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Abstract 

An attempt is made to investigate the problem of an oscillatory MHD free convective flow through a porous medium 
with mass transfer, Soret effect and chemical reaction when the temperature as well as concentration at the plate 
varies periodically with time about a steady mean. Analytical solutions to the coupled non-linear equations governing 
the flow and heat and mass transfer are obtained by using regular perturbation technique. The influence of the different 
parameters entering in to the problem viz. the Hartmann number M, the Grashof number for heat transfer rG  , the 

Grashof number for mass transfer mG  , Soret number 0S , the plate velocity U , chemical reaction hC  etc. on 

temperature distribution, species concentration, velocity distribution, skin-friction and  the rates of heat and mass 
transfer at the plate are discussed graphically. 
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Nomenclature 

A  is the suction parameter; B
r

 is the magnetic induction vector; 0B  is 

strength of the applied magnetic fluid; C  is the species concentration 

of the fluid; hC chemical reaction parameter; pC  is the specific heat at 

constant pressure; WC  is the species concentration of the fluid at the 

plate; C∞ is the species concentration far away from the plate; MD  is 

the coefficient of chemical molecular diffusivity; TD  is the coefficient of 

chemical thermal diffusivity; E  is the Eckert number; mG is the Grashof 

number for mass transfer; rG  is the Grashof number for heat 

transfer; g  is the acceleration due to gravity; K  is the permeability of 

the porous medium; k is the thermal conductivity; M  is the Hartmann 

number; P  is the Prandtl number; Q  is the heat source parameter; S  

is the Schmidt number; 0S is the Soret number; T  is the fluid 

temperature; WT  is the temperature of the fluid at the plate;T∞  is the 

fluid temperature far away from the plate; t  is the time;U  is the non-

dimensional plate velocity;U  is the dimensional plate velocity; u  is the 
x component of the non dimensional fluid velocity in the boundary layer; 

0v  is the mean suction velocity; ( , ,0)u v are the components of the 

fluid velocity; y is the non dimensional distance from the plate; 

( , , )x y z  are the Cartesian coordinates. 

Greek symbols 

α  is the heat source strength; β is the coefficient of volume expansion 

for heat transfer; β  is the coefficient of volume expansion for mass 

transfer; ρ is the fluid density;μ  is the coefficient of viscosity;υ  is the 

kinematic viscosity; σ is the electrical conductivity; θ  is the non 

dimensional temperature; φ  is the non dimensional species 

concentration;ω  is the frequency parameter;ε  is the small reference 

parameter;ξ  is the coefficient first order chemical reaction; λ is the 

reciprocal of the Soret number. 
Introduction 

The MHD free convective flow and heat transfer 
problems through porous medium have attracted the 
attention of a number of scholars due to its importance in 
many branches of science and technology such as fiber 
and granular insulations, geothermal system etc. In 
engineering, its application has been found in MHD 
pumps, MHD bearing etc. Convection in porous media is 
applied in geothermal energy recovery, oil extraction; 
thermal energy storage and flow throw filtering devices. 
The phenomena of mass transfer are also very common 
in the theory of stellar structure and in chemical 
engineering in particular. 
 In many times, it has been observed that the foreign 
mass reacts with the fluid and in such a situation 
chemical reaction plays an important role in chemical 
industry. Many researchers carried out the study of free 
convective effects on flow past a vertical surface with 
different boundary conditions (Vedhanayagam et al., 
1980; Kolar & Sastri, 1988; Camargo et al., 1996; Ahmed 
& Kalita, 2008). The problems of natural convection flow 
through porous medium past a plate were investigated by 
Kim & Vafai (1989) and Harris & Ingham (1997).The 
combined heat and mass transfer effect on MHD free 
convective flow through porous media was investigated 
by (Chaudhary & Jain, 2007). 
 However in the above mentioned works, the thermal–
diffusion (Soret) effect was not taken into account. This 
assumption is justified when the concentration level is 
very low. The flux of mass caused due to temperature 
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gradient is known as the Soret effect or the thermal–
diffusion effect. The experimental investigation of the 
thermal–diffusion effect on mass transfer related problems 
was first done by Charles Soret in 1879. There after this  
thermal–diffusion is termed as the Soret effect in honour 
of Charles Soret. In general the Soret effect is of a 
smaller order of magnitude than the effect described in 
Fick’s law and very often it is neglected in mass transfer 
process. Though this effect is quite small, but the devices 
can be arranged to produce very steep temperature 
gradient so that the separation of components in mixtures 
is affected. Eckert and Drake (1972) have emphasized 
that in the cases concerning isotope separation and in 
mixtures between gases with very light molecular weight 
(H2, He) and for medium molecular weight (N2, air), Soret 
effect is found to be of considerable magnitude such that 
it can not be ignored. Following Eckert and Drake’s 
(1972) work several other investigators have carried out 
model studies on the Soret and Dufour effects in different 
heat and mass transfer problems (Dursunkaya & Worek, 
1992; Kafoussias & Williams,1995; Sattar & Alam, 1994; 
Alam et al., 2006; Raju et al.,2008). 
 Ahmed and Kalita (2009a) investigated the effect of 
the thermal diffusion as well as magnetic field on free 
convection and mass transfer flow through porous 
medium, taking into account the effect of a of heat 
source. Recently Ahmed and Kalita (2009b) have 
investigated the Soret and magnetic field effects on a 
transient free convection flow through a porous medium 
bounded by a uniformly moving infinite vertical porous 
plate in presence of a heat source. 
 The aim of the present work is to investigate the 
problem of an oscillatory MHD free convective flow past a 
uniformly moving infinite vertical porous plate in a porous 
medium of Brinkman model (1947) with mass transfer, 
heat source, Soret effect and chemical reaction. This 
investigation is an extension of the work done by Ahmed 
and Kalita to take into account the effect of chemical 
reaction on the fluid and transport characteristics. 
Mathematical formulation 
      We now consider an unsteady free convective two-
dimensional flow with mass transfer of an electrically 
conducting, viscous and incompressible fluid past an 
infinite non-conducting vertical plate through a porous 
medium bounded by an infinite vertical porous plate by 
making the following assumptions: 
(i) The plate is subjected to a normal periodic suction 

velocity. 
(ii) All the fluid properties except the density in the 

buoyancy force term are constant. 
(iii) The Eckert number E is small. 
(iv)  A uniform magnetic field of strength 0B is applied 

transversely to the direction of the main flow. 
(v) Magnetic dissipation of energy is negligible. 
(vi) The chemical reaction is of first order. 
(vii) The magnetic Reynolds number is so small that the 

induced magnetic field can be neglected. 

We consider the flow in the X-direction, which is taken 
along the length of the plate (vertically upwards) and Y-
axes is perpendicular to it directed into the fluid region. 

Let ˆ ˆq iu jv= +
r

 be the fluid velocity at the point ( , , )x y z   

and  0
ˆB B j=

r
 be the applied magnetic field with strength  

0B  , ˆ ˆ,i j  being the unit vectors along X-axis and Y-axis, 

respectively. As the plate is of infinite length in X-
direction, so all the physical quantities except possibly the 
pressure p are assumed to be independent of x . Under 
these assumptions, the physical quantities are functions 
of y  and t only. 

 With the foregoing assumptions, Boussinesq’s 
approximation and under the usual boundary layer 
approximations the equations governing the flow and 
transport characteristics are 
Equation of continuity: 

0v
y
∂

=
∂

 

Which is trivially satisfied by ( )tiAevv ωε+−= 10      (2.1) 

Where A is a positive constant such that 1Aε <  and 
negative sign indicates that the suction velocity is away 
from the fluid region. 
Momentum equation: 

22
0

0 2(1 ) ( ) ( )i t Bu u u uv Ae g T T g C C u
t y y K

ω σ υε β β υ
ρ∞ ∞

∂ ∂ ∂
− + = − + − + − −

∂ ∂ ∂
              
Energy equation: 

22

0 2(1 ) ( )i t

p p

T T k T uv Ae Q T T
t y C y C y

ω υε
ρ ∞

⎛ ⎞∂ ∂ ∂ ∂
− + = + − + ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                         
Species continuity equation: 

2 2

0 2 2(1 ) ( )i t
M T

C C C Tv Ae D D C C
t y y y

ωε ξ∞

∂ ∂ ∂ ∂
− + = + + −

∂ ∂ ∂ ∂
                                         
The relevant boundary conditions are 

0 : , ( ) , ( )

: 0, ,

i t i t
W W W Wy u U T T T T e C C C C e

y u T T C C

ω ωε ε∞ ∞

∞ ∞

⎫= = = + − = + − ⎪
⎬

→∞ → → → ⎪⎭
                           (2.5) 
We now introduce the following non-dimensional 
quantities: 

0yvy
υ

= , 
2
0tvt
υ

= , 2
0v

υωω = , 
0

uu
v

= , 
0

UU
v

= , 

W

T T
T T

θ ∞

∞

−
=

−
, 

W

C C
C C

φ ∞

∞

−
=

−
, 

3
0

( )W
r

g T TG
v

βυ ∞−
= , 3

0

( )W
m

g C CG
v

βυ ∞−
= ,

(2.2)

(2.3)

(2.4)

(2.5)
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(3.22)

2
0
2
0

BM
v

σ υ
ρ

= , 2
0

Q
v
υα = ,

2
0

( )P W

vE
C T T∞

=
−

pC
P

k
μ

= , 

2
0

2

KvK
υ

= ,
M

S
D
υ

=  , 
( )
( )

W

T W

C C
D T T
υλ ∞

∞

−
=

−
, 

0
1S
λ

= ,
μυ
ρ

= , 2
0

h M
SC D
v
ξ

= . 

All the physical variables are defined in the Nomenclature 
The dimensionless forms of the equations (2.2), (2.3) and 
(2.4) are respectively as follows: 

2

2

1(1 )i t
r m

u u uAe G G M u
t y y K

ωε θ φ∂ ∂ ∂ ⎛ ⎞− + = + + − +⎜ ⎟∂ ∂ ∂ ⎝ ⎠   (2.6) 

22

2(1 )i t uP P Ae P PE
t y y y

ωθ θ θε αθ
⎛ ⎞∂ ∂ ∂ ∂

− + = − + ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠       (2.7) 

2 2

2 2(1 )i t
h

SS S Ae S C
t y y y

ωφ φ φ θε φ
λ

∂ ∂ ∂ ∂
− + = + −

∂ ∂ ∂ ∂   (2.8) 

The corresponding boundary conditions (2.5) in non-
dimensional forms are: 

 
0 : , 1 , 1

: 0, 0, 0

i t i ty u U e e
y u

ω ωθ ε φ ε
θ φ

⎫= = = + = +
⎬

→∞ → → → ⎭
            (2.9) 

Method of solution 
     Assuming the amplitude of oscillation ε  to be small, 
we represent the velocity u, temperature θ  and species 
concentration φ  near the plate as 

2
0 1

2
0 1

2
0 1

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

i t

i t

i t

u y t u y e u y O

y t y e y O

y t y e y O

ω

ω

ω

ε ε

θ θ ε θ ε

φ φ ε φ ε

⎫= + +
⎪

= + + ⎬
⎪= + + ⎭

               (3.1) 

     Substituting   (3.1) in  equations  (2.6 )  to  (2.8)  and   

equating   the coefficients  of  0ε   and 1ε  and  neglecting  

those  of 2ε  and higher powers,  the following differential 
equations are obtained:                 

/ / /
0 0 0 0 0

1
r mu u M u G G

K
θ φ⎛ ⎞+ − + = − −⎜ ⎟

⎝ ⎠
                                                                       

/ / / /
1 1 1 0 1 1

1
r mu u M i u Au G G

K
ω θ φ⎛ ⎞+ − + + = − − −⎜ ⎟

⎝ ⎠
      (3.3) 

2/ / / /
0 0 0 0P P EPuθ θ αθ+ − = −                                  (3.4) 
/ / / / / /

1 1 1 0 0 1( ) 2P i P PA PEu uθ θ α ω θ θ+ − + = − −         (3.5) 

 / / / / /
0 0 0 0h

SS SCφ φ φ θ
λ

+ − = −                                      (3.6) 

 / / / / / /
1 1 1 0 1( )h

SS S C i SAφ φ ω φ φ θ
λ

+ − + = − −              (3.7) 

subject to the following boundary conditions: 

0 1 0 1 0 1

0 1 0 1 0 1

0 : , 0; 1, 1; 1, 1
: 0, 0; 0, 0; 0, 0

y u U u
y u u

θ θ φ φ
θ θ φ φ

= = = = = = = ⎫
⎬→∞ → → → → → → ⎭

 (3.8) 

where dashes denote differentiation with respect to y. 
The equations (3.2) to (3.7) are still coupled for the 
variables 0u , 1u , 0θ , 1θ , 0φ and 1φ . 

To solve them we note that 1E〈  for all incompressible 
fluids and we assume that 
         

2 2
0 00 01 1 10 11

2 2
0 00 01 1 10 11

2 2
0 00 01 1 10 11

( ) ( ) ( ) ( ); ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ); ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ); ( ) ( ) ( ) ( )

u y u y Eu y O E u y u y Eu y O E

y y E y O E y y E y O E

y y E y O E y y E y O E

θ θ θ θ θ θ

φ φ φ φ φ φ

⎫= + + = + +
⎪

= + + = + + ⎬
⎪= + + = + + ⎭

 
Substituting from (3.9) in equations (3.2) to (3.7) and by 

equating the coefficients of 0E   and 1E  in each of the 

equations and neglecting those of  2E  and higher 
powers, we obtain the following second order ordinary 
differential equations: 

/ / /
00 00 00 00 00

1
r mu u M u G G

K
θ φ⎛ ⎞+ − + = − −⎜ ⎟

⎝ ⎠
                                    

/ / /
01 01 01 01 01

1
r mu u M u G G

K
θ φ⎛ ⎞+ − + = − −⎜ ⎟

⎝ ⎠
                                     

/ / / /
10 10 10 00 10 10

1
r mu u M i u Au G G

K
ω θ φ⎛ ⎞+ − + + = − − −⎜ ⎟

⎝ ⎠
                                        

/ / / /
11 11 11 01 11 11

1
r mu u M i u Au G G

K
ω θ φ⎛ ⎞+ − + + = − − −⎜ ⎟

⎝ ⎠
  / / /

00 00 00 0P Pθ θ αθ+ − =                                            (3.14) 
2/ / / /

01 01 01 00P P Puθ θ αθ+ − = −                                      (3.15)               
/ / / /

10 10 10 00( )P i P APθ θ α ω θ θ+ − + = −                       (3.16)               
/ / / / / /

11 11 11 01 00 10( ) 2P i P AP Pu uθ θ α ω θ θ+ − + = − −     (3.17)               

/ / / / /
00 00 00 00h

SS SCφ φ φ θ
λ

+ − = −                                    (3.18)               

/ / / / /
01 01 01 01h

SS SCφ φ φ θ
λ

+ − = −                                     (3.19)              

/ / / / / /
10 10 10 00 10( )h

SS S C i SAφ φ ω φ φ θ
λ

+ − + = − −            (3.20)             

/ / / / / /
11 11 11 01 11( )h

SS S C i SAφ φ ω φ φ θ
λ

+ − + = − −           (3.21)                

The boundary conditions (3.8) reduce to  
 

0y =  

 00 01 10 11 00 01 10 11

00 01 10 11

, 0; 0, 0; 1, 0; 1, 0
1, 0; 1, 0

u U u u u θ θ θ θ
φ φ φ φ

= = = = = = = = ⎫
⎬= = = = ⎭

  

(3.2)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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(4.2)

y →∞ :  

00 01 10 11 00 01 10 11

00 01 10 11

0, 0; 0, 0; 0, 0; 0, 0
0, 0; 0, 0

u u u u θ θ θ θ
φ φ φ φ

= = = = = = = = ⎫
⎬= = = = ⎭

(3.23)       

Solving the equations from (3.10) to (3.21) subject to the 
boundary conditions (3.22) and (3.23) we get 

1
00 ( ) A yy eθ −=                                                            (3.24)                                                                                                          

2 1
00 4 3( ) A y A yy A e A eφ − −= +                                       (3.25)                                                                                    

5 1 2
00 10 9 7( ) A y A y A yu y A e A e A e− − −= + +                     (3.26)                                                                 

5 1 511 1 22 ( )2 2
01 21 15 16 17 18( ) A y A A yA y A y A yy A e A e A e A e A eθ − − +− − −= + + + + +

 
                                                                                 

2 51 2 ( )( )
19 20

A A yA A yA e A e− +− + +                                     (3.27) 

5 1 52 11 1 22 ( )2 2
01 36 29 30 31 32 33( ) A y A A yA y A y A y A yy A e A e A e A e A e A eφ − − +− − − −= + + + + + +

 
                                                                                      

2 51 2 ( )( )
34 35

A A yA A yA e A e− +− + +                                    (3.28) 
5 5 1 511 1 22 ( )2 2

01 9 2 3 4 5 6( ) A y A y A A yA y A y A yu y B e B e B e B e B e B e− − − +− − −= + + + + + +   

                                                                          
2 51 2 2( )( )

7 8 44
A A yA A y A yB e B e A e− +− + −+ +                    (3.29)                                                                                                            

10 1
10 12 11( ) B y A yy B e B eθ − −= +                                  (3.30)                                                                                       

13 102 1
10 19 14 18 16( ) B y B yA y A yy B e B e B e B eφ − −− −= + + +  (3.31)                                                    

                                        

 
                                                                                                                              
                                                                                                               
    The constants involved in the solutions are obtained 
but not presented here for the sake of brevity. 
       Now substituting equations (3.24) to (3.35) in 
equation (3.1) and splitting into real and imaginary parts 
and taking the real parts only we get the expressions for 
the temperature , species concentration and velocity 
profiles as follows : 
( ) ( ) ( )tLtLyty ir ωωεθθ sincos, 0 −+=        (3.36)                                

( ) ( ) ( )tMtMyty ir ωωεφφ sincos, 0 −+=   (3.37)                              

( ) ( ) ( )tNtNyutyu ir ωωε sincos, 0 −+=   (3.38)                               

Where rL =Real part of 1θ , iL =Imaginary part of 1θ , 

           rM =Real part of 1φ , iM =Imaginary part of 1φ , 

          rN =Real part of 1u , iN =Imaginary part of 1φ  

 
Skin friction 
 The shear stress distribution is given by 

u
y

τ μ ∂
=

∂
                                                                 (4.1)                    

The skin-friction in the non-dimensional form on the plate  
0y =  in the direction of free stream is given by 

/ /0 1
0 12

0 0 0

0

(0) (0)i t i t

y y

y

u
u uuy e u e u

v y y y
ω ω

μ
τ ε ε

ρ = =

=

∂ ⎤
⎥ ⎤ ⎧ ⎫∂ ∂∂∂= = = + = +⎥ ⎨ ⎬⎥∂ ∂ ∂⎥ ⎦ ⎩ ⎭
⎥⎦

,                 
   Equation (4.1) can be broken up into real and 
imaginary parts and taking the real part only, we get the 
skin frictionτ  as   

   0 | | ( )B cos tτ τ ε ω γ= + +                   (4.3) 

 

Where /
1 (0)r iB B iB u= + =                 (4.4) 

 

           /
0 0 (0)uτ =            (4.5) 

 

         2 2| | r iB B B= +           (4.6) 

 

        tan i

r

B
B

γ =            (4.7)       

 
 
Coefficient of the rate of heat transfer 
 The rate of heat transfer between 
the fluid and the plate in terms of the 
Nusselt number is given by 
 

( ) ( ) ( )00 10
000

′+′=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
=

==∞
θεθθυ ωti

yyw
e

yy
T

TTv
Nu   (5.1) 

           
Splitting the equation (5.1) into real and imaginary parts 
and taking the real part only, we get  

0 | | cos( )Nu Nu H tε ω η= + +          (5.2)   

Where /
0 0 (0)Nu θ=          (5.3) 

          /
1 (0)r iH H iH θ= + =       (5.4) 

         2 2| | r iH H H= +         (5.5) 
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tan i

r

H
H

η =           (5.6) 

The expressions for 0τ , 0Nu , rB , iB , rH  and iH  are 

obtained but not presented here for the sake of brevity. 
 
Discussion  
 In order to discuss the effects of various parameters 
on the flow and transport characteristics near the plate, 
we have carried out numerical calculations for,θ ,φ ,u, τ 

and Nu  which are respectively the non-dimensional 
temperature field, concentration field, velocity field, skin 
friction at the plate and the Nusselt number at the plate 
for different values of hC , U, 0S ,M, keeping the values of 

α ,ω, E, ε , tω , rG , mG ,K and A fixed 

at1,1,0.05,0.001,
2
π

,5,2,0.2and 0.2 respectively. The 

value of the Prandtl number rP  is taken to be 0.7 which 

corresponds to the air at 020 C. Since water vapor is 
used as a diffusing chemical species of most common 
interest in air, the value of S  (Schmidt number) is 
considered as 0.60. The values of the other physical 
parameters are chosen arbitrarily.  
 Fig. 1-4 exhibits the variation of the temperature field θ 
against y under the influence of chemical reaction, the 
plate velocity, Soret number and the magnetic field. It is 
seen from the Fig. 1, 3 & 4 that the temperature is almost 
negligible for chemical reaction, thermal diffusion and 
magnetic field. It is observed from fig. 2 that an increase 
in the plate velocity results in a steady increase in 
temperature field. 
      The Fig. 5-8 depicts the change of behaviour of 
species concentration φ  against y under the effects of 
chemical reaction, plate velocity, Soret number and 
magnetic parameter respectively. Fig.5 and 6 indicate 
that an increase in chemical reaction or plate velocity 
causes the species concentration φ  to decrease. It is 

observed from Fig. 7 that the concentration φ  rises due 

to the Soret effect whereas from figure 8, it is seen thatφ  
is not significantly affected by the applied magnetic field. 
All Fig. 5-8 further indicate that the concentration steadily 
falls as y increases. 
 The effects of chemical reaction, plate velocity, 
thermal diffusion and applied magnetic field on the 
velocity u against y are presented in Fig. 9-12. We 
observed that the flow motion is retarded due to 
application of the transverse magnetic field and under 
chemical reaction. Whereas the flow is accelerated under 
the effect of thermal diffusion and plate velocity. 
 The influence of the chemical reaction, plate velocity, 
magnetic parameter and Soret number on the skin friction 

τ  at the plate are displayed in Fig. 13-15. From Fig. 13, 
14 & 15 it is clear that the magnitude of the skin friction τ  
increases when chemical reaction, plate velocity and 
strength of the applied magnetic field are increased. 
       Fig. 16-18 demonstrate how the rate of heat transfer 
in terms of Nusselt number is affected by chemical 
reaction, plate velocity, Soret number and the magnetic 
field. Fig. 16 and 17 reveal that there is a fall in values of 
| Nu | due to the chemical reaction, plate velocity. 
Significant fall in the rate of heat transfer happens 
because of chemical reaction and plate velocity: whereas 
from Fig. 18 we notice that | Nu | increases as OS  

increases. Further, the rate of heat transfer from the plate 
to the fluid is reduced under the action of the applied 
magnetic field. 
 
Conclusions 
(i) Concentration of the fluid falls under chemical reaction 

and plate velocity. 
(ii) Fluid motion is accelerated under thermal deffusion. 
(iii) There is retardation in the fluid motion under the effect 

of chemical reaction, plate velocity and magnetic field. 
(iv) |τ| increases under the effect of the chemical reaction, 

plate velocity and magnetic field whereas it decreases 
under the thermal diffusion effect.  

(v) The rate of heat transfer from the plate to the fluid falls 
under the effect of hC ,U  and magnetic field. 
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