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Abstract
For stochastic PERT networks the main difficulty in calculating the probability distribution function (pdf) for project
completion time is caused by structural and statistical dependence between activities. This paper presents a method
for taking into account the structural dependence between activities and provides a generalized algorithm to evaluate
the exact PDF for project completion time. The proposed procedure provides an exact pdf for project completion time
when the duration times of activities are discrete. It can be applied for PERT networks with statistical dependence as
well as structural dependent relationship between activities and can be applied for PERT networks with discrete or
continues distribution. It has been tested using simple activity network models with different structural dependence
between activities

Keywords: PERT, pdf, Project completion time.
Introduction

One of the most important problems in the analysis of
PERT networks is the determination of the distribution
function for project completion times. When the duration
times of the activities of a project are random variables,
the completion time of the project is also a random
variable, with a distribution function that is a complex
function of the distribution functions for each activity.

For networks with a special structure, the distribution
function for project completion time can be obtained by
reducing the network to a single, equivalent activity
starting at an initial node (1) and ending at a terminal
node (N). Assuming structural independence of the
durations of the network activities, the reduction is
possible through repeated application of two well-known
operations: convolution and greatest. Convolution and
greatest operations both involve the combining of
probability distributions.

If the PERT network satisfies the conditions
necessary for the direct use of convolution and greatest
operations, then the network is termed reducible;
otherwise, it is termed irreducible. If the network is
reducible to a single equivalent activity (1, N), then it is
termed as completely reducible. If the network is
completely reducible, the analytical form of the
distribution function of the project completion time can be
determined. However, irreducibility of the network
prevents such analytical determination.

In conventional PERT network models it is assumed
that different paths are structurally independent. This is
not true for irreducible networks, because in irreducible
networks at least two paths share one or more common
activities, like "Wheatstone bridge".

This paper presents a method for taking into account
dependence between activities in PERT networks and
provides a generalized algorithm to evaluate the project
completion time. To accomplish this, we consider
different activity network models with different structural

dependence between distributions, and we employ a
calculation procedure which retains a memory of
structural links for later use.

The methodologies adopted previously can be
classified into three main categories as follows:
1. Exact methods: Martin (1965) presented a method to
compute the distribution function of the project duration
time. The algorithm is described that reduces a series-
parallel network to a single arc whose density function is
that of the time through the original network. Also the pdf
's of the duration of activity are nominally distributed.
Soukhakian (1988) presents a method for taking into
account dependence between activities and provides a
generalized algorithm to evaluate the project completion
time and criticality index of each activity and path using a
Controlled Interval and Memory (CIM) approach
proposed by Chapman and Cooper (1983). Fisher et al.
(1985) approach applied to only the cases in which the
durations of the activities are independent, and
exponentially or general-gamma distributed. Kulkarni and
Adlakha (1986) presented simple and computationally
stable algorithms to compute the distribution and
moments of project completion time, the probability that a
given path is critical, and other related performance
measures, and developed analytical procedures for
Markov PERT networks with independent and
exponentially distributed activity durations. Schmidt and
Grossmann (2000) present a new technique for
computing the exact overall duration of a project, when
task durations have independent distributions. Also a
semi-analytical procedure is proposed to compute the
cumulative distribution function (cdf) directly by
integrating a linear transformation of the pdf of the task
durations. Since the analytical calculations in the exact
approaches are too time consuming, (because of heavy
computational load), it was impossible for project
managers to use them for large-size stochastic activity
network (SAN).
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2. Approximation and Simulation methods: Van Slyke
(1963) first developed the concept of using crude Monte
Carlo methods to analyze the distribution function of the
project completion time, and then defined a “critically”
index for each activity. Dodin (1985) proposed an
analytical procedure to approximate the distribution
functions in stochastic networks. The procedure is
efficient in the sense of its accuracy and its computational
requirements. Pontrandolfo (2000) provided an
approximate estimate of the project duration by deriving
the equations that relates the duration of the project and
those of every possible PERT-path. Yao and chu (2007)
improved the techniques of discretization and present an
algorithm to approximated pdf for the completion time of
large size projects.
3. Bounding methods. Elmaghraby (1967) provided lower
bounds for the true expected project completion time.
Shogan (2006) developed a new method for obtaining
probability distributions that bound the exact probability
distribution of the project duration from above and below.
The expected values of these bounding distributions, then
furnish lower and upper bounds on the expected project
duration. Azaron and Fatemi Ghomi (2008) apply the
stochastic dynamic programming to obtain a lower bound
for the mean project completion time in a PERT network,
where the activity durations are exponentially distributed
random variables (Azaron & Fatemi Ghomi, 2008).
Proposed procedure

In this paper, we describe the proposed procedure
and present the algorithm of determining the probability
distribution function of project completion time for PERT
networks when duration times of activities are discretely
distributed and structural dependence between activities
is considered.

The proposed procedure is mainly based on
Garman’s (1972) approach. However, instead of fixing
the duration times of chosen activities sample values, we
conditionalize the chosen activities by fixing the random
variables at their realization times. Consider this simple
example:
Explaining main steps by simple example

Before explaining the proposed procedure, let’s
review this simple example to illustrate the main steps:

By fixing on the first realization time of A, 3, we
conditionalize this activity and change the network of Fig.
1 to that of Fig. 2 and all path durations are independent
(Table 1).

The last row of Table 2 shows probability of project
completion times by fixing first realization time of A (3). It
is clear that the probability of occurrence of this table is
equal to probability of occurrence of fixed duration of
activities conditioned. In this sample probability of
occurrence of this table is 0.8. By fixing on the second
realization time of A, (8) change the network of Fig. 1 to
that of Fig. 3 and all path durations are independent.

The last row of Table 3 shows probability of project
completion times by fixing second realization time of A,
(8). The probability of occurrence of this table is 0.2. Now
we should decondition the last row of Table 2 and the last

Table 1. Probability of realization times of each activity
Activity Duration 1 Probability Duration 2 Probability

A 3 0.8 8 0.2
B 6 0.6 9 0.4
C 4 0.3 6 0.7
D 4 0.9 5 0.1
E 1 0.5 2 0.5Fig. 1. A sample network

Fig. 3. Equivalent networks by fixing
second realization time of A

Fig. 2. Equivalent networks by fixing first realization
time of A
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row of Table 3, by multiplying the resulting distribution
function to the probability of realization of each table (0.8
for Table 2 and 0.2 for Table 3) and finally, simple
addition of the probabilities for each realization time,
gives the unconditional pdf of project completion time as
shown in Table 4.

An innovative method to reduce iterations
In above sample, we selected activity A for

conditioning and this activity had two realization times, so
we had to solve network twice. Assuming a network that
has 5 activities that should be conditionalized and
assume that on average each conditionalized activity has
5 realization time, in forward pass the project needs to be
solved 5*5*5*5*5=55=3125 times. Imagine that the
network structure is such that while using backward pass,
only 3 activities need to be conditionalized, so, the project
needs to be solved 5*5*5=53=125 times, which needs 4%
of the computation effort required in forward pass. The
fact is that both “the number of activities should be
conditionalized” and “the number of realization times of
each activity” can vary in forward and backward pass,
while pdf of project completion time is the same in two
ways.

Determination of the best direction of network before
solving help us to do less computation effort, so, we
proposed procedure in two phases, first select the best
direction then solve the network by using selected
direction.
Phase I: Selecting the best direction to solve network

In phase 1, the network is solved only 2 times by
using first realization times of all conditionalized activities,
first in forward pass and then in backward pass. We

Table 2. Probability of realization times of equivalent activities
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8+D 7 0.9 8 0.1 - - - -
8+C 7 0.3 9 0.7 - - - -
Max(8+C,B) 7 0.18 9 0.82 - - - -
Max(8+C,B)+E 8 0.09 9 0.09 10 0.41 11 0.41
Max[Max
(8+C,B)
F+E,8+D]

8 0.09 9 0.09 10 0.41 11 0.41

Table 3. Probability of realization times of equivalent activities
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8+D 12 0.9 13 0.1 - - - -
8+C 12 0.3 14 0.7 - - - -
Max(8+C,B) 12 0.3 14 0.7 - - - -
Max(8+C,B)+E 13 0.15 14 0.15 15 0.35 16 0.35
Max[Max(8+
C,B) F+E,8+D] 13 0.15 14 0.15 15 0.35 16 0.35

Fig. 4. First sample network

Fig. 6. Equivalent of network in fig. 5. after reducing

Fig. 5. Equivalent of network in fig. 4 (Conditioning
activity 1->2)

Fig. 8. Equivalent of network in figure 7 after reducing

Fig. 7. Equivalent of network in fig. 6. (Conditioning
new activity 1->3)
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calculate two indices KF for forward pass and KB for
backward pass. These two indices give us an
approximated value of number of times that project
should be solved. Based on these two indices, we decide
that which direction needs less iteration to solve network.
Phase II: Determining the pdf of project completion time

In this phase network solved by using all realization
times of all conditionalized activity:
1. Reduce the network to its irreducible form using

convolution and greatest operations. (Algorithm of
reduce network is developed by Dodin (1985).

2. If the network is reduced to an equivalent activity
starting in node 1 and ending in node N, stop. The pdf
of the duration time of the final activity is equal to F(t).

3. If the network is not completely reducible, calculate
the indegree and outdegree of every node

))(),(( iOiINi  . Then choose one activity ‘a’
such that ‘a’ has more than one successor while each
of its successor has only ‘a’ as a predecessor.

4. Conditionalize by setting the chosen activity ‘a’ at its

kth realization time, k
aT ; this is done by deleting ‘a’,

adding k
aT to the successor of ‘a’, and maintaining

the implied precedence of activities in the
conditionalized network.

5. Decondition the pdf of the final activity of step 4.
6. Determine the pdf of project completion time, mean

and variance.
Table 4. pdf of project completion times

S.no Duration Probability
1 8 0.072
2 9 0.072
3 10 0.328
4 11 0.328
5 13 0.03
6 14 0.03
7 15 0.07
8 16 0.07

Fig. 10. Second sample network

CDF of Project Completion Time
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Fig. 9. Comparing Dodin algorithm versus exact cumulative
distribution of project completion time (proposed algorithm)
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Fig. 11. Comparing Dodin algorithm versus exact
cumulative distribution of project completion time
(proposed algorithm) (second sample network)

Fig. 12. Third sample network

Fig. 13. Relationship between mean value of project
completion time and standard deviation of common

activities (1,2) & (2,5). (second sample network)
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Proposed algorithm
Phase I

1. Reduce network to its irreducible form using
convolution and greatest operations.[3]

2. If new network (after reducing), contains only 1
activity then: the pdf of this activity is the pdf of
project completion time; Stop

3. Let KF = 1; i=1
4. Scan for selecting activity to be conditioned and

name selected activity A(i)
5. Let k(i), the number of realization times of A(i)
6. Condition selected activity, and calculate new pdf

of new activities by using first realization time of
selected activity.
7. Let KF = KF * k(i) ; i= i +1
8. Reduce network
9. If new network (after reducing), contains
more than 1 activity then: go to 4
10. Reverse reduced network resulted in line 1
11. Let KB = 1; i=1
12. Scan for selecting activity to be conditioned
and name selected activity A(i)
13. Let k(i), the number of realization times of A(i)
14. Condition selected activity, and calculate new
pdf of new activities by using first realization time
of selected activity.
15. Let KB = KB * k(i) ; i= i +1
16. Reduce network
17. If new network (after reducing), contains
more than 1 activity then: go to 12
18. If KB ≥ KF then: use main network to apply
main algorithm
19. else: use reversed network to apply main
algorithm

Phase II
1. Let i =1

2. Let current network, G(i) and do necessary
bookkeeping

3. Scan for selecting activity to be conditioned and
name selected activity A(i)

4. Let k(i), the number of realization times of A(i)
5. Let J(i)=1
6. Let p = Probability of occurrences J(i)th realization

time of A(i)
7. If (i=1) then: let p(i) = p
a. else: let p(i) = p * p(i-1)
8. Condition selected activity A(i) in network G(i),

Table 5. Probability of realization times of each activity of network
Fig. 4.
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1 2 2 0.2 7 0.6 18 0.2
1 3 4 0.2 6 0.6 8 0.2
2 3 5 0.2 7 0.6 9 0.2
2 4 6 0.2 8 0.6 10 0.2
2 5 7 0.2 9 0.6 11 0.2
3 4 4 0.2 6 0.6 8 0.2
3 5 5 0.2 7 0.6 9 0.2
4 6 4 0.2 6 0.6 8 0.2
5 6 3 0.2 5 0.6 7 0.2

Table 7. Probability of realization times of each activity of
network Fig. 10.
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1 2 1 0.2 2 0.6 20 0.2
1 3 4 0.2 6 0.6 8 0.2
2 5 5 0.2 7 0.6 9 0.2
3 4 1 0.2 2 0.6 3 0.2
4 7 2 0.2 4 0.6 6 0.2
4 8 4 0.2 6 0.6 8 0.2
5 6 1 0.2 2 0.6 3 0.2
5 7 4 0.2 6 0.6 8 0.2
6 8 3 0.2 5 0.6 7 0.2
7 9 1 0.2 2 0.6 3 0.2
8 10 4 0.2 6 0.6 8 0.2
8 11 5 0.2 7 0.6 9 0.2
9 10 1 0.2 2 0.6 3 0.2
9 11 2 0.2 4 0.6 6 0.2

10 12 4 0.2 6 0.6 8 0.2
11 12 1 0.2 3 0.6 6 0.2

Table 6. Exact pdf (and cdf) compare with the results of Dodin
algorithm

Project
Completion

Time

Exact Dodin algorithm

Probability Cumulative Probability Cumulative

15 0.00003 0.00003 0.00000 0.00000
16 0.00003 0.00006 0.00000 0.00000
17 0.00224 0.00230 0.00002 0.00002
18 0.00103 0.00333 0.00001 0.00002
19 0.02299 0.02632 0.00084 0.00086
20 0.00401 0.03033 0.00029 0.00115
21 0.06884 0.09917 0.00805 0.00920
22 0.01147 0.11065 0.00763 0.01683
23 0.07004 0.18068 0.01627 0.03310
24 0.07989 0.26058 0.05497 0.08807
25 0.02691 0.28749 0.00947 0.09754
26 0.21600 0.50349 0.13780 0.23534
27 0.00314 0.50662 0.00124 0.23658
28 0.20736 0.71398 0.13308 0.36966
30 0.07661 0.79059 0.09404 0.46371
31 0.00004 0.79063 0.00209 0.46580
32 0.00943 0.80006 0.10695 0.57275
33 0.00275 0.80281 0.02171 0.59445
34 0.00051 0.80333 0.06100 0.65545
35 0.02642 0.82975 0.07992 0.73537
36 0.00046 0.83021 0.01113 0.74650
37 0.07200 0.90221 0.12960 0.87610
39 0.06912 0.97133 0.09216 0.96826
41 0.02554 0.99686 0.02855 0.99680
43 0.00314 1.00000 0.00320 1.00000

Mean 28.17 31.63
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and calculate new pdf of new activities by using
J(i)th realization time of A(i)

9. Reduce network G(i)
10. Let i = i + 1
11. If new network (after reducing), contains more

than 1 activity then: go to 2
12. Multiply all probabilities of realizations time of the

only remaining activity by
p(i-1) and keep them as a part of project
completion time pdf.

13. Let i = i - 1
14. Let J(i)= J(i) + 1
15. If J(i) ≤ k(i) then: go to 6
16. If i > 1 then: go to 13
17. Concatenate all parts of pdf resulted in line 12.

Resulted pdf is project completion time pdf.
Numerical experiments

In this section three samples are presented to verify
the efficiency of the algorithm. This algorithm was coded
by matlab Ver. 2010a.
Solving a sample network to show numeric results
Consider this network (Table 5, Fig.4):
First of all, in phase 1, two indices must be calculated
(KF=12, KB=27). Based on these indices, forward pass is
used to solve the network.
This network is irreducible, according to algorithm; activity
“1->2” is selected for conditioning. Network is solved as
follow. Note that first iteration is explained in detail and
other iterations are similar.
Conditioning: Activity Selected for conditioning:  1->2
(Fig. 5)
Distribution functions of activities of network in Fig. 6 are
as follow:
1->3    7(0.16) 8(0.04) 9(0.6) 11(0.2)
1->5    9(0.2) 11(0.6) 13(0.2) 0(0.0)
1->4    8(0.2) 10(0.6) 12(0.2) 0(0.0)
3->4    4(0.2) 6(0.6) 8(0.2) 0(0.0)
3->5    5(0.2) 7(0.6) 9(0.2) 0(0.0)
4->6    4(0.2) 6(0.6) 8(0.2) 0(0.0)
5->6    3(0.2) 5(0.6) 7(0.2) 0(0.0)
Conditioning: Activity Selected for conditioning:  1->3
(Fig. 7)

The distribution function of activity (1,6) shown in Fig.
8 is as follow, and probability of occurrence of this, is
0.032: (Fig. 8)
1->6: 15(0.001024) 16(0.576) 17(0.063936)

19(0.428544)
18(0.012864) 21(0.403200) 20(0.011456)
23(0.078400)

The above result is obtained by "conditioning first
duration of activity 1->2, then, Reducing network and
conditioning first duration of activity 1->3 (in new
network)". Now we repeat steps by other realization times
of these two selected activities. Finally we decondition the
results of all iterations, so we calculate distribution
function of project completion time which shown in Table

6. The result of Dodin algorithm also is given in this table.
The results also are shown in Fig. 9.
A sample network that shows the significant variation of
Dodin algorithm from exact pdf (calculated by proposed
algorithm)
Consider this network(Fig. 10, Table 7): As shown in Fig.
11 the results of Dodin algorithm are significantly different
from exact pdf:
In order to evaluate effect of standard deviations of
common activities on the mean value of project
completion time we gradually increase the standard
deviation of activities (1,2) and (2,5). Diagram shown in
Fig. 13 illustrate effects of standard deviation of common
activities (1,2) & (2,5) on the mean value of project
completion time obtained using (a) Dodin's procedure and
(b) Proposed procedure.

This diagram shows that mean completion time
obtained using Dodin's procedure is biased optimistically.
As shown in diagram, when variance of duration’s time is
low, the error of Dodin's algorithm is negligible but by
increasing the standard deviation of only two activities
from 1 to 10, the error increases from 2% to 33%. The
reason is that, in Dodin's procedure it is assumed that all
paths are structurally independent. In fact independence
assumption among paths in Dodin's procedure is one of
the sources of error in determination of project completion
times in irreducible networks and this is an increasing
function of the standard deviation of common activities
and number of activities which emanate from the nodes in
which these common activities terminate.
A sample network that shows effect of phase I to increase
the efficiency of algorithm
The network shown in Fig. 12 contains 50 activities with
random durations: In forward pass, 11 activities must be
convolute and KF=708588 and in backward pass, 8
activities must be convolute and KB=68040. The sample
network shows that by calculating KF and KB by solving
only 2 times, can reduce about 90% of the iterations and
calculation time will also be reduced, significantly. In this
network, the results of Dodin algorithm significantly are
different from exact pdf obtained by proposed procedure.
By increasing standard deviation of only two common
activities (27,31) and (28,32) in backward pass, the mean
completion time obtained using Dodin's procedure with
standard deviation 10 has about 2.5% error whereas with
standard deviation 50 the resulting error increase to 28%
in comparison with exact mean completion time obtained
using proposed procedure.

If we increase the variance of more activities, the
discrepancy of Dodin's results with the exact pdf obtained
by our proposed procedure will be increased. On the
other hand this example shows that, since the proposed
procedure can calculate exact pdf of this network with
many common activities in approximately 3 min using a
PC with Core i3-2100 CPU and 2GB RAM, so this
algorithm can be used for solving larger networks with
less common activities in reasonable time.
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Conclusion and future research
In this article we have presented an efficient

procedure to determine the probability distribution
function of project completion time for PERT network with
discrete statistically independent distribution. This
algorithm possesses the following advantages and can
be expanded to meet the following results:

1. Provide an exact pdf for project completion time in
pert network with discrete distribution because the project
managers are very interested to have the pdf of the
project completion time so as to have complete insight
into the randomness of the realization of the project.

2. It can be applied for PERT networks with statistical
dependence as well as structural dependence
relationship between activities.

3. It can be applied for PERT networks with discrete
or continues distribution. To evaluate the performance of
the proposed algorithm, we randomly generate large
sample networks. Then we compared the proposed
algorithm with Dodin’s algorithm (DA) in precision aspect.
We concluded that in some cases the proposed algorithm
significantly outperforms the DA in precision aspect. This
means that the Dodin algorithm in some cases lead to a
pessimistically biased estimates of the occurrence time of
events.
References
1. Azaron SM and Fatemi Ghomi T (2008) Lower bound

for the mean project completion time in dynamic
PERT networks. Eur. J. Operational Res. 186, 120-
127.

2. Chapman CB and Cooper DF (1983) Risk
engineering: basic controlled interval and memory
models. J. Operational Res. Soc. 34(1), 51-60.

3. Dodin (1985) Approximating the distribution functions
in stochastic networks. Compu. & Operations Res.
12, 251-264.

4. Elmaghraby SE (1967) On the expected duration of
PERT type networks. Manage. Sci. 13, 299-306.

5. Fisher DL, Saisi D and Goldestein WM (1985)
Stochastic PERT networks: OP diagrams, critical
paths, and the project completion time. Comput. &
Operation Res. 12, 471-482.

6. Garman MB (1972) More on conditioned sampling in
the simulation of stochastic network. Manage. Sci.
19, 90-95.

7. Kulkarni VG and VG Adlakha (1986) Markov and
Markov-regenerative PERT networks. Operations
Res. 34, 769-781.

8. Martin JJ (1965) Distribution of the time through a
directed, acyclic network. Operation Res. 13, 46-66.

9. Pontrandolfo P (2000) Project duration in stochastic
networks by the PERT-path technique. Int. J. Project
Manage. 18, 215-222.

10. Schmidt CW and Grossmann IE (2000) The exact
overall time distribution of a project with uncertain
task durations. Eur. J. Operational Res. 126, 614-
636.

11. Shogan AW (2006) Bounding distributions for a
stochastic pert network. Networks. 7, 359–381.

12. Soukhakian MA (1988) A generalized algorithm to
evaluate project completion time and criticality
indices for PERT networks. Ph.D. Thesis Univ.
Southampton, England.

13. Van Slyke RM (1963) Monte carlo methods and the
pert problems. Operations Res. 11, 839-860.

14. Yao MJ and Chu WM (2007) A new approximation
algorithm for obtaining the probability distribution
function for project completion time. Compu. & Maths
with Appl. Archive. 54, 282-295.


