20 110030 118568 7.76 12986.42 14400.00 110676 0.59 14417.2

Partial Average 2.59 4354.81 4827.32 0.20 5020.3

Total Average 10.29 3436.78 8172.82 12.24 9279.02

A New Reformulation and an Exact Algorithm for the Quadratic Assignment Problem4376

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (4) | April 2013

So, like the usual traveling salesman problem [5] and the
bottleneck traveling salesman problem [6], a sophisticated
 data- guided approach may reduce the computational effort
drastically and produce better solution quality within stip-
ulated time limit. Also, the proposed lower bound method
seems to be very loose; hence, a tighter bound may obtain
optimal solution for some more instances within limited
time frame.

7. Acknowledgements
The author is very much thankful to the honourable
reviewer for his constructive comments and suggestions
which help the author to improve the paper. This research
was supported by the Deanery of Academic Research, Al
Imam Mohammad Ibn Saud Islamic University, Riyadh,
Saudi Arabia, via Grant no. 320902. The author is also
very much thankful to the University for its financial
 support.

8. References
 1. Adams W P, and Johnson T A (1994). Improved linear

 programming- based lower bounds for the quadratic assign-
ment problem, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol 16, 43–75.

 2. Adams W P, Guignard M et al. (2007). A level-2 reformu-
lation–linearization technique bound for the quadratic
assignment problem, European Journal of Operational
Research, vol 180(3), 983–996.

 3. Ahmed Z H (2000). A Sequential Constructive Sampling
and Related Approaches to Combinatorial Optimization,
Ph.D. thesis, Tezpur University, Assam, India.

 4. Ahmed Z H (2010). A lexisearch algorithm for the bottle-
neck traveling salesman problem, International Journal of
Computer Science and Security, vol (6), 569–577.

 5. Ahmed Z H (2011a). A data- guided lexisearch algorithm for
the asymmetric traveling salesman problem, Mathematical
Problems in Engineering, vol 2011, Article ID 750968,
doi:10.1155/2011/750968.

 6. Ahmed Z H (2011b). A data- guided lexisearch algorithm for
the bottleneck travelling salesman problem, International
Journal of Operational Research, vol 12, No. 1, 20–33.

 7. Ahmed Z H (2012). An exact algorithm for the clustered
travelling salesman problem, Opsearch, appeared online,
doi: 10.1007/s12597-012-0107-0.

 8. Bazaraa M S, Sherali H D (1980). Benders’ partition-
ing scheme applied to a new formulation of the quadratic
assignment problem, Naval Research Logistics Quarterly, vol
27(1), 29–41.

 9. Bos J (1993). A quadratic assignment problem solved by
 simulated annealing, Journal of Environmental Management,
vol 37(2), 127–145.

10. Brixius N W, and Anstreicher K M (2001). Solving quadratic
assignment problems using convex quadratic program-
ming relaxations, Optimization Methods and Software,
vol 16(1-4), 49–68.

11. Brusco M J, and Stahl S (2000). Using quadratic assignment
methods to generate initial permutations for least- squares
unidimensional scaling of symmetric proximity matrices,
Journal of Classification, vol 17(2), 197–223.

12. Burkard R E, and Derigs U (1980). Assignment and match-
ing problems: Solutions methods with Fortran programs,
Lectures Notes in Economics and Mathematical Systems, vol
184, Springer- Verlag, New York, Secaucus, NJ.

13. Christofides N, and Benavent E (1989). An exact algorithm
for the quadratic assignment problem, Operations Research,
vol 37(5), 760–768.

14. Clausen J, and Perregaard M (1997). Solving large qua-
dratic assignment problems in parallel, Computational
Optimization and Applications, vol 8(2), 111–127.

15. Das S (1976). Routing and Allied Combinatorial
Programming Problems: A Lexicographic Search Approach.
Ph.D. Thesis, Dibrugarh University, Assam, India.

16. Duman E, and Ilhan O (2007). The quadratic assignment prob-
lem in the context of the printed circuit board assembly process,
Computers and Operations Research, vol 34(1), 163–179.

17. Elshafei A N (1977). Hospital layout as a quadratic assignment
problem, Operations Research Quarterly, vol 28(1), 167–179.

18. Erdoğan G, and Tansel B (2007). A branch- and- cut algorithm
for the quadratic assignment problems based on linearizations,
Computers & Operations Research, vol 34(4), 1085–1106.

19. Forsberg J H, Delaney R M et al. (1994). Analyzing
 lanthanide- included shifts in the NMR spectra of lan-
thanide (III) complexes derived from 1,4,7,10-tetrakis
(N,N-diethylacetamido)-1,4,7,10-tetraazacyclododecane,
Inorganic Chemistry, vol 34, 3705–3715.

20. Geoffrion A M, and Graves G W (1976). Scheduling parallel
production lines with changeover costs: Practical applica-
tions of a quadratic assignment/LP approach, Operations
Research, vol 24, No. 4, 595–610.

21. Gilmore P C (1962). Optimal and suboptimal algorithms for
the quadratic assignment problem, SIAM Journal on Applied
Mathematics, vol 10(2), 305–313.

22. Hahn P, Grant T et al. (1998). A branch- and- bound algorithm
for the quadratic assignment problem based on Hungarian
method, European Journal of Operational Research, vol
108(3), 629–640.

23. Hahn P M, Hightower W L (2001). Tree elaboration strategies
in branch and bound algorithms for solving the quadratic
assignment problem, Yugoslavian Journal of Operational
Research, vol 11(1), 41–60.

Zakir Hussain Ahmed 4377

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (4) | April 2013

24. Heffley D R (1980). Decomposition of the Koopmans–
Beckmann problem, Regional Science and Urban Economics,
vol 10(4), 571–580.

25. Hubert L (1987). Assignment methods in combinatorial
data analysis, Statistics: Textbooks and Monographs Series,
vol 73, Marcel Dekker.

26. Jünger M, and Kaibel V (2001). The QAP- polytope and
the star transformation, Discrete Applied Mathematics, vol
111(3), 283–306.

27. Koopmans T C, and Beckmann M J (1957). Assignment prob-
lems and the location of economic activities, Econometrica,
vol 25(1), 53–76.

28. Krarup J, and Pruzan P M (1978). Computer- aided layout
design, Mathematical Programming Study, vol 9, 75–94.

29. Little J D C, Murthy K G et al. (1963). An Algorithm for the
Travelling Salesman Problem, Operations Research, vol 11,
972–989.

30. Miranda G, Luna H P L et al. (2005). A performance guaran-
tee heuristic for electronic components placement problems
including thermal effects, Computers and Operations
Research, vol 32(11), 2937–2957.

31. Padberg M W, and Rinaldi G (1991). A branch- and- cut algo-
rithm for the resolution of large- scale symmetric traveling
salesman problems, SIAM Review, vol 33(1), 60–100.

32. Pandit S N N (1963). Some quantitative combinatorial search
problems, Ph.D, Thesis, Indian Institute of Technology,
Kharagpur, India.

33. Pardalos P, and Crouse J (1989). A parallel algorithm for
the quadratic assignment problem, Proceedings of the
Supercomputing Conference 1989. ACM Press, 351–360.

34. Pardalos PM, Ramakrishnan KG et al. (1997). Implem-
entation of a variance reduction- based lower bound in a
branch- and- bound algorithm for the quadratic assign-
ment problem, SIAM Journal on Optimization, vol 7(1),
280–294.

35. Pollatschek M A, Gershoni N et al. (1976). Optimization
of the typewriter keyboard by simulation, Angewandte
Informatik, vol 17, 438–439.

36. QAPLIB (1997). A quadratic assignment problem library,
available from http://qaplib.uwaterloo.ca/inst.html.

37. Roucairol C (1987). A parallel branch and bound algorithm
for the quadratic assignment problem, Discrete Applied
Mathematics, vol 18, 211–225.

38. Sahni S, and Gonzales T (1976). P- complete approxima-
tion problems, Journal of the Association for Computing
Machinery, vol 23(3), 555–565.

39. Steinberg L (1961). The backboard wiring problem: A place-
ment algorithm, SIAM Review, vol 3(1), 37–50.

40. Urban T L (1998). Solution procedures for the dynamic
facility layout problem, Annals of Operations Research, vol
76(0), 323–342.

41. Zhang H, Beltran- Royo C et al. (2010). Effective formula-
tion reductions for the quadratic assignment problem,
Computers & Operations Research, vol 37(11), 2007–2016.

