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Abstract
In this paper, we consider the quadratic assignment problem (QAP), one of the hardest  NP- hard combinatorial optimiza-
tion problems. We first present a new reformulation of the problem. Then a Lexisearch Algorithm (LSA) is developed for 
obtaining exact optimal solution to the problem. Finally, a comparative study has been carried out to show the efficiency 
of the algorithm against an existing algorithm for some medium sized instances from the quadratic assignment problem 
library, QAPLIB. The comparative study shows the efficiency of the proposed LSA based on the reformulation.
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1. Introduction
Koopmans and Beckmann [27] first introduced the qua-
dratic assignment problem (QAP) as a mathematical model 
related to economic activities. The problem can be defined 
as follows: There are a set of n facilities and a set of n loca-
tions. For each pair of locations, a distance is specified and 
for each pair of facilities a weight or flow is specified (for 
example, amount of supplies transported between two 
facilities). The problem is to assign all facilities to different 
locations with the goal of minimizing the sum of the dis-
tances multiplied by the corresponding flows.

The QAP is one of the most difficult combinatorial opti-
mization problems. Sahni and Gonzales [38] had shown 
that it is  NP- hard and that, unless P = NP, it is not pos-
sible to find an  f- approximation algorithm, for a constant f. 
Several  NP- hard problems can be modeled as QAPs. It has 
appeared in several practical applications - backboard wir-
ing [39], scheduling problems [20], typewriter keyboards 
and control panels [35], hospital planning [17], arche-
ology [28], economic problems [24], statistical analysis 

[25],  forest parks [9], analysis of reaction chemistry [19], 
 numerical analysis [11], placement of electronic compo-
nents [30, 16] etc.

Due to practical importance and complexity, the QAP 
has been drawing attention of many researchers – who 
developed several exact and heuristic algorithms for solving 
the problem. In general, instances of size n > 30 cannot be 
solved optimally by an exact algorithm in reasonable time. 
Though large sized instances cannot easily be solved opti-
mally by an exact algorithm, but there are some situations 
where only exact optimal solutions are required. Hence, we  
seek exact optimal solution to the problem. Branch- and-
 bound [22], Branch- and- cut [18], lexisearch [32, 3] are 
 well- known exact algorithms for solving combinatorial opti-
mization problems. The LSA has been successfully applied 
to many combinatorial optimization problems [4, 5, 7].

This paper presents a reformulation of the problem 
based on bias removal method used by Ahmed [5] for the 
travelling salesman problem (TSP). The TSP can be viewed 
as a particular case of the QAP when the flow between any 
pair of facilities is 1. Since the  bias- removal method is found 
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to be useful for TSP, a reformulation of the QAP based on 
the bias removal method is supposed to be effective. Then 
we apply LSA to obtain exact optimal solution to the prob-
lem. The efficiency of our LSA against implementation of 
integer programming formulation ( IPQAPR- IV, therein) 
using CPLEX 9.0 by Zhang et al. [41] has been examined 
for medium sized instances from the quadratic assignment 
problem library, QAPLIB.

This paper is organized as follows: Section 2 presents 
a brief overview of the literatures on the quadratic assign-
ment problem. Problem definition and reformulation of 
the problem is presented in Section 3. Section 4 presents 
a LSA for obtaining exact optimal solution to the problem. 
Computational experience for the LSA has been reported 
in Section 5. Finally, Section 6 presents comments and con-
cluding remarks.

2. Literature Review
The Quadratic Assignment Problem (QAP) is one of the 
hardest  NP- hard combinatorial optimization problems. 
So, finding exact optimal solution for the large instances 
is almost impossible. However, there are quite situations 
where exact optimal solutions are very important, for 
example, laying out circuits in a VLSI chip, location of 
large plants and storage facilities done once in lifetime for 
an organization.

Several methods used to achieve exact optimal solution 
for the QAP as well as combinatorial optimization problem 
include  branch- and-bound, cutting planes or combinations 
of these methods, like  branch- and-cut, dynamic program-
ming, and LSA. Out of them branch- and- bound are the 
most known and used algorithms and are defined from 
allocation and cutting rules, which define lower bounds 
for the problem. Gilmore [21] developed enumerative 
schemes that use lower bounds to eliminate undesired 
solutions. Various literatures concerning QAP branch- and-
 bound algorithms are available [12, 33, 34, 10, 22, 23]. In 
recent years, procedures that combine branch- and- bound 
techniques with parallel implementation are being widely  
used. Due to the combination, the best results for the QAP 
are being achieved. However, it is also important to observe 
that the success for the instances of bigger sizes is related to 
the hardware technological improvements [37, 33, 14].

Dynamic programming is often used for the special 
cases of QAP, where the flow matrix is the adjacency matrix 
of a tree. Christofides and Benavent [13] studied this 
case using a mixed integer linear programming (MILP) 

approach to the relaxed problem. Then it was solved using 
dynamic programming by taking advantage of the poly-
nomial complexity of the instances. This technique was 
also used by Urban [40].Some literature proposed differ-
ent integer programming formulation to solve the problem  
[1, 2]. Recently, Zhang et al. [41] proposed integer pro-
gramming formulation of the problem and solved using 
CPLEX 9.0 and found very good results.

Bazaraa and Sherali [8] proposed cutting plane meth-
ods, but did not find satisfactory results. However, they 
contributed in the formulation of some heuristics that 
use MILP and Benders decomposition. The convergence 
of the employed technique is slow; hence, it is not widely 
used so far. Of course, it presented good quality of solu-
tions for small sized QAP instances. Miranda et al. [30] 
use Benders decomposition algorithm to deal with a 
motherboard design problem, including linear costs in 
the formulation.

Padberg and Rinaldi [31] proposed a  branch- and-cut, 
a variation of the cutting plane methods, which appears 
to be an alternative cutting strategy that exploits the poly-
tope defined by the feasible solutions of the problem. Its 
main advantage over cutting planes is that the cuts are 
associated with the polytope’s facets. Cuts associated with 
facets are more effective than the ones produced by cutting 
planes, so the convergence to an optimal solution is accel-
erated. The lack of knowledge about the QAP polytope is 
the reason why polyhedral cutting planes are not widely 
used for this problem. In this context, some researchers 
have been describing basic properties of the polytope that 
can contribute to future algorithm development [26, 18]. 
However, most of the above methods are based on lower 
bounds.

The lexicographic search (lexisearch, for short) is a 
 systematic branch and bound approach, developed by [32], 
first for Loading Problem, popularly known as knapsack 
problem, before branch and bound approach of Little et al. 
[29] was published. Das [15] developed a LSA for obtaining 
exact optimal solution to the QAP. But, no computational 
experience has been reported.

3.  Problem Definition and 
Reformulation
The problem is defined in the context of assigning n facili-
ties to n locations. Let fij be the flow between facilities i 
and j, and dkl be the distance between locations k and l. 
Let a a a a n= { ( ), ( ),......., ( )}1 2  be an assignment, where a(i) 
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represents the location of the facility i. The problem is to 
assign to each location exactly one facility so as to  minimize  
the cost
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Since there are n! assignments, so complete enumeration 
method is impossible for n>14, even if both flow F = [fij] 
and distance D = [dkl] matrices are symmetric. We pro-
pose a reformulation of the problem which is based on bias 
removal method used by Ahmed [5] for the travelling sales-
man problem (TSP). It is found that bias removal method is 
effective for the TSP. So, our reformulation is supposed to 
be effective for the QAP also. Following is a reformulation 
of the problem.
Let
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Also let
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where sa is the cost of an assignment with respect to a sur-
plus matrix S = [sij] with

 s x y u vij i j i j i j i j= + + +a b g d  (14)

We further reduce the matrix S as follows.

 
fi ijj n s for i n= ≤ ≤ =

min
, , , , .......,1 1 2 3

 
(15)
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( ), , , , .......,1 1 2 3

 
(16)

 s s i j nij ij i j
’ , ,= − − ≤ ≤f y 1  (17)

The reduced matrix S’ = [s’ij] becomes  non- negative with 
at least one zero in each row and each column. So, sa 
becomes
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where cs is constant and s’a is the cost of an assignment with 
respect to the reduced surplus matrix S’. Hence it is enough 
to minimize
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For the flow and distance matrices given in Table 1 and 
Table 2 respectively, all the step- by- step calculations to 
obtain reduced surplus matrix are shown in Table 1 to 
Table 6. We have cs = 46.

Table 1. The flow matrix F with α and β

Facility 1 2 3 4 5 αi

1 X 5 0 6 1 12
2 5 X 3 0 4 12
3 2 3 X 0 0 5
4 4 0 0 X 1 5
5 1 2 0 5 X 8
βj 12 10 3 11 6
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4. An LSA for the QAP
In LSA, the set of all possible solutions to a problem is 
arranged in a hierarchy, such that each incomplete word 
represents the block of words with this incomplete word as 
the leader. For the QAP, each location is considered as a let-
ter in an alphabet and each assignment can be represented 

as a word with this alphabet. Thus the entire set of words 
in this dictionary (namely, the set of solutions) is parti-
tioned into blocks. Bounds are computed for the values of 
the objective function over the blocks of words, which are 
then compared with the ‘best solution value’ found so far. 
If no word in the block can be better than the ‘best solution 
value’ found so far, jump over the block to the next one. If 
the current block, which is to be jumped over, is the last 
block of the present  super- block, then jump out to the next 
 super- block. Further, if the value of the current leader is 
already greater than or equal to the ‘best solution value’; 
no need for checking the subsequent blocks within this 
 super- block. However, if the bound indicates a possibility 
of better solutions in the block, enter into the sub block 
by concatenating the present leader with appropriate letter 
and set a bound for the new  sub- block so obtained [4, 32].

4.1 Incomplete Word and Block
An incomplete assignment { ( ), ( ),......, ( )}a a a k1 2  of k facili-
ties into first k locations, where k≤n, is called an incomplete 
word or a leader of length k. This incomplete word is 
also called a leader of length k. A block Q with a leader 
{ ( ), ( ), ( )}a a a1 2 3  of length three consists of all the words 
beginning with { ( ), ( ), ( )}a a a1 2 3  as the string of first three 
letters. The block P with leader { ( ), ( )}a a1 2  of length 2 is the 
immediate  super- block of Q and includes Q as one of its 
 sub- blocks. The block R with leader { ( ), ( ), ( ), ( )}a a a a1 2 3 4  is 
a  sub- block of Q. The block Q consists of many  sub- blocks 
{ ( ), ( ), ( ), ( )}a a a a r1 2 3  one for each a(r). The block Q is the 
immediate  super- block of block R.

4.2 Alphabet Table
Alphabet matrix, T = [t(i,j)], is a square matrix of order n 
formed by the positions of the elements of the reduced sur-
plus matrix S’ of order n. The ith row of the matrix T consists 
of the positions of the elements in the ith row of the matrix 
S’ when they are arranged in the  non- decreasing order of 
their values. If t(i,r) stands for the rth element in the ith row 

Table 2. The distance matrix D with X and Y

Location 1 2 3 4 5 xi
1 X 1 1 2 5 1
2 1 X 4 1 2 1
3 1 2 X 1 3 1
4 2 1 1 X 5 1
5 3 2 2 1 X 1
yj 0 0 0 0 1

Table 3. The reduced flow matrix F΄ with U and V

Facility 1 2 3 4 5 ui

1 X 5 0 6 1 0
2 4 X 3 0 4 0
3 1 3 X 0 0 0
4 3 0 0 X 1 0
5 0 2 0 5 X 0
vj 1 0 0 0 0

Table 4. The reduced distance matrix D΄ with γ and δ

Location 1 2 3 4 5 γi
1 X 0 0 1 3 4
2 0 X 3 0 0 3
3 0 1 X 0 1 2
4 1 0 0 X 3 4
5 2 1 1 0 X 4
δj 3 2 4 1 7

Table 5. The surplus matrix S with φ and ψ

Facility\Location 1 2 3 4 5 φi

1 15 14 16 13 31 13
2 12 12 12 12 22 12
3 5 5 5 5 8 5
4 5 5 5 5 16 5
5 8 8 8 8 14 8
ψ j 0 0 0 0 3

Table 6. The reduced surplus matrix S΄

Facility\Location 1 2 3 4 5

1 2 1 3 0 15
2 0 0 0 0 7
3 0 0 0 0 0
4 0 0 0 0 8
5 0 0 0 0 3
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of T, then t(i,1) corresponds to the smallest element in the 
ith row of the matrix S’. Alphabet table “[ ( , ) ], ( , )

’t i j si t i j− ” is  
the combination of elements of the matrix T and their val-
ues [4].For the reduced surplus matrix S΄ in Table 6, the 
alphabet table is shown in Table 7.

4.3 Lower Bound
In LSA, solution does not depend on lower bound, unlike 
branch- and- bound algorithm. The lower bound for each 
block leader on the objective function value is set to skip 
as many subproblems in the search procedure as possible. 
A subproblem is skipped if its lower bound exceeds the 
‘best solution value’ found so far (i.e., upper bound) in the 
process. The higher the lower bound the larger the set of 
subproblems that are skipped. There are two parts in equa-
tion (19) – one consists of f ’ijd’a(i)a(j) and other s’a. For the first 
part, we construct a matrix M from the matrices F’ and D’ 
as follows. Sort each row elements of F’ excluding diagonals 
in ascending order and store in F” = [f ”ij]. Also, sort each 
column elements of D’ excluding diagonals in descend-
ing order and store in D” = [d”ij]. Then the elements of the 
matrix M = [mij] are calculated as

 
m f dij ik kj

k

n
= ∑

=

−
’’ ’’

1

1

 
(20)

It is seen that for some instances either all elements of the 
matrix M are zero or elements of each row are same. For 
that case, it will not help to accelerate the search process. 
So, we add f d f dij ij ji ji

’ ’ ’ ’+  to the elements mij. Thereafter, ele-
ments of each row are sorted in ascending order. For the 
F and D matrices given in Table 1 and Table 2, the sorted 
matrix M is shown in Table 8.

Now, suppose an incomplete assignment is 
{ ( ), ( ),....., ( )}a a a k1 2 1−  and the location a(k) is selected for 
concatenation. Before concatenation, we check the bound 
for the leader { ( ), ( ),......, ( ), ( )}a a a k a k1 2 1− . For that, we start 
our computation from (k+1)th row of the ‘alphabet table’ 

and traverse up to the nth row, consider the value of first 
‘unassigned’ location in each row. The lower bound for the 
leader can be calculated as:
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where t(i, p) is the first ‘unassigned’ location the ith row in 
matrix T
The value of the incomplete assignment { ( ), ( ),......, ( )}a a a k1 2  
can be calculated as
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4.4 The Algorithm
Let F and D be the flow and distance matrices respec-
tively, and S’ be the reduced surplus matrix as discussed in  
section 3. The steps of the LSA can be written as follows.

Step 0:  Form the ‘alphabet table’. Initialize the ‘best solution 
value’ (Za) as large as possible, k as one, and value of 
assignment (Zk-1) as zero.

Step 1:  With the incomplete assignment of length (k-1) 
take as leader; consider the first ‘unassigned and 
unchecked’ location in the kth row of the alphabet 
table. If (value of the location + Zk-1) is greater than 
or equal to Za, go to step 4, else, compute the value 
of present ‘incomplete assignment’ (Zk), after tem-
porarily concatenating the present location to the 
current leader, and the ‘lower bound’ (Lk) for the 
temporary leader, go to step 2. If there is no any 
‘unassigned and unchecked’ location found in that 
row, go to step 4.

Step 2:  If ‘(Zk+Lk)<Za’, go to step 3, else, drop the location 
which was temporarily concatenated in step 1,and 
jump over the block, i.e., go to step 1.

Step 3:  Go into the  sub- block, i.e., augment the current 
leader; concatenate the considered location per-
manently to it, lengthening the leader by one, that 
is, k is increased by one. If the current ‘incomplete 

Table 7. The alphabet table (P is the location and V is 
the value of the location)

Facility P - V P - V P - V P - V P - V

1 4-0 2-1 1-2 3-3 5-15
2 1-0 2-0 3-0 4-0 5-7
3 1-0 2-0 3-0 4-0 5-0
4 1-0 2-0 3-0 4-0 5-8
5 1-0 2-0 3-0 4-0 5-3

Table 8. The matrix M

Facility\Location 1 2 3 4 5

1 0 1 1 1 8
2 0 3 3 3 13
3 0 0 0 0 1
4 0 0 0 0 1
5 0 0 0 0 2
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assignment’ is a complete assignment, then replace 
Za = Zk and go to step 4, else, go to step 1.

Step 4:  Jump out to the next  super- block, i.e., decrement 
k by 1 (one), rejecting all the subsequent assign-
ments from this block. If k<1, go to step 5, else go to  
step 1.

Step 5:  Current assignment gives the optimal assignment 
sequence, with Za as the optimal solution value, and 
stop.

4.5 Illustration of the LSA
Working of the above LSA is explained through the example 
given in Table 1 and Table 2. We suppose that ‘best solution 
value’ (Za) is 9999. Table 9 gives the ‘search table’, and the 
symbols used therein are listed below:

GS: Go into the  sub- block.
JB: Jump over the block.
JO: Jump out to the next  super- block.

As illustration of the example, we initialize Za=9999, 
k=1, and Z0=0. We start from 1st row (i.e., 1st facility) of the 
‘alphabet table’. Here, t(1,1) = 4, i.e., location 4 with value 
b’14 = 0 and (Z0+ s’14) <Za. The value for the present incom-
plete assignment (Z1)=0. Now we go for bound calculation 
for the present leader {4}. The bound will guide us whether 
the facility 1 will be assigned to location 4. Lower bound for 
the present leader is

L1= (s’21+ s’31+ s’41+ s’51)+(m21+ m31+ m41+ m51)

 = (0+0+0+0)+(0+0+0+0) = 0

Since, (Z1+L1 = 0 + 0 = 0) <Za, we accept the location 4 that 
leads to the incomplete assignment {4} with Z1 = 0.Next, 
we go to 2nd row (i.e., 2nd facility) of the ‘alphabet table’. 
Here, t(2,1) = 1, i.e., location 1 with value =s’21 = 0 and  
(Z1+ s’21) <Za. The value for the present incomplete assign-
ment (Z2) = 9. Now we go for bound calculation for the 
present leader {4, 1}. The bound will guide us whether  
the facility 2 will be assigned to location 1. Lower bound for 
the present leader is

L2= (s’32+ s’42+ s’52)+(m32+ m42+ m52)

 = (0+0+0)+(0+0+0) = 0

Since, (Z2+L2=9+0=9) <Za, we accept the location 1 that 
leads to the incomplete assignment {4, 1} with Z2 = 9. 
Proceeding in this way we obtain the 1st complete assign-
ment as {4, 1, 2, 3, 5} with Z5 = 37 <Za, so we replace  
Za = 37. Now, we jump out to the next higher order block, i.e., 

Table 9. The search table

Leaders
Zk Lk Za Remarks

1 2 3 4 5

4-0 (0) 0 0 9999 GS
1-0 (0) 9 0 9999 GS

2-0 (9) 9 0 9999 GS
3-0 (9) 9 5 9999 GS

5-3 (12) 37 0 9999 GS
37 JO

5-8 (17) 35 0 37 GS
3-0 (35) 41 0 37 JB, JO

3-0 (9) 9 0 37 GS
2-0 (9) 9 5 37 GS

5-3 (12) 36 0 37 GS
36 JO

5-8 (17) 35 0 36 GS
2-0 (35) 36 0 36 JB, JO

5-0 (9) 24 0 36 GS
2-0 (24) 24 0 36 GS

3-0 (24) 32 0 36 GS
32 JO

3-0 (24) 24 0 32 GS
2-0 (24) 40 0 32 JB, JO

2-0 (0) 0 0 32 GS
1-0 (0) 1 0 32 GS

3-0 (1) 1 5 32 GS
5-3 (4) 15 0 32 GS

15 JO
5-8 (9) 27 0 15 JB, JO

3-0 (0) 12 0 15 GS
1-0 (12) 21 5 15 JB
5-8 (20) JO

5-0 (0) 3 0 15 GS
1-0 (3) 12 0 15 GS

3-0 (12) 26 0 15 JB, JO
3-0 (3) 3 0 15 GS

1-0 (3) 4 0 15 GS
4 JO

3-0 (0) 0 0 4 GS
1-0 (0) 1 0 4 GS

2-0 (1) 1 5 4 JB
5-8 (9) JO

2-0 (0) 12 0 4 JB
5-0 (0) 6 0 4 JB, JO

5-7 (7) JO

(continued)
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Leaders
Zk Lk Za Remarks

1 2 3 4 5

2-1 (1) 1 0 4 GS
1-0 (1) 1 0 4 GS

3-0 (1) 2 0 4 GS
4-0 (2) 2 5 4 JB

5-8 (10) JO
4-0 (1) 7 0 4 JB
5-0 (1) 17 0 4 JB, JO

3-0 (1) 20 0 4 JB
4-0 (1) 1 0 4 GS

1-0 (1) 7 0 4 JB
3-0 (1) 2 0 4 GS

1-0 (2) 2 5 4 JB
5-8 (10) JO

5-0 (1) 11 0 4 JB, JO
5-7 (8) JO

1-2 (2) 2 3 4 JB, JO
3-3 (3) 3 0 4 GS

1-0 (3) 3 0 4 GS
2-0 (3) 6 0 4 JB
4-0 (3) 9 0 4 JB
5-0 (3) 19 0 4 JB, JO

2-0 (3) 20 0 4 JB
4-0 (3) 3 0 4 GS

1-0 (3) 9 0 4 JB
2-0 (3) 6 0 4 JB
5-0 (3) 13 0 4 JB, JO

5-7 
(10)

JO

5-15 
(15)

STOP

Table 9. (Continued)

{4, 1, 2} with Z3 = 9, and try to compute another  complete 
 assignment with lesser cost. Proceeding in this way, we 
obtain the optimal assignment as {4, 2, 5, 3, 1} i.e., facility 1 
to location 4, facility 2 to location 2, facility 3 to location 5, 
facility 4 to location 3, and facility 5 to location 1, with value 
Za = 4. Hence, the optimal assignment cost with respect to 
the given original matrices is Za + Cs = 4 + 46 = 50.

5. Computational Experience
The LSA has been encoded in Visual C++ on a Pentium IV 
personal computer with speed 3 GHz and 448 MB RAM 
under MS Windows XP, and tested with some [36] instances 

of various sizes. We carry out a comparative study between 
our LSA and implementation of integer  programming 
 formulation by Zhang et al. [41] ( IPQAPR- IV, therein) in 
Table 10. We report known solution reported in QAPLIB; 
and the solution value, Total Computational Time (TotTime) 
and the computational time when the optimal solution is 
seen for the First Time (FirstTime) in seconds for solving 
the instances by our LSA in the table. The table also copies 
computational times (formulation setup times + IP CPU 
times) in seconds, and solutions as were reported by Zhang 
et al. [41] on a laptop with Intel Pentium M-1.70 GHz pro-
cessor and 1.23 GB RAM using CPLEX 9.0.Table 10 also 
presents percentage of errors of the solution obtained by 
the algorithms for the instances. The error (%) is given by 
the formula Error BestSol OptSol OptSol(%) ( )/ %= − ×100 ,  
where BestSol denotes the best solution obtained by the 
algorithms and OptSol denotes the optimal/best known 
solution reported in QAPLIB.

Table 10 presents results obtained by the algorithm for 
twenty two instances of sizes from 12 to 32. Both algorithms 
hit optimal solution to the same thirteen instances. Of course, 
for some of them optimality could not be proved by both algo-
rithms. For the remaining nine instances, there is a difference 
in solution qualify. Among these nine instances, maximum 
percentage of error of the solution is 78.57% (to esc32b) by 
 IPQAPR- IV formulation using CPLEX 9.0 whereas only 
52.31% error (to esc32a) by LSA. On the average, LSA obtains 
solutions which are 10.29% away from the optimal solutions, 
whereas,  IPQAPR- IV formulation obtains solutions which 
are12.24% away from the optimal solutions. Hence, on the 
average, our algorithm obtains better solutions.

In terms of computational time, direct comparison is 
not possible since the algorithms have been run in differ-
ent machines. If we assume that the performances of the 
machines are equivalent, then for the instances whose opti-
mality are proved, LSA is found to be better. It shows that 
our LSA can compete with stat- of- art methods in the lit-
erature. Also, solution by our algorithm does not rely on 
commercial math software, whereas solution by  IPQAPR- IV 
formulation implementation relies on CPLEX.

In general, the LSA first finds an optimal solution and 
then proves the optimality of that solution, i.e., all the 
remaining subproblems are discarded. The table shows 
that, on average computational time, LSA found opti-
mal solution within 42% of the total solution time. That 
is, LSA spent at least 58% of total time on proving opti-
mality of the  solutions. Therefore, for these QAPLIB 
instances, LSA spends a relatively large amount of time on 
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 proving an optimal solution, and hence, a large number of  
subproblems are thrown by LSA. Also, it is seen that our 
algorithm produces two groups of instances of same size 
in terms of computational times with a big gap between 
the groups; one group takes very low computational time, 
whereas other group takes very high computational time. 
However, similar observations are reported for the travel-
ing salesman problem and its some variations [4, 5].

6. Conclusion
We reformulate the quadratic assignment problem such 
that LSA can be applied efficiently to the problem, and 
then apply a LSA to obtain exact optimal solution to the 
problem. As lower bound plays a vital role in skipping the 
subproblems and hence, accelerates the search process, a 

lower bound for leader of blocks on the objective function 
is proposed. Then the performance of the LSA is compared 
with implementation of the  IPQAPR- IV formulation by 
Zhang et al. [41] using CPLEX 9.0 for some medium sized 
QAPLIB instances. Computational experience shows the 
effectiveness of our algorithm.

We have investigated using LSA that only some medium 
sized instances can be solved optimally within stipulated 
time limit. For some small sized instances optimality of the 
solution could not be proved within four hours by our algo-
rithm, for example, instances esc16 b- d of size 16; whereas 
the instance esc32g of size 32 could be solved within 
0.45second. We investigated why some small sized instances 
could not be solved, whereas some medium sized instances 
could be solved very quickly, but, we did not come to any 
conclusion. This definitely, depends on the data structure.  

Table 10. Comparison of different algorithms

Instance OptSol LSA  IPQAPR- IV [41]

BestSol Error(%) FirstTime TotTime BestSol Error(%) TotTime
esc16a 68 68 0.00 0.60 625.30 68 0.00 14405.1
esc16b 292 292 0.00 29.10 14400.00 292 0.00 14412.9
esc16c 160 160 0.00 840.50 14400.00 160 0.00 14406.6
esc16d 16 16 0.00 2.50 14400.00 16 0.00 2687.8
esc16e 28 28 0.00 0.56 14.30 28 0.00 1004.6
esc16f 0 0 0.00 0.00 0.00 0 0.00 0.5
esc16g 26 26 0.00 0.00 0.50 26 0.00 351.1
esc16h 996 996 0.00 1.10 6228.20 996 0.00 14430.2

Partial Average 0.00 109.30 6258.54 0.00 7712.4
esc32a 130 198 52.31 12058.80 14400.00 194 49.23 15128.2
esc32b 168 204 21.43 14093.60 14400.00 300 78.57 15653.3
esc32c 642 662 3.12 12339.60 14400.00 736 14.64 16033.2
esc32d 200 234 17.00 4931.80 14400.00 236 18.00 15543.1
esc32e 2 2 0.00 1.25 26.05 2 0.00 68.7
esc32f 2 2 0.00 2.03 25.32 2 0.00 68.9
esc32g 6 6 0.00 0.44 0.45 6 0.00 327.7
esc32h 438 574 31.05 4099.20 14400.00 532 21.46 16140.6

Partial Average 15.61 5940.84 9006.48 22.74 9870.5
kra30a 88900 118820 33.66 3874.31 14400.00 107350 20.75 15908.9
kra30b 91420 118930 30.09 4099.42 14400.00 115870 26.74 15812.7
kra32 88700 115310 30.00 6170.01 14400.00 123590 39.33 16693.5

Partial Average 31.25 4714.58 14400.00 28.94 16138.0
scr12 31410 31410 0.00 0.14 0.27 31410 0.00 31.9
scr15 51140 51140 0.00 77.88 81.70 51140 0.00 611.8
scr20 110030 118568 7.76 12986.42 14400.00 110676 0.59 14417.2

Partial Average 2.59 4354.81 4827.32 0.20 5020.3

Total Average 10.29 3436.78 8172.82 12.24 9279.02
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So, like the usual traveling salesman problem [5] and the 
bottleneck traveling salesman problem [6], a sophisticated 
 data- guided approach may reduce the computational effort 
drastically and produce better solution quality within stip-
ulated time limit. Also, the proposed lower bound method 
seems to be very loose; hence, a tighter bound may obtain 
optimal solution for some more instances within limited 
time frame.

7. Acknowledgements
The author is very much thankful to the honourable 
reviewer for his constructive comments and suggestions 
which help the author to improve the paper. This research 
was supported by the Deanery of Academic Research, Al 
Imam Mohammad Ibn Saud Islamic University, Riyadh, 
Saudi Arabia, via Grant no. 320902. The author is also  
very much thankful to the University for its financial 
 support.

8. References
 1. Adams W P, and Johnson T A (1994). Improved linear 

 programming- based lower bounds for the quadratic assign-
ment problem, DIMACS Series in Discrete Mathematics and 
Theoretical Computer Science, vol 16, 43–75.

 2. Adams W P, Guignard M et al. (2007). A level-2 reformu-
lation–linearization technique bound for the quadratic 
assignment problem, European Journal of Operational 
Research, vol 180(3), 983–996.

 3. Ahmed Z H (2000). A Sequential Constructive Sampling 
and Related Approaches to Combinatorial Optimization, 
Ph.D. thesis, Tezpur University, Assam, India.

 4. Ahmed Z H (2010). A lexisearch algorithm for the bottle-
neck traveling salesman problem, International Journal of 
Computer Science and Security, vol (6), 569–577.

 5. Ahmed Z H (2011a). A  data- guided lexisearch algorithm for 
the asymmetric traveling salesman problem, Mathematical 
Problems in Engineering, vol 2011, Article ID 750968, 
doi:10.1155/2011/750968.

 6. Ahmed Z H (2011b). A  data- guided lexisearch algorithm for 
the bottleneck travelling salesman problem, International 
Journal of Operational Research, vol 12, No. 1, 20–33.

 7. Ahmed Z H (2012). An exact algorithm for the clustered 
travelling salesman problem, Opsearch, appeared online, 
doi: 10.1007/s12597-012-0107-0.

 8. Bazaraa M S, Sherali H D (1980). Benders’ partition-
ing scheme applied to a new formulation of the quadratic 
assignment problem, Naval Research Logistics Quarterly, vol 
27(1), 29–41.

 9. Bos J (1993). A quadratic assignment problem solved by 
 simulated annealing, Journal of Environmental Management, 
vol 37(2), 127–145.

10. Brixius N W, and Anstreicher K M (2001). Solving quadratic 
assignment problems using convex quadratic program-
ming relaxations, Optimization Methods and Software,  
vol 16(1-4), 49–68.

11. Brusco M J, and Stahl S (2000). Using quadratic assignment 
methods to generate initial permutations for  least- squares 
unidimensional scaling of symmetric proximity matrices, 
Journal of Classification, vol 17(2), 197–223.

12. Burkard R E, and Derigs U (1980). Assignment and match-
ing problems: Solutions methods with Fortran programs, 
Lectures Notes in Economics and Mathematical Systems, vol 
184,  Springer- Verlag, New York, Secaucus, NJ.

13. Christofides N, and Benavent E (1989). An exact algorithm 
for the quadratic assignment problem, Operations Research, 
vol 37(5), 760–768.

14. Clausen J, and Perregaard M (1997). Solving large qua-
dratic assignment problems in parallel, Computational 
Optimization and Applications, vol 8(2), 111–127.

15. Das S (1976). Routing and Allied Combinatorial 
Programming Problems: A Lexicographic Search Approach. 
Ph.D. Thesis, Dibrugarh University, Assam, India.

16. Duman E, and Ilhan O (2007). The quadratic assignment prob-
lem in the context of the printed circuit board assembly process, 
Computers and Operations Research, vol 34(1), 163–179.

17. Elshafei A N (1977). Hospital layout as a quadratic assignment 
problem, Operations Research Quarterly, vol 28(1), 167–179.

18. Erdoğan G, and Tansel B (2007). A branch- and- cut algorithm 
for the quadratic assignment problems based on linearizations, 
Computers & Operations Research, vol 34(4), 1085–1106.

19. Forsberg J H, Delaney R M et al. (1994). Analyzing 
 lanthanide- included shifts in the NMR spectra of lan-
thanide (III) complexes derived from 1,4,7,10-tetrakis 
(N,N-diethylacetamido)-1,4,7,10-tetraazacyclododecane, 
Inorganic Chemistry, vol 34, 3705–3715.

20. Geoffrion A M, and Graves G W (1976). Scheduling parallel 
production lines with changeover costs: Practical applica-
tions of a quadratic assignment/LP approach, Operations 
Research, vol 24, No. 4, 595–610.

21. Gilmore P C (1962). Optimal and suboptimal algorithms for 
the quadratic assignment problem, SIAM Journal on Applied 
Mathematics, vol 10(2), 305–313.

22. Hahn P, Grant T et al. (1998). A branch- and- bound algorithm 
for the quadratic assignment problem based on Hungarian 
method, European Journal of Operational Research, vol 
108(3), 629–640.

23. Hahn P M, Hightower W L (2001). Tree elaboration strategies 
in branch and bound algorithms for solving the quadratic 
assignment problem, Yugoslavian Journal of Operational 
Research, vol 11(1), 41–60.



Zakir Hussain Ahmed 4377

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (4) | April 2013

24. Heffley D R (1980). Decomposition of the Koopmans–
Beckmann problem, Regional Science and Urban Economics, 
vol 10(4), 571–580.

25. Hubert L (1987). Assignment methods in combinatorial 
data analysis, Statistics: Textbooks and Monographs Series, 
vol 73, Marcel Dekker.
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