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Abstract 
We consider two types of dual fuzzy systems with respect to two different fuzzy multiplications and propose an 
approach for computing an approximate nonnegative symmetric solution of some dual fuzzy linear system of 
equations. We convert the nm   dual fuzzy linear system to two nm   real linear systems by considering equality 
of the median intervals of the left and right sides of the dual fuzzy system. Then, the real systems are solved, when the 
solutions does not satisfy nonnegative fuzziness conditions, an appropriate constrained least squares problem is 
solved. We finally present some computational algorithms and illustrate their effectiveness by solving some randomly 
generated consistent as well as inconsistent systems.  
Keywords: LR fuzzy numbers, Triangular fuzzy numbers, Dual fuzzy systems, Median interval defuzzification. 
Introduction 

Systems of linear equations arise from various areas 
of science and engineering. Since many real world 
systems are too complex to be defined in precise terms, 
imprecision is admittedly present. Analyzing such 
systems demands the use of fuzzy analysis. Therefore, 
the fuzzy concept proposed by Zadeh (Chang & Zadeh, 
1972; Zadeh, 1972; Zadeh, 1975) is deemed to be quite 
useful in such applications. Thus, the need for solving 
linear systems whose parameters are all or partially 
represented by fuzzy numbers persists.  

A general model for solving an arbitrary square fuzzy 
linear system whose coefficient matrix is crisp and the 
right-hand side column is an arbitrary fuzzy vector was 
first proposed by Friedman et al. (1998). For computing a 
solution, they used the embedding method and replaced 
the original fuzzy nn   linear system by a nn 22   crisp 
linear system. The approach in (Friedman et al., 1998), 
however, does not fully address solutions of general fuzzy 
systems. 

Other numerical procedures for solving fuzzy linear 
systems such as Jacobi, Gauss-Seidel, Adomiam 
decomposition method and SOR iterative method can be 
seen in (Allahviranloo et al., 2006).In (Dehghan & 
Hashemi, 2007), Dehghan et al. also proposed some 
iterative techniques. Abbasbandy et al. (2005) solved 

)( nmnm   original fuzzy linear system using a nm 22   

real system, and Allahviranloo  (2008) studied finding 
least squares solution of an overdetermined )>( nm  fuzzy 

linear system.  
In the more general system of fully fuzzy linear 

system of equations (FFLSE), both the coefficient matrix 
and the right hand sides are considered to be fuzzy and a 
fuzzy solution is desired. A conceivable method for 
solving an FFLSE is to consider real systems 
corresponding to  -cuts whose coefficient matrices and 

right hand side vectors, the A  and b  are extracted from 
the fuzzy coefficient matrix  = ijA a   and fuzzy right hand 

side vector  ib b  , respectively. Buckley and Qu (1991) 

gave a method to compute the set of solutions. For A  
nonsingular, bAx 1=   with a positive membership, is a 
solution of the corresponding system and 

   1{ | = , = , = ,

( ), ( ),   , },

ij i

ij ij i i

x x A b A a b b

a supp a b supp b for all i j



    

is the set of solutions where (.)supp  denotes the 

support of fuzzy number. Based on this fact, they 
discussed the theoretical aspects of this class of 
problems, extended several methods for this class and 
proved their equivalence. But their approach is not 
practical, because a large number of real systems may be 
required to be considered for the fully fuzzy linear system 
using  -cuts. 

In recent years, Dehghan et al. (2006c) also 
considered solving such systems. They applied some 
well-known iterative methods such as Jacobi, Gauss-
Seidel, SOR, AOR on the FFLSE. Moreover, they 
focused on the use of Adomian decomposition method for 
solving the FFLSE (Dehghan & Hashemi, 2006a). They 
also used classical methods like Cramer's rule, Guassian 
elimination and LU decomposition to find the approximate 
solution (Dehghan et al., 2006b). To guarantee that the 
produced solution would be fuzzy, at times they applied 
linear programming models. In (Ezzati et al.(2012), an 
approximate solution of FFLSE in which all the 
components of the coefficient matrix are either 
nonnegative or nonpositive, were computed by solving an 
appropriate least squares problems. 

Muzzioli et al. (2006) have extended Buckley and 
Qu's method to a more general fuzzy system of equations 

2211 = bxAbxA  , with 1A , 2A  square matrices of 

coefficients and 1b , 2b  fuzzy number vectors. They gave 

some conditions under which a vector solution of the 
system exists. Moreover, they showed that the linear 
systems bAx =  and 2211 = bxAbxA  , with 
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21= AAA   and 12= bbb   have the same vector 

solutions and they introduced an computational algorithm 
to find the vector solution. Some necessary and sufficient 
conditions for the solution existence of the dual fuzzy 
linear system of equations were given in (Ming et al., 
2000). Some other results can be found in (Abbasandy et 
al., 2006; Ezzati & Abbasbandy, 2007; Ezzati, 2008). 

Here, we intend to compute an approximate 
symmetric solution of the dual fuzzy system of equations 
using median interval defuzzification, an approach of 
Bodjanova in (Bodjanova, 2005). By considering equality 
of the median intervals of the left and right sides of the 
system, we convert the dual fuzzy linear system to two 
real systems of equations, one being concerned with the 
cores and the other being related to the spreads. Then, 
these real systems are solved. There are several 
approaches in the literature for solving real linear systems 
of equations. These systems can be solved by using the 
inverse or pseudinverse of the coefficient matrices 
(Friedman et al., 1998;Dehghan et al., 2006c) or the 
different decompositions (Dehghan & Hashemi, 2006a). If 
each of them is inconsistent or the solution of the spread 
system does not satisfy the fuzziness conditions, we find 
an approximate solution by solving a respective least 
squares problem. 

In the preliminaries section, we present basic 
definitions and the notation of median interval for a 
solution. The next two sections discuss the approximate 
solution of the dual fuzzy linear system of equations with 
respect to fuzzy multiplication defined by Kauffman and 
Gupta (1991) and Dubois and Prade (1980). Some 
numerical results are provided in the section of numerical 
examples. Finally, our concluding remarks are given.  
Preliminaries 

In this section, we review some concepts and results 
of fuzzy numbers been in the literature (Kauffman & 
Gupta, 1991; Zimmermann, 1991).  

Definition 1:A fuzzy set A  with the membership function 

( ) : [0,1]A x   is a fuzzy number if the following 

properties are satisfied:   
 A   is an upper semi-continuous function on  .  

 There are real numbers a, b, c and d such that 
dcba   and 

 ( )A x   is a monotonically increasing function on 

], ,[ ba  

 ( )A x   is a monotonically decreasing function on 

], ,[ dc  

 ( ) = 1A x  , for all x  in ],[ cb .  

 ( ) = 0A x  , for x  outside of the interval [ , ]a d  . 

We denote the set of all fuzzy numbers by F . 

In addition, a fuzzy number A  is called positive 

(negative), shown as 0A  ( 0)A  , if its membership 

functin
 ( )A x   satisfies ( ) = 0A x  , for all 0<x  ( 0>x ).  

Definition 2 :A fuzzy number A  is said to be an LR fuzzy 
number if  

( ),   ,  > 0,

( ) =

( ),   ,  > 0,

A

a xL x a

x
x aR x a









 




  



 (1) 

 where a  is the core of A ,   and   are left and right 

spreads, respectively, and the function (.)L , which is 

called left shape function, satisfies:   
 )(=)( xLxL  , 

 1=(0)L  and 0=(1)L ,  

 )(xL  is nonincreasing on )[0, . 

The definition of right shape function (.)R  is similar to 

that of (.)L .  

The core, left and right spreads, and the shape function of 

an LR  fuzzy number A  are symbolically shown as 

= ( , , ) .LRA a   Clearly, =( , , )LRA a    is positive if and 

only if 0>a  (since 0=(1)L ), and = ( , , )LRA a    

is a symmetric fuzzy number if and only if  = . 
 

 We assume that a fuzzy number = , , ,A a b c d   can be 
expressed in the form,  

( ), [ , ),
1 , [ , ],

( ) =
( ), ( , ],

0 , ,

g x x a b
x b c

A x
h x x c d

otherwise


 
 


  (2) 

 where a, b, c and d are real numbers such that 
dcba <<  , g  is an increasing real valued function and 

right continuous and h  is a decreasing real valued 
function continuous and left continuous. A fuzzy number 

A  with the shape function g  and h  defined by  

,=)(
n

ab
axxg 








  (3) 

 and  

,=)(
n

cd
xdxh 










 (4) 
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 respectively, where 0>n , is denoted by 

= ( , , , )nA a b c d .  

Definition 3: A fuzzy number = ( , , , )A a b c d  is known as 

a trapezoidal fuzzy number, if 1=n  in (3) and (4). Also, 

when 1=n  and cb = , A  is known as a triangular fuzzy 

number to which we always refer here by = ( , , )A a b c .  

Each fuzzy number A  described by (1) has the following 

 -cuts, = [ , ]A a b  
 ,  ba , , [0,1] :   

 1 1= [ ( ), ( )],   (0,1),A g h for all       

 0 = [ , ],A a d  

 1 = [ , ].A b c  

 If = , , , nA a b c d  , then for all [0,1] ,  
1 1

= [ ( ), ( )].n nA a b a d d c       (5) 

 Note that the Hausdorff distance is used to compute the 
distance between two fuzzy numbers.  
Definition 4:Let A  and B  be fuzzy numbers. The 
Hausdorff distance between A  and B  is defined to be:  

( , ) = max supinf ,supinf .H b B a Aa A b B
d A B a b a b

  

   
 

 (6) 

Now, we review the definition of the median interval and 
some corresponding results (Bodjanova, 2005).  

Definition 5:Let A  be a fuzzy number as gives by (1). Let 
),( bamL   and ),( dcmR   be such that  

( ) = ( )
m bL

a mL
A x dx A x dx   and  

( ) = ( ) .
m dR

c mR
A x dx A x dx    

Then, ( ) = [ , ]e L RM A m m  is called the median interval 

(interval-valued median) of A . 

Proposition 1:Let = , , , nA a b c d  . Then, 

( ) = [ , ]e L RM A m m , where,  

1 2
)(=






nL

abam  (7) 

 and  

.
2

)(=
1




nR

cddm  (8) 

Corollary 1:Let = , , , nA a b c d  . Then, ( ) =eM A A
  

and (0.5,1) , where 12= 


n
n

 .  

Corollary 2:Let = , , ,A a b c d   be a trapezoidal fuzzy 

number. Then, ( ) =eM A A
  , where 0.707= .  

In general, If A  can not be expressed in the form 

ndcba  ,,, , then ( )eM A  is not an  -cut of A ; see 

(Bodjanova, 2005).  
The dual fuzzy linear system of equations is defined as 
follows.  
Definition 6:The system  

( ) = ( ) ,A x b C x d        (9) 

where the components of = ( )ij m nA a 
  and = ( )ij m nC c 

 , 

the coefficient matrices, and 1= ( )i mb b 
  and 1= ( )i md d 

 , 

the constant vectors, are fuzzy numbers is called Dual 
Fuzzy Linear System of Equations (DFLSE).   
Remark 1:There is no inverse element for an arbitrary 
fuzzy number; it means  

( ) 0.x x     
So, the system (9) is not equivalent to  

( ) = .A C x d b       

DFLSE and its approximate symmetric solution with 
respect to the fuzzy multiplication defined in (Kauffman & 
Gupta, 1991): 
In (Kauffman & Gupta, 1991), Kauffman and Gupta 
designed the following exact formulas for the addition and 
subtraction of the triangular fuzzy numbers and an 
approximate formula for the multiplication. Let 

= ( , , )A a b c  and = ( , , )B x y z  be two triangular fuzzy 
numbers then   

 Addition: 

= ( , , ) ( , , ) = ( , , ).A B a b c x y z a x b y c z       (10) 

 Subtraction:  

= ( , , ) ( , , ) = ( , , ).A B a b c x y z a z b y c x       (11) 

 Multiplication:  

Let B  be nonnegative then  
( , , ), 0,

= ( , , ) ( , , ) ( , , ), < 0, > 0,
( , , ), 0.

K K

ax by cz a
A B a b c x y z az by cz a c

az by cx c


   
 

  (12) 

Consider the dual fuzzy linear system (9) with the 
multiplication (12) or equivalently, the nm   linear 
system of equations,  

11 1 12 2 1 1

1 1 1 12 2 1 1

1 1 2 2

1 1 2 2

( ) ( ) ( ) =

( ) ( ) ( ) ,

( ) ( ) ( ) =

( ) ( ) ( ) ,

K K n K n

K K n K n

m K m K m n K n m

m K m K mn K n m

a x a x a x b
c x c x c x d

a x a x a x b

c x c x c x d

       


      


       
       

     
     


     
     

(13) 
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where ija  and ijc , mi 1 , nj1 , the coefficient  

matrices components, and ib  and id , mi 1 , 

components of the constant vectors are fuzzy 
numbers.We give the following definition characterizing 
an approximate solution of DFLSE (9) by median interval 
defuzzification. 
Definition 7:A fuzzy vector x  is called an approximate 
solution of DFLSE if the median intervals of the left and 
right sides of DFLSE are equal, that is,  

( (( ) )  ) = ( (( ) )  ), 
  = 1,..., .

e K i e K iM A x b M C x d
i m

      
(14) 

Here, we assume that all parameters in (13) are triangular 
fuzzy numbers defined by Definition 3, that is,  

1 2 3 1 2 3

= ( , , ), = ( , , ), 1 , 1 ,

= ( , , ), = ( , , ), 1 ,
ij ij ij ij ij ij ij ij

i i i i i i i i

a a b c c e f g i m j n

b b b b d d d d i m

   

 

 
 

(15) 

 where ija , ije , ib1  and id1 , and ijc , ijg , ib3  and id 3  

denote the beginning and ending points of the 0-cuts of 

ija , ijc , ib  and id , respectively.  

Notation 1:Set  

      ,=  ,=  ,=
nmijnmijnmij cCbBaA


 

 
      ,=  ,=  ,=

nmijnmijnmij gGfFeE


 

 

      ,=  ,=  ,= 133122111  mimimi bbbbbb  

 

      .=  ,=  ,= 133122111  mimimi dddddd
 

Notation 2: We break up the matrix A  into two nm   

matrices such that their addition is A . Let  = ij m n
A a
 


 

and  = ,ij m n
A a
 


 where,  

  0 0   0
= , = .

0   < 0   < 0
ij ij ij

ij ij
ij ij ij

a a a
a a

a a a
   

 
 

 

Then AAA =


 . We also break up the matrices C , 

E  and G  into two nm   matrices, similarly. Let 

 = ,ijC c
   = ,ijC c

   = ,ijE e
   = ,ijE e

 

 = ijG g
   and  = ijG g

   be nm   matrices, where,  

  0 0   0
= , = ,

0   < 0   < 0
ij ij ij

ij ij
ij ij ij

c c c
c c

c c c
   

 
 

 

 

  0 0   0
= , = ,

0   < 0   < 0
ij ij ij

ij ij
ij ij ij

e e e
e e

e e e
   

 
 

 

 

  0 0   0
= , = .

0   < 0   < 0
ij ij ij

ij ij
ij ij ij

g g g
g g

g g g
   

 
 

 

Proposition 3:The system (9) with the multiplication (12) 
is equivalent to  

1 2 3

1 2 3

( , , )
= ( , , ),
A x A z b By b C z C x b

E x E z d Fy d G z G x d

   

   

    

    
 (16) 

 where = ( , , )j j j jx x y z , nj ,1,=  , are nonnegative 

and 
T

nxxx ),...,(= 1 , 
T

nyyy ),...,(= 1 , 
T

nzzz ),...,(= 1 .  

Proof.From (12),   

=1

=1

, 0

, 0, > 0

, 0

( ) = ( )

= ( , , ) ( , , )

= ( , , )

( , , )

( , , )

n
K i ij K jj

n
ij ij ij K j j jj

ij j ij j ij jj a ij

ij j ij j ij jj a cij ij

ij j ij j ij jj cij

A x a x

a b c x y z

a x b y c z

a z b y c z

a z b y c x







 













   

, 0 , < 0 =1 , 0 , 0
=  ,  , ,

1, ..., .

n

ij j ij j ij j ij j ij j
j a j a j j c j cij i j ij ij

a x a z b y c z c x

i m

  

 
  
 
 



      

Similarly, 

=1
( ) = ( )n

K i ij K jj
C x c x    

, 0 , <0 =1 , 0 , 0
=  ,  , ,

n

ij j ij j ij j ij j ij j
j e j e j j g j gij ij ij ij

e x e z f y g z g x
  

 
  
 
 
    

,,1,= mi   
and by (10), the system (9) is equivalent to  

1 2 3

1 2 3

( , , )

= ( , , ).  

A x A z b By b C z C x b
E x E z d Fy d G z G x d

   

   

    

       

We have the following result, when all parameters in (13) 
are triangular fuzzy numbers.  

Proposition 4: A fuzzy vector 1( , , )T
nx x   given by 

= ( , , )j j j jx x y z , ,,1,= nj   is a nonnegative 

approximate solution of (9) with the multiplication (12) if 
and only if it satisfies  














,)(=)()()(
,)(=)()()(

3322

1122

bdbdkzGCyFBkxGC
bdbdkzEAyFBkxEA  
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 where 
T

nxxx ),...,(= 1 , 
T

nyyy ),...,(= 1 , 
T

nzzz ),,(= 1   and 21= k .  

Proof. Since the systems (9) and (16) are equivalent 
(Proposition 3), the proof is simply obtained by equating 
the median intervals of left and right sides of (16).   
Here, to find nonnegative approximate solutions of 
DFLSE which are symmetric triangular fuzzy numbers, 
we have the following results. 

Theorem 1: A fuzzy vector 1( , , )T
nx x   given by 

= ( , , )j j j jx x y z , nj ,1,=   is a nonnegative 

approximate symmetric triangular solution of (9) if and 

only if T
nxxx ),...,(= 1  and T

nyyy ),...,(= 1  satisfy 

the system,  














,)(=))2()((|)||(|
,)(=))2()((|)||(|

3322

1122

bdbdkyGCFBkxCG
bdbdkyEAFBkxEA (18) 

 where 21= k  and |.|  denotes the absolute value 

of a matrix, for instance  | |= | |ij m n
A a


. 

T
nzzz ),...,(= 1  is given by xyz 2= .  

Proof.By solving the system,  

2 2 1 1

2 2 3 3

( ) ( ) ( ) = ( ) ,

( ) ( ) ( ) = ( ) ,
2 = 0,

A E x k B F y A E z k d b d b

C G x k B F y C G z k d b d b
x y z

   

   

        

        
  

 

where ,21= k  we can obtain (18).   
The crisp system (18) can be solved using any existence 
method for solving the real linear systems. The obtained 
results would form a nonnegative approximate symmetric 
fuzzy solution for (9) if solutions of (18), 

jx  and 
jy , 

satisfy 0jx  and 0 jj yx , for nj 1,...,= . Otherwise, 

we may try to find approximate solutions for (9). For this 
purpose, we consider the following constrained least 
squares problem,  

2
min

. .
0, = 1, , ,

0, = 1, , ,

corew

n i i

i

z Cw d

s t
w w i n

w i n


 

 





 (19) 

where  Tnn yyxxw ,,,,,= 11  ,  

2 2

| | | | (1 2)( ) 2( )
=   

| | | | (1 2)( ) 2( )
m n

A E B F A E
C

G C B F C G

 

 



     
 
 
       

 (20) 

 and  

1 1 2 2

3 3 2 2 2 1

(1 2)( )
=  .

(1 2)( ) m

d b d b
d

d b d b


    
 
 
     

 (21) 

Note that the problem (19) always has solutions, since a 
nonnegative objective functions is minimized on a convex 
feasible space.  
Remark 2:First, we solve the real system (18). If it lacks 
the desirable solution, that is there exists an index j  such 

that 0<jx  or jj yx > , then the least squares problem 

(19) is solved for which the value of the objective function 
is non-zero.  
Ghanbari et al. (2010) proposed an approach to 
guarantee that the obtained solution be fuzzy numbers. 
Here, we follow the same approach and provide the 
corresponding necessary adjustments for the optimization 
problems (19). 
Remark 3:In the least squares problem (19), we may 
consider the numbers 

jjn yw =
 or 

jjjjnj xyww  == , for nj ,1,=  , with small 

positive values, say 2010  . In this case, the nonnegative 
symmetric triangular fuzzy numbers ),,( jjj zyx  are very 

close to zero (or the crisp numbers jy ). Thus, a positive 

parameter   can be taken such that jy  or  j
, 

for all j . This choice guarantees that each fuzzy number 

has a positive core at least as much as  . Therefore, 
instead of problem (19), we consider the problem,  

2
min

. .
, = 1, , ,

0, = 1, , ,

corew

n i i

i

z Cw d

s t
w w i n

w i n


 

 





 (22) 

where 0>  is a user-defined parameter.  
We are ready to give an algorithm for solving the DFLSE 
regarding the fuzzy multiplication defined in (Kauffman & 
Gupta, 1991).  
Algorithm 1: Find an approximate symmetric triangular 
solution for the DFLSE with the fuzzy multiplication (12).   
A. Give 0>  to be used for (22).  
B. Solve the system (18). If the system (18) has no 

solution (consequently the system (9) does not have 
a solution) or y  or x , the solutions of (18), has at 

least one negative component or there exist an index
j  such that 0>jj yx  then solve the optimization 

problem (22). 
C. Compute jjj xyz 2=  for all nj ,1,=  .  



 
 
Indian Journal of Science and Technology                                                               Vol. 5    No.2    (Feb   2012)          ISSN: 0974- 6846 
 

Research article                                                                   “Dual fuzzy systems”             Valizadeh et al. 
Indian Society for Education and Environment (iSee)                                         http://www.indjst.org                                                                                         Indian J.Sci.Technol. 

2105

D. The approximate symmetric solution of (9) is 

 1= , , ,T
nx x x    where = ( , , )j j j jx x y z , 

nj 1,...,= ,  Tnxxx ,,= 1  ,  Tnyyy ,,= 1   and 

 Tnzzz ,,= 1  .
 

E. Stop. 
FFLSE  and its approximate symmetric solution with 
respect to the fuzzy multiplication defined in (Dubois & 
Prade, 1980): 
 Dubois and Prade (1980) designed the following exact 
formulas for the addition of LR  fuzzy numbers and scalar 
multiplication. They also introduced an approximate 
formula for multiplying the LR  fuzzy numbers. For two 

LR  fuzzy numbers = ( , , )LRA a    and = ( , , )LRB b   , 

we have:   
 Addition:  

= ( , , ) ( , , ) = ( , , ) .LR LR LRA B a b a b             (23) 

 Multiplication:  

If > 0A  and > 0B , then  

= ( , , ) ( , , )
( , , ) .

DP LR DP LR

LR

A B a b
ab a b a b
   

   
 

  

 
 (24) 

If < 0A  and > 0B , then  

= ( , , ) ( , , )
( , , ) .

DP LR DP LR

LR

A B a b
ab b a b a
   
   

 
  

 
 (25) 

 Scalar multiplication:  

= ( , , )
( , , ) , > 0,

=
( , , ) ,     < 0.

LR

LR

LR

A a
a
a

   

   
   

 


  



 (26) 

Consider the dual fuzzy linear system (9) or equivalently, 
the nm   linear system of equations,  

11 1 12 2 1 1

11 1 12 2 1 1

1 1 2 2

1 1 2 2

( ) ( ) ( ) =

( ) ( ) ( )

( ) ( ) ( ) =

( ) ( ) ( ) ,

DP DP n DP n

DP DP n DP n

m DP m DP mn DP n m

m DP m DP mn DP n m

a x a x a x b

c x c x c x d

a x a x a x b

c x c x c x d

       


      


       
       

     
     


     

     

(27) 

where ija  and ijc , mi 1 , nj 1 , the coefficient 

matrices components, and ib  and id , mi 1 , 

components of the constant vectors are fuzzy numbers. 
We give the following definition characterizing an 
approximate solution of DFLSE (9) by median interval 
defuzzification.  

Definition 8: A fuzzy vector x  is called an approximate 
solution of the DFLSE if the median intervals of the left 
and right sides of the DFLSE are equal, that is,  

( (( ) )  ) = ( (( ) )  ),
   = 1,..., .

e DP i e DP iM A x b M C x d
i m

        (28) 

 Here, we assume that all parameters in (27) are 
nonnegative LR  fuzzy numbers, that is,  

= ( , , ), = ( , , ), 1 , 1 ,

= ( , , ), = ( , , ), 1 ,
ij ij ij ij ij ij ij ij

i i iL iR i i iL iR

a a m n c c e f i m j n

b b b b d d d d i m

   

 

 
 

 

where ijm , ije , iLb  and iLd , and ijn , ijf , iRb  and iRd  

denote left spreads and right spreads of ija , ijc , ib  and 

id , respectively. Let  

      ,=  ,=  ,=
nmijnmijnmij nNmMaA


 

      ,=  ,=  ,=
nmijnmijnmij fFeEcC


 

      ,=  ,=  ,= 111  miRRmiLLmi bbbbbb  

      .=  ,=  ,= 111  miRRmiLLmi dddddd  

Proposition 5: The system (9) with the multiplication (24) 
is equivalent to  

( , , )
= ( , , ),

L R

L R

Ax b Ay Mx b Az Nx b
Cx d Cy Ex d Cz Fx d
    
      (30) 

where = ( , , )j j j jx x   , nj ,1,=  , and
T

nxxx ),...,(= 1 , T
ny ),...,(= 1  and T

nz ),...,(= 1  .  

Proof: From (24), 

( ) = ( , , ),ij j i ij j i ij j ij j iL ij j ij j iRa x b a x b a m x b a n x b        
 

( ) = ( , , ),ij j i ij j i ij j ij j iL ij j ij j iRc x d c x d c e x d c f x d        
 
and by (23), the system (9) is equivalent to  

=1 =1 =1

=1 =1 =1

, ( ) , ( )

, ( ) , ( ) ,

= 1 , , ,

n n n

ij j i i j j i j j iL ij j ij j iR
j j j

n n n

ij j i i j j ij j iL ij j i j j iR
j j j

a x b a m x b a n x b

c x d c e x d c f x d

i m

 

 

 
      

 
 

     
 

  

  


 

or in matrix form,  

( , , )
= ( , , ).  

L R

L R

Ax b Ay M x b Az Nx b
Cx d Cy Ex d Cz Fx d
    
       

We have the following result, when all parameters in (27) 
are nonnegative triangular fuzzy numbers.  

Proposition 6:A fuzzy vector 1( , , )T
nx x   given by 

= ( , , )j j j jx x   , ,,1,= nj   is an approximate solution 

of (9) if and only if it satisfies  
( ) (( ) ( ) ) = ( ),
( ) (( ) ( ) ) = ( ),

L L

R R

A C x k M E x A C y d b k d b
A C x k N F x A C z d b k d b
       

        
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where T
nxxx ),...,(= 1

, T
ny ),...,(= 1  , T

nz ),,(= 1    

and 
2
21= k .  

Proof: Since the systems (9) and (30) are equivalent 
(Proposition 5), the proof is simply obtained by equating 
the median intervals of left and right sides of (30).   

Here, to find nonnegative approximate solutions of 
the DFLSE which are symmetric triangular fuzzy 
numbers, we have the following results.  

Theorem 2: A fuzzy vector 1( , , )T
nx x   given by 

= ( , , )j j j jx x   , nj ,1,=   is a nonnegative 

approximate symmetric triangular solution of (9) if and 

only if 
T

nxxx ),...,(= 1  satisfies the system,  

(2 ( ) ( ) ( ) )
= 2 ( ) ( ) ,R R L L

k A C N F M E x
k d b d b d b

    
    

 (32) 

 and T
ny ),...,(= 1   satisfies either  

,)())((=)( xEMbdxCAbdkyCA LL  (33) 

 or  
,)())((=)( xFNbdxCAbdkyCA RR  (34) 

where 22= k .  
Proof:By solving the system,  

( ) (( ) ( ) ) = ( ),
( ) (( ) ( ) ) = ( ),

= 0,

L L

R R

A C x k M E x A C y d b k d b
A C x k N F x A C z d b k d b

y z

        
        
 

 (35) 

where 2=1
2

k  , we can obtain (32) and (33) or (34).   

Proposition 7:Let 
1S , 

LS2
 and 

RS2
 be the sets of the 

solutions of (32), (33) and (34), respectively. Then, for all 

1Sx , and for all 
RL SSSy 222 =  , the fuzzy vector 

1= ( , , )T
nx x x    with = ( , , )j j j jx x    is an approximate 

symmetric solution of the system (9).  
Remark 4:Two nonnegative vectors including mean 
values and spreads are needed to compute a 
nonnegative approximate symmetric triangular solution of 
(9). Solving the system (32) results in the mean-value 
vector, x. If its components are nonnegative, it will be 
useful to determine the approximate solution. The spread 
vector, y, is obtained by solving either (33) or (34). One 
may choose a system which may provide a "better" 
solution for the problem. For instance, the solution which 
causes a lower Hausdorff distance between left and right 
sides of (9) can be considered as a "better" solution. The 
obtained spreads, y, will be useful if its components are 
nonnegative and 0 jj yx , nj 1,...,= .  

The crisp systems of cores and spreads can be solved 
using any existence method for solving the real linear 
systems. The obtained results would form a nonnegative 
approximate symmetric fuzzy solution for (9) if 

nonnegative solutions of (32), 
jx , and nonnegative 

solutions of the spread system, 
jy , satisfy 0 jj yx , for 

nj 1,...,= . Otherwise, we may try to find approximate 

solutions for (9).  
First, we consider the system of cores. Two cases may 
occur in solving (32).   
 The system has some nonnegative solution(s). If the 

system has more than one nonnegative solution, we 
choose the solution with minimal Euclidean norm in 

1S .  

 The system lacks a nonnegative solution. In this case, 
we consider the following constrained least squares 
problem,  

2min =

. .
0,

corex
z Ux v

s t
x




             (36) 

where, 

).()())(22(4=
),()())(22(4=

LLRR bdbdbdv
EMFNCAU


  (37) 

Also, in solving the spread system, two cases may occur.   
 The system has some solution(s), y , with all the 

components being nonnegative and 0 jj yx , for 

all nj 1,...,= . If the system has infinitely many 

nonnegative solutions, y , which satisfy 0 jj yx , 

for all nj 1,...,= . We choose the solution with 

minimal Euclidean norm in 
2S .  

 The system lacks a desirable solution. In this case, 
the following constrained least squares problem is 
considered:  

2
min = ( )

. .
0

0,

spready
z A C y g

s t
y

x y

 


 

(38) 

where, depending on the user's selection between (33) 
and (34),  

= (2 2 )( ( ) )
( ) ,L L

g d b A C x
d b M E x

    
   

 

or 
= (2 2)( ( ) )

( ) ,R R

g d b A C x
d b N F x
   

     

and 
T

ny ),...,(= 1  . 
Note that problems (36) and (38) always have solutions, 
since in each case a nonnegative objective functions is 
minimized on a convex feasible space.  
Remark 5: First, we solve the real system (32). If it lacks 
a nonnegative solution, then we solve the least squares 
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problem (36), in which case the value of the objective 
function in the minimizing problem is non-zero. Then, we 
solve the real spread system. Similarly, if it lacks the 
desirable solution, then the least squares problem (38) is 
solved for which the value of the objective function is non-
zero. Ghanbari et al. (2010) proposed an approach to 
guarantee that the obtained solution be fuzzy numbers. 
Here, we follow the same approach and provide the 
corresponding necessary adjustments for the optimization 
problems (36) and (38).  
Remark 6: In the least squares problem (36) or (38), we 
may consider the numbers jx , for nj ,1,=   (or 

njj ,1,= ,  ), with small positive values, say 2010 . In this 

case, the symmetric triangular fuzzy numbers 
),,( jjjx   are very close to zero (or the crisp numbers 

jx ). Thus, a positive parameter   can be taken such 

that jx  (or  j
), for all j . This choice 

guarantees that each fuzzy number has a positive core 
(or has a positive non-zero spread) at least as much as 
. Therefore, instead of problem (36), we consider the 
problem,  

2min =

. .
. ,

corex
z Ux v

s t
x u




(39) 

and instead of the least squares problem (38), we solve 
the following optimization problem,  

2
min = ( )

. .
.
0,

spready
z A C y g

s t
y u

x y


 


 

 (40) 

where nTu ,1)(1,=   and 0>  is a user-defined 

parameter.  
We are ready to give an algorithm for solving the DFLSE 
regarding the fuzzy multiplication defined in [12]. 
Algorithm 2: Find an approximate symmetric triangular 
solution for the DFLSE with the fuzzy multiplication (24).   

A. Give 0>  to be used for (39) and (40). 
B. Solve the system (32). If the system (32) has no 

solution (consequently the system (9) does not have 
a solution) or x, the solution of (32), has at least one 
negative component then solve the optimization 
problem (39).   

C. Find the solution of (33). If the system (33) has no 
solution or y, the solution of (33), has at least one 
negative component or there exist an index j  such 

that 0<jj yx  then solve (34). If the system (34) has 

no solution or y, the solution of(34), has at least one 

negative component or there exist an index j  such 

that 0<jj yx  then solve the optimization problem 

(40). 
D. The approximate symmetric solution of (9) is 

 1= , , ,T
nx x x    where = ( , , )j j j jx x   , 

nj 1,...,= ,  Tnxxx ,,= 1   and  Tny  ,,= 1  .   

E. Stop. 
Numerical testing: 
Here, to show the effectiveness of our approach in 
computing an approximate symmetric solution for dual 
fuzzy linear systems, we apply our proposed methods to 
several randomly generated test problems. For each test 
problem, we first produce the coefficient matrices 

 = ,ij m n
A a


   = ,ij m n

C c


   and the candidate solution 

 
1

= ,j n
x x


   randomly using the function rand in Matlab.  

Random examples for Algorithm 1 
 Let = ( , , )ij ij ij ija a b c , = ( , , )ij ij ij ijc e f g  and 

= ( , , )j j j jx x y z , mi 1,...,= , nj 1,...,= , be triangular 

fuzzy numbers and jx  be nonnegative. For all i  and j , 

ijb  and ijf  are two arbitrary values in ],[ kk  and jy  is 

an arbitrary value in ][0,k , 0>k . Moreover, for all i  and 

j , ],[ ijijij bsba  , ],[ sbbc ijijij  , ],[ ijijij fsfe  , 

],[ sffg ijijij   and ],[ jjj ysyx   are arbitrary values 

where s  is a user-defined value and denotes the 
maximum value of the spreads of the random fuzzy 
numbers. Also we set xyz 2= . Here, we used 

10=k  and 2=s . 

Then, the constant vectors, b  and d , are specified such 
that the random vector x  satisfies the dual fuzzy system 
(9) with the fuzzy multiplication (12). The following 
algorithm presents a method to specify the constant 
vectors. Note that this algorithm is not the only method to 
generate the consistent dual fuzzy linear system.  
Algorithm 3 :Generate a consistent random generated 
DFLSE with the multiplication formula (12).   

A. Generate the fuzzy matrices = ( , , )m nA A B C
 , 

= ( , , )m nC E F G
  and 1 = ( , ,2 )nx x y y x  , 

randomly, according to what mentioned above. 

B. Set 


A , 


A , 
C , 

C , 


E , 


E , 
G  and 

G , 
by Notation 3.2. 

C. Set zEAxEA )()(=


 , 

yFB )(=  ,    
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zGCxGC )()(=


 ,  =  

and  = . 

D. Generate a real vector 
mkkb ],[2  , randomly, and 

set 22 = bd
.
 

E. For mi 1,...,= : 

Randomly assign a number in the range of ][0,s  to r . 

If 0i then set )(= 21 rbb iii    and rdd ii 21 = . 

If 0<i then set rbb ii 21 =  and 

)(= 21 iii rdd  .  

F. For mi 1,...,= : 

Randomly assign a number in the range of ][0,s  to r . 
If 0i then set rbb ii 23 =  and 

)(= 23 rdd iii   . If 0<i then set 

)(= 23 iii rbb   and rdd ii 23 = .  

G. Let 1 2 3= ( , , )b b b b  and 1 2 3= ( , , )d d d d . 

H. The consistent random generated DFLSE is

( ) = ( ) .K KA x b C x d        

I. Stop.   
In the following examples, we set 510=  .   
Example 1: In this example, the system (18) has 
appropriate solutions, and thus it would not be necessary 
to solve the optimization problem (22). The generated test 
example is:  

1 2

3

1 2

(( 0.2328, 0.7981, 1.5872) ) ((1.6392 ,2.6228 ,4.3953 ) )
(( 1.2875, 1.4168, 1.9339 ) )  ( 4.8693,6.6838,15.0029)=
(( 1.3140,0.0768 ,1.7493 ) ) (( 0.3962, 0.6378, 1.5462) )
(( 2.565

K K

K

K K

x x
x
x x

    
  

     


 

 

3

1 2

3

9, 1.4418,0.0268) )  (49.0819,49.2381,49.6741),

(( 8.7539, 8.0925, 6.8656) ) (( 7.0443 , 7.1864 , 9.0486 ) )
(( 9.0646 , 9.9370 , 11.7327) )  ( 26.5314, 9.6871, 8.5439) =
(( 0.8159 , 2.25

K

K K

K

x

x x
x

  

      
    



 


1 2

3

1 2

62 , 3.7190 ) ) (( 7.0719, 5.9585, 5.1857) )
(( 7.9314, 9.3211 , 10.1816 ) )  ( 1.4103, 0.0722, 15.5799),

(( 7.9297, 7.0697, 5.4324) ) (( 7.7090 , 9.4844 , 9.8660 ) )
(( 0.5824 , 1.

K K

K

K K

x x
x

x x

      
   

      


 


 

3

1 2

3

0708, 2.2576 ) )  ( 6.2738 , 7.2742 , 9.9616 ) =
(( 5.6947 , 6.3884 , 7.1085 ) ) (( 1.2351, 0.9221, 0.6290 ) )
(( 1.5482 , 2.4011 , 3.7886 ) )  ( 68.3016, 47.7084, 47.4640).

K

K K

K

x
x x
x













 
     
    


 













 

The candidate solution for this system is:  
 = (9.0846,9.4521,9.8196), (7.8021,7.8423,7.8826), (6.8728,7.0557,7.2387) .Tx

Solving the system (18), by the function linsolve in 
Matlab, results in:  

 = 9.0846, 7.8021, 6.8728, 9.4521, 7.8423, 7.0557 ,Tw  

which satisfies the conditions of the problem (22). 
Therefore, by setting ),,(= 31 wwx  , ),,(= 64 wwy   a

xyz 2= , the nonnegative approximate symmetric 

solution is:  
 = (9.0846,9.4521,9.8196), (7.8021,7.8423,7.8826), (6.8728,7.0557,7.2387) ,Tx

for which the Hausdorff distance from the candidate 
solution is 2.7534e-14.  
Example 2: Consider, 

1 2

3 4

(( 9.9324, 8.5106, 6.6825) ) (( 5.4253, 5.2421, 5.1605) )
(( 4.2513 ,  6.0329 , 6.1416 ) ) (( 0.0734 , 1.2511 , 1.3505 ) )

( 7.5130, 6.2724,17.9456) = ( 57.0449, 54.5866, 53.4957)  
(( 9.

K K

K K

x x
x x

         
  

      


 
 

1 2

3 4

1 2

7356, 7.8001, 6.6287) ) (( 9.2204, 9.6192,11.5736) )
((  3.5614 , 5.2863 , 7.1051 ) ) (( 6.8633, 6.4661, 4.7673) ),

(( 3.5793, 1.6041, 0.2775) ) (( 9.0917, 7.8285, 6.3253) )
(( 

K K

K K

K K

x x
x x

x x

     
     

         

 
 

 

3 4

1 2

8.7635 , 9.2119 , 9.3478 ) ) (( 0.2656, 0.0822 , 0.3949) )
( 1.3169, 1.1373,1.4836) = ( 101.7890, 100.9934, 100.9173)  

(( 1.6759, 1.2914, 0.2413 ) ) (( 0.5501, 1.7642, 3.6363 ) )
(( 0.66

K K

K K

x x

x x

    
      
     

 

 

3 4

1 2

3 4

06 , 2.0125 , 2.7591 ) ) (( 6.6521, 7.5295, 7.9020 ) ),

(( 2.7348, 2.0655, 1.0662) ) (( 5.2442 , 6.0006 , 6.6481 ) )
(( 3.7211 , 5.3150 , 6.4620 ) ) (( 5.4403, 4.9392, 4.6846) )

K K

K K

K K

x x

x x
x x

  

      
     

 

 
 

1 2

3 4

( 7.6872, 0.2376,7.1435) = (14.0124,14.2359,15.3944)  
(( 7.8418 , 8.0376 , 8.3868 ) ) (( 1.3562 , 0.0632 , 1.8487 ) )
(( 2.8817 , 4.4517 , 4.6843 ) ) (( 6.0828, 4.9662, 4.5487) ),

(( 2.1

K K

K K

x x
x x

   
    
     



 
 

1 2

3 4

817, 1.7414, 0.4718) ) (( 10.8785, 9.1037, 8.9708) )
((  0.4481 , 2.1646 , 3.0430 ) ) (( 7.2683, 6.0808, 4.8201) )

(6.0715,7.2226,10.4643) = ( 81.4433, 77.5729, 76.3149)  
(( 0.0709 , 1.3

K K

K K

x x
x x

        
     

    


 
 

1 2

3 4

1 2

167 , 2.3229 ) ) (( 1.1492 , 0.6319 , 1.5189 ) )
(( 2.3690, 1.2957, 0.2455 ) ) (( 3.6406, 2.8703, 1.8095) ),

(( 8.7885 , 9.4791 , 9.6518 ) ) (( 8.3461, 9.1991, 11.0456 ) )
(( 8.

K K

K K

K K

x x
x x

x x

    
        

   

 
 

 

3 4

1 2

9266 , 9.7808 , 9.8356 ) ) (( 1.1865, 0.1453, 0.8075) )
(3.4058,4.3291,5.2930) = (90.2284,91.5437, 99.4451)  

(( 4.4208 , 4.6129 , 5.3782 ) ) (( 0.9205 , 2.1257 , 3.6288 ) )
(( 2.9216 , 2.

K K

K K

x x

x x

    
 

   

 

 

3 49305 , 3.6127 ) ) (( 5.2268, 3.9331, 3.7645) ).K Kx x














































         
 
The candidate solution for this system is:  

(2.2168,2.4077,2.5986)
(6.2163,6.3455,6.4747)

= .
(1.0137,1.1108,1.2078)
(5.9858,6.0734,6.1611)

x

 
 
 
 
 
 

  

Solving the system (18), by the function linsolve in 
Matlab, results in:  

 = 2.2168, 6.2163, 1.0137, 5.9858, 2.4077, 6.3455, 1.1108, 6.0734 ,Tw
which satisfies the conditions of the problem (22). Thus, 
the system (18) has appropriate solutions, and it would 
not be necessary to solve the optimization problem (22). 
Therefore, by setting ),,(= 41 wwx  , 

),,(= 85 wwy   and xyz 2= , the nonnegative 

approximate symmetric solution is:  
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(2.2168, 2.4077, 2.5986)
(6.2163,6.3455,6.4747)

= ,
(1.0137,1.1108,1.2078)
(5.9858,6.0734,6.1611)

x

 
 
 
 
 
 

  

for which the Hausdorff distance from the candidate 
solution is 7.3275e-15.  

We denote that Algorithm 1 may also be applied to 
systems with medium scales. Here, we generate the 
systems in two different ways. Firstly, we consider 
consistent systems by producing the coefficient matrices 
and the candidate solutions of these dual fuzzy linear 
systems, generated randomly and specifying the constant 
vectors by Algorithm 3. The average Hausdorff distances 
between the candidate and approximate solutions of 
some small and medium size consistent systems are 
shown in Tables 1 and 2 . 

Secondly, we generate the random dual fuzzy linear 

systems by producing the coefficient matrices, A , C  

and the constant vectors, b , d , randomly. Tables 3 and 
4 show the average Hausdorff distances between 

( )KA x b     and ( )KC x d    . In this case, the 

appearance of inconsistent randomly generated systems 
is more probable than the generated consistent 
systems. In the two problem types, the size of the 
systems are also set randomly; that is, m  and n , the 
number of rows and columns, respectively, are two 
random numbers. 
The first row in the tables shows the range of 

dimensions of the systems and the second row 
represents the number of systems randomly generated 
and solved in each case. Rows 3 and 4 display the 
number of problems for which the linear system (18) has 
appropriate solutions, and the corresponding average 
Hausdorff distances, respectively. The number of 
problems for which the least squares problem (22) was 
solved to obtain the symmetric approximate solution for 
the DFLSE and the average Hausdorff distances are 
shown in rows 5 and 6, respectively. The average 
Hausdorff distances over all problems are displayed in 
the last row. The following abbreviations are used in the 
tables. 
NTCSFLinSol= Number of times the core and spread 
systems were solved by the function "linsolve". 
NTCSVCLSqP= Number of times at least one of the core 
or spread vectors were obtained by solving the 

corresponding least squares problems. 
AHDCP= Average Hausdorff distance in 
corresponding category of problems. AHDOAP= 
Average Hausdorff distance over all problems. 
Random examples for Algorithm 2 

 Let = ( , , )ij ij ij ija a m n , = ( , , )ij ij ij ijc c e f  and 

= ( , , )j j j jx x y z , mi 1,...,= , nj 1,...,= . For all 

i , j , we set  

,==   ,=   ,= jjjijijijij xzyanam   

where ija , ijc  and jx  are three arbitrary values 

in ][0, k , 0>k  and rand.=  , (0,1] . 

Here, we used 0.25=  and 10=k . Then, the 

constant vectors, b  and d , are specified such 

that the random vector x  satisfies the dual fuzzy 
system (9) with the fuzzy multiplication (24). The 
following algorithm presents a method to specify 
the constant vectors. Note that this algorithm is 
not the only method to generate the consistent 
dual fuzzy linear system.  
Algorithm 4: Generate a consistent random 
generated DFLSE with the multiplication formula 
(24).  

A. Generate the nonnegative fuzzy matrices 

= ( , , )m nA A M N


, =( , , )m nC C E F


and 

Table 1. The results for Algorithm 1 on some small and medium size  
dual fuzzy linear systems with random candidate solutions, mn = . 
1 Range of dimensions [1,10] [10,100] [100,200] 
2 Number of problems 500 250 100 
3 NTCSFLinSol 500 250 100 
4 AHDCP 2.8550e-13 6.4696e-12 1.3817e-11 
5 NTCSVOCLSqP 0 0 0 
6 AHDCP - - - 
7 AHDOAP 2.8550e-13 6.4696e-12 1.3817e-11 

Table 2 . The results for Algorithm 1 on some small and medium size 
dual fuzzy linear systems with random candidate solutions mn  . 
1 Range of dimensions [1,10] [10,100] [100,200] 
2 Number of problems 500 250 100 
3 NTCSFLinSol 500 250 100 
4 AHDCP 3.9627e-14 1.7751e-13 8.9293e-7 
5 NTCSVOCLSqP 0 0 0 
6 AHDCP - - - 
7 AHDOAP 3.9627e-14 1.7751e-13 8.9293e-7 

Table 3 . The results for Algorithm 1 on some small and medium size  
dual fuzzy linear systems with random constant vectors, mn = . 
1 Range of dimensions [1,10] [10,100] [100,200] 
2 Number of problems 500 250 50 
3 NTCSFLinSol 58 0 0 
4 AHDCP 2.6855 - - 
5 NTCSVOCLSqP 442 250 50 
6 AHDCP 10.5986 19.9001 21.3637 
7 AHDOAP 9.6807 19.9001 21.3637 

Table 4. The results for Algorithm 1 on somesmall and medium 
size dual fuzzy linear systemswith random constant vectors, 

mn  . 
1 Range of dimensions [1,10] [10,100] [100,200] 
2 Number of problems 500 250 50 
3 NTCSFLinSol 115 0 0 
4 AHDCP 9.7349 - - 
5 NTCSVOCLSqP 385 250 50 
6 AHDCP 11.2254 20.6219 24.8190 
7 AHDOAP 10.8826 20.6219 24.8190 
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1 = ( , , )nx x y y , randomly. 

B. Set  CA= , EM = , FN =  and 
= .x  . 

C. For mi 1,...,= :   
If 0i then randomly assign a number in the 

range of ][0,k  to ib  and set iii bd = . 

If 0<i then randomly assign a number in the 

range of ][0,k  to id  and set iii db = . 

D. Obtain Lb  and Ld  by solving the following 

constrained least squares problem,  
min

. .
0
0 .

L L

L

L

y x b d

s t
b b
d d

   

 
 

(41) 

E. Set xy  = . 

F. For mi 1,...,= : 

If 0i then randomly assign a number in the 

range of ][0,k  to 
iRb  and set iiRiR bd = . 

If 0<i then randomly assign a number in the 

range of ][0,k  to 
iRd  and set iiRiR db = . 

G. Let = ( , , )L Rb b b b  and = ( , , )L Rd d d d .  

H. The consistent random generated DFLSE is  

 ( ) = ( ) .DP DPA x b C x d        

I. Stop.  

 In the following example, we set 510=  .  
Example 3: In this example, the spread system does not 
have a nonnegative solution, and so the least squares 
problem (40) should be solved to find an approximate 
fuzzy solution of the system,  

1 2

3

1 2

((5.9107,0.3741,0.0224) ) ((3.7543,0.4726,0.0121) )
((6.3328,0.8537,0.0955) )  (6.6108,1.0535,8.5871) =
((6.4680,1.1849,0.1230) ) ((3.7364,0.0696, 0.1255) )
((6.2746,0.2410,0.155

DP DP

DP

DP DP

x x
x
x x

   
 
   

 

 

3

1 2

3

1

4) )  (6.6891,5.6207,7.6464),

((4.4601,0.2726,0.1033) ) ((5.4600,0.7721,0.1627) )
((9.0541,0.5719,0.0623) )  (0.1861,0.0000, 2.4369) =
((3.2410,0.5604,0.0667) ) ((7.6674,0.2077,0.

DP

DP DP

DP

DP

x

x x
x
x

 

   
 
 



 

 2

3

1 2

3

1531) )
((7.1392,0.4549,0.0505) )  (1.3814,1.3814, 2.6316),

((9.2662,0.6393,0.1333) ) ((1.1169,0.1923,0.1524) )
((6.3056,1.1045,0.1742) )  (2.9111,2.0840, 6.8212) =
((6.4035,0.2562

DP

DP

DP DP

DP

x
x

x x
x

 
 

   
 




 


1 2

3

1 2

3

, 0.0138) ) ((1.6809,0.1855,0.0808) )
((3.0640,0.4597,0.0974) )  (19.4545,6.1251,7.9462),

((0.9490,0.0328,0.1700) ) ((9.0446,1.7358, 0.1540) )
((0.1424,0.0249,0.0135) )  (10

DP DP

DP

DP DP

DP

x x
x

x x
x

   
 

   
 

 


 


1 2

3

.5095,2.6809,2.7130) =
((8.7975,0.6770,0.0123) ) ((5.1973,0.2221,0.1088) )
((2.6369,0.2166,0.1802) )  (9.7382,7.2735,1.3786).

DP DP

DP

x x
x



























    

 

 


 

The candidate solution for this system is:  
 = (0.5630, 0.1082,0.1082), (4.4351,0.0396,0.0396), (5.3782,0.0123,0.0123) .Tx

Solving the system (32) by the function linsolve in Matlab, 
results in  

  .276,5.41540.5007,4.3= Tx  
Solving the systems (33) and (34) results in  

 Ty 0.1036126,0.3167,0.4=   

and   ,0.1082112,0.3184,0.4= Ty   

respectively. Since the vectors had negative components, 
we then solved the optimization problem (40). 
Consequently, we obtained the approximate symmetric 
solution of the dual fuzzy linear system as:  

 = (0.5007,0.2810,0.2810), (4.3276,0.4315,0.4315), (5.4154,0,0) ,Tx
for which the Hausdorff distance from the candidate 

solution is 0.4995, which is relatively large. When the 
solutions of (33) and (34) do not satisfy the conditions 
of the problem (40), we solve the constrained least 
squares problem (40), so the optimum value of (40) is 
nonzero, it means that there was a distance between 
the obtained solution for (40) and the exact solution 
for the spread system (33) or (34). Therefore, there is 
a considerable Hausdorff distance between the 
candidate and approximate solution.  

 We denote that Algorithm 2 may also be applied 
to systems with medium scales. Similar to the 
previous subsection, we generate the systems in two 

different ways. Firstly, we generate consistent systems by 
Algorithm 4. The average Hausdorff distances between 
the candidate and approximate solutions of some small 
and medium size consistent systems are shown in Tables 
5-8. We use two different values for  , namely 0.2=  
and 0.8= , to see the effect on the solutions. In the 

case 0.2= (Tables 5 and 6), almost all systems are  

Table 5. The results for Algorithm 2 on somesmall and medium size 
dual fuzzylinear systemswith random candidate solutions, mn =  

and 0.2= . 

1 Range of dimensions [1,10] [10,100] [100,200] 
2 Number of problems 500 250 100 
3 NTCSFLinSol 497 244 89 

4 AHDCP 2.7763e-
5 2.3981e-10 1.1080e-11 

5 NTCSVOCLSqP 3 6 11 
6 AHDCP 0.0387 0.0147 0.0305 

7 AHDOAP 2.5980e-
4 3.5320e-4 0.0034 
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Table 7. The results for Algorithm 2 on some 

small and medium size dual fuzzy linear systems 
with random candidate solutions, mn =  and 0.8= . 

1 Range of dimensions [1,10] [10,100] [100,200] 
2 Number of problems 500 250 50 
3 NTCSFLinSol 129 0 2 
4 AHDCP 0.2237 - 0.0156 
5 NTCSVOCLSqP 371 250 48 
6 AHDCP 2.0818 3.8164 3.2296 
7 AHDOAP 1.6024 3.8164 3.1010 

 
Table 8. The results for Algorithm 2 on some  

small and medium size dual fuzzylinear systems with random 
candidate solutions, mn   and 0.8= . 

1 Range of dimensions [1,10] [10,100] [100,200] 
2 Number of problems 500 250 50 
3 NTCSFLinSol 279 6 0 
4 AHDCP 0.2152 0.6112 - 
5 NTCSVOCLSqP 221 244 50 
6 AHDCP 1.8824 1.2754 2.4470 
7 AHDOAP 0.9521 1.2595 2.4470 

solved effectively, but when 0.8=  (Tables 7 and 8), it 

is reasonable that some systems turn to be slightly 
inconsistent and solved by using the corresponding least 
squares problems, due to increase in the size of the 
spreads of the fuzzy random numbers. 

Secondly, we generate the random dual fuzzy linear 

systems by producing the coefficient matrices, A ,C  and 

the constant vectors, b , d , randomly. Tables 9 and 10 
show the average Hausdorff distances between 

( )DPA x b     and ( )DPC x d    . In this case, the 

appearance of inconsistent randomly generated systems 
is more probable than the generated consistent systems. 
In the two problem types, the size of the systems are also 
set randomly; that is, m  and n , the number of rows and 
columns, respectively, are two random numbers. 

Table 9. The results for Algorithm 2 on some small and 
medium size dual fuzzylinear systems with random constant 

vectors, mn =  and 0.2= . 

1 Range of dimensions [1,10] [10,100] [100,200] 
2 Number of problems 500 250 50 
3 NTCSFLinSol 18 0 0 
4 AHDCP 0.3592 - - 
5 NTCSVOCLSqP 482 250 50 
6 AHDCP 4.1453 6.9747 7.7179 
7 AHDOAP 4.0090 6.9747 7.7179 

The first and second rows in the tables are 
designed similar to ones in the previous subsection. 
Rows 3 and 4 display the number of problems for 
which core and spread systems have appropriate 
solutions, and the corresponding average Hausdorff 
distances, respectively. The number of problems for 
which at least one of the core or spread systems were 
solved by solving the corresponding least squares 
problems and the average Hausdorff distances are 
shown in rows 5 and 6, respectively. The average 

Hausdorff distances over all problems are displayed in 
the last row. The following abbreviations are used in the 
tables. 
NTCSFLinSol= Number of times the core and spread 
systems were solved by the function  "linsolve". 
NTCSVOCLSqP = Number of times at least one of the 
core or spread vectors were obtained by solving the 
corresponding least squares problems. 
AHDCP= Average Hausdorff distance in corresponding 
category of problems. 
AHDOAP= Average Hausdorff distance over all problems. 
 

Table 10. The results for Algorithm 2 on some small and 
medium size dual fuzzy linear systems with random 

constant vectors, mn   and 0.2= . 

1 Range of 
dimensions 

[1,10] [10,100] [100,200] 

2 Number of problems 500 250 50 
3 NTCSFLinSol 60 0 0 
4 AHDCP 0.0549 - - 
5 NTCSVOCLSqP 440 250 50 
6 AHDCP 5.3569 5.9628 6.9313 
7 AHDOAP 4.7206 5.9628 6.9313 

 
Conclusions 

We considered two classes of dual fuzzy linear 
systems with respect to different fuzzy multiplication 
formula, namely, the one defined by Kauffman and Gupta 
(1991), and the one defined by Dubois and Prade (1980). 
Median interval defuzzification was applied to obtain an 
approximate nonnegative symmetric solution for dual 
fuzzy linear systems. For this purpose, we first 
transformed an nm  dual fuzzy linear system into two 

nm  crisp systems of equations and solved them. If 
the crisp systems had no appropriate nonnegative 
solution, we then proposed to find an approximate 
solution minimizing the residual Euclidean norm by 
solving a constrained least squares problem. Moreover, 
we presented two algorithms for computing approximate 
nonnegative symmetric solutions of the dual fuzzy linear 
systems. Finally, two algorithms were presented to 
generate consistent dual fuzzy linear systems with 
respect to each multiplication formula followed by 
extensive numerical results those were provided to show 
the effectiveness of our approach on randomly generated 
consistent as well as inconsistent systems. 
 
 

Table 6. The results for Algorithm 2 on some  
small andmedium size dual fuzzylinear systems with  
randomcandidate solutions, mn   and 0.2= . 

1 Range of dimensions [1,10] [10,100] [100,200] 
2 Number of problems 500 250 100 
3 NTCSFLinSol 487 243 91 
4 AHDCP 6.6363e-5 6.2471e-10 9.5218e-13 
5 NTCSVOCLSqP 13 7 9 
6 AHDCP 0.0368 0.0045 0.0048 
7 AHDOAP 0.0010 1.2600e-4 4.3100e-4 
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